1
|
Yamaotsu N, Hirono S. In silico fragment-mapping method: a new tool for fragment-based/structure-based drug discovery. J Comput Aided Mol Des 2018; 32:1229-1245. [PMID: 30196523 DOI: 10.1007/s10822-018-0160-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/04/2018] [Indexed: 01/09/2023]
Abstract
Here, we propose an in silico fragment-mapping method as a potential tool for fragment-based/structure-based drug discovery (FBDD/SBDD). For this method, we created a database named Canonical Subsite-Fragment DataBase (CSFDB) and developed a knowledge-based fragment-mapping program, Fsubsite. CSFDB consists of various pairs of subsite-fragments derived from X-ray crystal structures of known protein-ligand complexes. Using three-dimensional similarity-matching between subsites on one protein and another, Fsubsite compares the surface of a target protein with all subsites in CSFDB. When a local topography similar to the subsite is found on the surface, Fsubsite places a fragment combined with the subsite in CSFDB on the target protein. For validation purposes, we applied the method to the apo-structure of cyclin-dependent kinase 2 (CDK2) and identified four compounds containing three mapped fragments that existed in the list of known inhibitors of CDK2. Next, the utility of our fragment-mapping method for fragment-growing was examined on the complex structure of tRNA-guanine transglycosylase with a small ligand. Fsubsite mapped appropriate fragments on the same position as the binding ligand or in the vicinity of the ligand. Finally, a 3D-pharmacophore model was constructed from the fragments mapped on the apo-structure of heat shock protein 90-α (HSP90α). Then, 3D pharmacophore-based virtual screening was carried out using a commercially available compound database. The resultant hit compounds were very similar to a known ligand of HSP90α. As a result of these findings, this in silico fragment-mapping method seems to be a useful tool for computational FBDD and SBDD.
Collapse
Affiliation(s)
- Noriyuki Yamaotsu
- Department of Pharmaceutical Sciences, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Shuichi Hirono
- Department of Pharmaceutical Sciences, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
2
|
Xu XL, Bao QC, Jia JM, Liu F, Guo XK, Zhang MY, Wei JL, Lu MC, Xu LL, Zhang XJ, You QD, Sun HP. CPUY201112, a novel synthetic small-molecule compound and inhibitor of heat shock protein Hsp90, induces p53-mediated apoptosis in MCF-7 cells. Sci Rep 2016; 6:19004. [PMID: 26743233 PMCID: PMC4705544 DOI: 10.1038/srep19004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022] Open
Abstract
Heat-shock protein 90 (Hsp90) is highly expressed in many tumor cells and is associated with the maintenance of malignant phenotypes. Targeting Hsp90 has had therapeutic success in both solid and hematological malignancies, which has inspired more studies to identify new Hsp90 inhibitors with improved clinical efficacy. Using a fragment-based approach and subsequent structural optimization guided by medicinal chemistry principles, we identified the novel compound CPUY201112 as a potent Hsp90 inhibitor. It binds to the ATP-binding pocket of Hsp90 with a kinetic dissociation (Kd) constant of 27 ± 2.3 nM. It also exhibits potent in vitro antiproliferative effects in a range of solid tumor cells. In MCF-7 cells with high Hsp90 expression, CPUY201112 induces the degradation of Hsp90 client proteins including HER-2, Akt, and c-RAF. We prove that treating MCF-7 cells with CPUY201112 results in cell cycle arrest and apoptosis through the wild-type (wt) p53 pathway. CPUY201112 also synergizes with Nutlin-3a to induce cancer cell apoptosis. CPUY201112 significantly inhibited the growth of MCF-7 xenografts in nude mice without apparent body weight loss. These results demonstrate that CPUY201112 is a novel Hsp90 inhibitor with potential use in treating wild-type p53 related cancers.
Collapse
Affiliation(s)
- Xiao-Li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qi-chao Bao
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jian-Min Jia
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Fang Liu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao-Ke Guo
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ming-ye Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jin-lian Wei
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Meng-chen Lu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Li-li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao-Jin Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.,Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing, 210009, China
| | - Qi-Dong You
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hao-Peng Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
3
|
Kumalo HM, Bhakat S, Soliman ME. Heat-shock protein 90 (Hsp90) as anticancer target for drug discovery: an ample computational perspective. Chem Biol Drug Des 2015; 86:1131-60. [PMID: 25958815 DOI: 10.1111/cbdd.12582] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There are over 100 different types of cancer, and each is classified based on the type of cell that is initially affected. If left untreated, cancer can result in serious health problems and eventually death. Recently, the paradigm of cancer chemotherapy has evolved to use a combination approach, which involves the use of multiple drugs each of which targets an individual protein. Inhibition of heat-shock protein 90 (Hsp90) is one of the novel key cancer targets. Because of its ability to target several signaling pathways, Hsp90 inhibition emerged as a useful strategy to treat a wide variety of cancers. Molecular modeling approaches and methodologies have become 'close counterparts' to experiments in drug design and discovery workflows. A wide range of molecular modeling approaches have been developed, each of which has different objectives and outcomes. In this review, we provide an up-to-date systematic overview on the different computational models implemented toward the design of Hsp90 inhibitors as anticancer agents. Although this is the main emphasis of this review, different topics such as background and current statistics of cancer, different anticancer targets including Hsp90, and the structure and function of Hsp90 from an experimental perspective, for example, X-ray and NMR, are also addressed in this report. To the best of our knowledge, this review is the first account, which comprehensively outlines various molecular modeling efforts directed toward identification of anticancer drugs targeting Hsp90. We believe that the information, methods, and perspectives highlighted in this report would assist researchers in the discovery of potential anticancer agents.
Collapse
Affiliation(s)
- Hezekiel M Kumalo
- School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa
| | - Soumendranath Bhakat
- School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa.,Division of Biophysical Chemistry, Lund University, P.O. Box 124, SE-22100, Lund, Sweden
| | - Mahmoud E Soliman
- School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa
| |
Collapse
|