1
|
Chiang CH, Wymore T, Rodríguez Benítez A, Hussain A, Smith JL, Brooks CL, Narayan ARH. Deciphering the evolution of flavin-dependent monooxygenase stereoselectivity using ancestral sequence reconstruction. Proc Natl Acad Sci U S A 2023; 120:e2218248120. [PMID: 37014851 PMCID: PMC10104550 DOI: 10.1073/pnas.2218248120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/06/2023] [Indexed: 04/05/2023] Open
Abstract
Controlling the selectivity of a reaction is critical for target-oriented synthesis. Accessing complementary selectivity profiles enables divergent synthetic strategies, but is challenging to achieve in biocatalytic reactions given enzymes' innate preferences of a single selectivity. Thus, it is critical to understand the structural features that control selectivity in biocatalytic reactions to achieve tunable selectivity. Here, we investigate the structural features that control the stereoselectivity in an oxidative dearomatization reaction that is key to making azaphilone natural products. Crystal structures of enantiocomplementary biocatalysts guided the development of multiple hypotheses centered on the structural features that control the stereochemical outcome of the reaction; however, in many cases, direct substitutions of active site residues in natural proteins led to inactive enzymes. Ancestral sequence reconstruction (ASR) and resurrection were employed as an alternative strategy to probe the impact of each residue on the stereochemical outcome of the dearomatization reaction. These studies suggest that two mechanisms are active in controlling the stereochemical outcome of the oxidative dearomatization reaction: one involving multiple active site residues in AzaH and the other dominated by a single Phe to Tyr switch in TropB and AfoD. Moreover, this study suggests that the flavin-dependent monooxygenases (FDMOs) adopt simple and flexible strategies to control stereoselectivity, which has led to stereocomplementary azaphilone natural products produced by fungi. This paradigm of combining ASR and resurrection with mutational and computational studies showcases sets of tools for understanding enzyme mechanisms and provides a solid foundation for future protein engineering efforts.
Collapse
Affiliation(s)
- Chang-Hwa Chiang
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
| | - Troy Wymore
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY11794
- Department of Chemistry, Stony Brook University, Stony Brook, NY11794
| | - Attabey Rodríguez Benítez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI48109
| | - Azam Hussain
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI48109
| | - Janet L. Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Charles L. Brooks
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI48109
- Department of Biophysics, University of Michigan, Ann Arbor, MI48109
| | - Alison R. H. Narayan
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
2
|
Ker DS, Chan KG, Othman R, Hassan M, Ng CL. Site-directed mutagenesis of β sesquiphellandrene synthase enhances enzyme promiscuity. PHYTOCHEMISTRY 2020; 173:112286. [PMID: 32059132 DOI: 10.1016/j.phytochem.2020.112286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
The chemical formation of terpenes in nature is carried out by terpene synthases as the main biocatalysts to guide the carbocation intermediate to form structurally diverse compounds including acyclic, mono- and multiple cyclic products. Despite intensive study of the enzyme active site, the mechanism of specific terpene biosynthesis remains unclear. Here we demonstrate that a single mutation of the amino acid L454G or L454A in the active site of Persicaria minor β-sesquiphellandrene synthase leads to a more promiscuous enzyme that is capable of producing additional hydroxylated sesquiterpenes such as sesquicineole, sesquisabinene hydrate and α-bisabolol. Furthermore, the same L454 residue mutation (L454G or L454A) in the active site also improves the protein homogeneity compared to the wild type protein. Taken together, our results demonstrate that residue Leucine 454 in the active site of β-sesquiphellandrene synthase is important for sesquiterpene product diversity as well as the protein homogeneity in solution.
Collapse
Affiliation(s)
- De-Sheng Ker
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, Bangi, Selangor, 43600, Malaysia
| | - Kok Gan Chan
- International Genome Centre, Jiangsu University, Zhenjiang, China; Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Roohaida Othman
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, Bangi, Selangor, 43600, Malaysia; Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi, Selangor, 43600, Malaysia
| | - Maizom Hassan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, Bangi, Selangor, 43600, Malaysia
| | - Chyan Leong Ng
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, Bangi, Selangor, 43600, Malaysia.
| |
Collapse
|
3
|
Smit SJ, Vivier MA, Young PR. Linking Terpene Synthases to Sesquiterpene Metabolism in Grapevine Flowers. FRONTIERS IN PLANT SCIENCE 2019; 10:177. [PMID: 30846994 PMCID: PMC6393351 DOI: 10.3389/fpls.2019.00177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/05/2019] [Indexed: 05/23/2023]
Abstract
Grapevine (Vitis vinifera L.) terpene synthases (VviTPS) are responsible for the biosynthesis of terpenic volatiles. Volatile profiling of nine commercial wine cultivars showed unique cultivar-specific variation in volatile terpenes emitted from grapevine flowers. The flower chemotypes of three divergent cultivars, Muscat of Alexandria, Sauvignon Blanc and Shiraz were subsequently investigated at two flower developmental stages (EL-18 and -26). The cultivars displayed unique flower sesquiterpene compositions that changed during flower organogenesis and the profiles were dominated by either (E)-β-farnesene, (E,E)-α-farnesene or (+)-valencene. In silico remapping of microarray probes to VviTPS gene models allowed for a meta-analysis of VviTPS expression patterns in the grape gene atlas to identify genes that could regulate terpene biosynthesis in flowers. Selected sesquiterpene synthase genes were isolated and functionally characterized in three cultivars. Genotypic differences that could be linked to the function of a targeted gene model resulted in the isolation of a novel and cultivar-specific single product sesquiterpene synthase from Muscat of Alexandria flowers (VvivMATPS10), synthesizing (E)-β-farnesene as its major volatile. Furthermore, we identified structural variations (SNPs, InDels and splice variations) in the characterized VviTPS genes that potentially impact enzyme function and/or volatile sesquiterpene production in a cultivar-specific manner.
Collapse
Affiliation(s)
| | | | - Philip Richard Young
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
4
|
Currin A, Swainston N, Day PJ, Kell DB. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem Soc Rev 2015; 44:1172-239. [PMID: 25503938 PMCID: PMC4349129 DOI: 10.1039/c4cs00351a] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Indexed: 12/21/2022]
Abstract
The amino acid sequence of a protein affects both its structure and its function. Thus, the ability to modify the sequence, and hence the structure and activity, of individual proteins in a systematic way, opens up many opportunities, both scientifically and (as we focus on here) for exploitation in biocatalysis. Modern methods of synthetic biology, whereby increasingly large sequences of DNA can be synthesised de novo, allow an unprecedented ability to engineer proteins with novel functions. However, the number of possible proteins is far too large to test individually, so we need means for navigating the 'search space' of possible protein sequences efficiently and reliably in order to find desirable activities and other properties. Enzymologists distinguish binding (Kd) and catalytic (kcat) steps. In a similar way, judicious strategies have blended design (for binding, specificity and active site modelling) with the more empirical methods of classical directed evolution (DE) for improving kcat (where natural evolution rarely seeks the highest values), especially with regard to residues distant from the active site and where the functional linkages underpinning enzyme dynamics are both unknown and hard to predict. Epistasis (where the 'best' amino acid at one site depends on that or those at others) is a notable feature of directed evolution. The aim of this review is to highlight some of the approaches that are being developed to allow us to use directed evolution to improve enzyme properties, often dramatically. We note that directed evolution differs in a number of ways from natural evolution, including in particular the available mechanisms and the likely selection pressures. Thus, we stress the opportunities afforded by techniques that enable one to map sequence to (structure and) activity in silico, as an effective means of modelling and exploring protein landscapes. Because known landscapes may be assessed and reasoned about as a whole, simultaneously, this offers opportunities for protein improvement not readily available to natural evolution on rapid timescales. Intelligent landscape navigation, informed by sequence-activity relationships and coupled to the emerging methods of synthetic biology, offers scope for the development of novel biocatalysts that are both highly active and robust.
Collapse
Affiliation(s)
- Andrew Currin
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- School of Chemistry , The University of Manchester , Manchester M13 9PL , UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
| | - Neil Swainston
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
- School of Computer Science , The University of Manchester , Manchester M13 9PL , UK
| | - Philip J. Day
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
- Faculty of Medical and Human Sciences , The University of Manchester , Manchester M13 9PT , UK
| | - Douglas B. Kell
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- School of Chemistry , The University of Manchester , Manchester M13 9PL , UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
| |
Collapse
|
5
|
Gonzalez V, Touchet S, Grundy DJ, Faraldos JA, Allemann RK. Evolutionary and Mechanistic Insights from the Reconstruction of α-Humulene Synthases from a Modern (+)-Germacrene A Synthase. J Am Chem Soc 2014; 136:14505-12. [DOI: 10.1021/ja5066366] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Veronica Gonzalez
- School of Chemistry and ‡Cardiff Catalysis Institute, School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Sabrina Touchet
- School of Chemistry and ‡Cardiff Catalysis Institute, School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Daniel J. Grundy
- School of Chemistry and ‡Cardiff Catalysis Institute, School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Juan A. Faraldos
- School of Chemistry and ‡Cardiff Catalysis Institute, School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Rudolf K. Allemann
- School of Chemistry and ‡Cardiff Catalysis Institute, School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
6
|
Wymore T, Brooks CL. From Molecular Phylogenetics to Quantum Chemistry: Discovering Enzyme Design Principles through Computation. Comput Struct Biotechnol J 2012; 2:e201209018. [PMID: 24688659 PMCID: PMC3962182 DOI: 10.5936/csbj.201209018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/14/2012] [Accepted: 11/15/2012] [Indexed: 11/22/2022] Open
Affiliation(s)
- Troy Wymore
- Pittsburgh Supercomputing Center, 300 South Craig Street, Pittsburgh, PA 15213 USA
| | - Charles L. Brooks
- University of Michigan, Department of Chemistry and Biophysics, 930 North University Avenue, Ann Arbor, MI 48109 USA
| |
Collapse
|
7
|
Condurso HL, Bruner SD. Structure guided approaches toward exploiting and manipulating nonribosomal peptide and polyketide biosynthetic pathways. Curr Opin Chem Biol 2012; 16:162-9. [DOI: 10.1016/j.cbpa.2012.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 01/31/2012] [Accepted: 02/02/2012] [Indexed: 11/28/2022]
|