1
|
Wang N, Brickute D, Braga M, Barnes C, Lu H, Allott L, Aboagye EO. Novel Non-Congeneric Derivatives of the Choline Kinase Alpha Inhibitor ICL-CCIC-0019. Pharmaceutics 2021; 13:1078. [PMID: 34371769 PMCID: PMC8309005 DOI: 10.3390/pharmaceutics13071078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 01/07/2023] Open
Abstract
Choline kinase alpha (CHKA) is a promising target for the development of cancer therapeutics. We have previously reported ICL-CCIC-0019, a potent CHKA inhibitor with high cellular activity but with some unfavorable pharmacological properties. In this work, we present an active analogue of ICL-CCIC-0019 bearing a piperazine handle (CK146) to facilitate further structural elaboration of the pharmacophore and thus improve the biological profile. Two different strategies were evaluated in this study: (1) a prodrug approach whereby selective CHKA inhibition could be achieved through modulating the activity of CK146, via the incorporation of an ε-(Ac) Lys motif, cleavable by elevated levels of histone deacetylase (HDAC) and cathepsin L (CTSL) in tumour cells; (2) a prostate-specific membrane antigen (PSMA) receptor targeted delivery strategy. Prodrug (CK145) and PSMA-targeted (CK147) derivatives were successfully synthesized and evaluated in vitro. While the exploitation of CK146 in those two strategies did not deliver the expected results, important and informative structure-activity relationships were observed and have been reported.
Collapse
Affiliation(s)
- Ning Wang
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (N.W.); (D.B.); (M.B.); (C.B.); (H.L.)
| | - Diana Brickute
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (N.W.); (D.B.); (M.B.); (C.B.); (H.L.)
| | - Marta Braga
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (N.W.); (D.B.); (M.B.); (C.B.); (H.L.)
| | - Chris Barnes
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (N.W.); (D.B.); (M.B.); (C.B.); (H.L.)
| | - Haonan Lu
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (N.W.); (D.B.); (M.B.); (C.B.); (H.L.)
| | - Louis Allott
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (N.W.); (D.B.); (M.B.); (C.B.); (H.L.)
- Positron Emission Tomography Research Centre, Faculty of Health Sciences, University of Hull, Kingston upon Hull HU6 7RX, UK
| | - Eric O. Aboagye
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; (N.W.); (D.B.); (M.B.); (C.B.); (H.L.)
| |
Collapse
|
2
|
Serrán-Aguilera L, Mariotto E, Rubbini G, Castro Navas FF, Marco C, Carrasco-Jiménez MP, Ballarotto M, Macchiarulo A, Hurtado-Guerrero R, Viola G, Lopez-Cara LC. Synthesis, biological evaluation, in silico modeling and crystallization of novel small monocationic molecules with potent antiproliferative activity by dual mechanism. Eur J Med Chem 2020; 207:112797. [PMID: 32977218 DOI: 10.1016/j.ejmech.2020.112797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/28/2022]
Abstract
Seeking for new anticancer drugs with strong antiproliferative activity and simple molecular structure, we designed a novel series of compounds based on our previous reported pharmacophore model composed of five moieties. Antiproliferative assays on four tumoral cell lines and evaluation of Human Choline Kinase CKα1 enzymatic activity was performed for these compounds. Among tested molecules, those ones with biphenyl spacer showed betters enzymatic and antiproliferative activities (n-v). Docking and crystallization studies validate the hypothesis and confirm the results. The most active compound (t) induces a significant arrest of the cell cycle in G0/G1 phase that ultimately lead to apoptosis, following the mitochondrial pathway, as demonstrated for other choline kinase inhibitors. However additional assays reveal that the inhibition of choline uptake could also be involved in the antiproliferative outcome of this class of compounds.
Collapse
Affiliation(s)
- Lucía Serrán-Aguilera
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Campus Cartuja S/n. University of Granada, 18010, Granada, Spain
| | - Elena Mariotto
- Department of Woman's and Child's Health, Laboratory of Oncohematology, University of Padova, 35128, Padova, Italy
| | - Gianluca Rubbini
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Campus Cartuja S/n. University of Granada, 18010, Granada, Spain
| | - Francisco Fermín Castro Navas
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Campus Cartuja S/n. University of Granada, 18010, Granada, Spain
| | - Carmen Marco
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, 18071, Granada, Spain
| | | | - Marco Ballarotto
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo 1, Perugia, 06123, Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo 1, Perugia, 06123, Italy
| | - Ramón Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Institute for Biocomputation and Physics of Complex Systems (BIFI) and Laboratorio de Microscopías Avanzada (LMA), Mariano Esquillor S/n, Campus Rio Ebro, Edificio I+D; Fundacion ARAID, 50018, Zaragoza, Spain; Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Giampietro Viola
- Department of Woman's and Child's Health, Laboratory of Oncohematology, University of Padova, 35128, Padova, Italy
| | - Luisa Carlota Lopez-Cara
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Campus Cartuja S/n. University of Granada, 18010, Granada, Spain.
| |
Collapse
|
3
|
Rubio-Ruiz B, Serrán-Aguilera L, Hurtado-Guerrero R, Conejo-García A. Recent advances in the design of choline kinase α inhibitors and the molecular basis of their inhibition. Med Res Rev 2020; 41:902-927. [PMID: 33103259 DOI: 10.1002/med.21746] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/25/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022]
Abstract
Upregulated choline metabolism, characterized by an increase in phosphocholine (PCho), is a hallmark of oncogenesis and tumor progression. Choline kinase (ChoK), the enzyme responsible for PCho synthesis, has consequently become a promising drug target for cancer therapy and as such a significant number of ChoK inhibitors have been developed over the last few decades. More recently, due to the role of this enzyme in other pathologies, ChoK inhibitors have also been used in new therapeutic approaches against malaria and rheumatoid arthritis. Here, we review research results in the field of ChoKα inhibitors from their synthesis to the molecular basis of their binding mode. Strategies for the development of inhibitors and their selectivity on ChoKα over ChoKβ, the plasticity of the choline-binding site, the discovery of new exploitable binding sites, and the allosteric properties of this enzyme are highlighted. The outcomes summarized in this review will be a useful guide to develop new multifunctional potent drugs for the treatment of various human diseases.
Collapse
Affiliation(s)
- Belén Rubio-Ruiz
- Department of Medicinal and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada, Spain.,Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, Spain
| | - Lucía Serrán-Aguilera
- Department of Medicinal and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Ramón Hurtado-Guerrero
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain.,Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark.,Laboratorio de Microscopías Avanzada, University of Zaragoza, Zaragoza, Spain.,ARAID Foundation, Zaragoza, Spain
| | - Ana Conejo-García
- Department of Medicinal and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, Spain
| |
Collapse
|
4
|
Kall SL, Whitlatch K, Smithgall TE, Lavie A. Molecular basis for the interaction between human choline kinase alpha and the SH3 domain of the c-Src tyrosine kinase. Sci Rep 2019; 9:17121. [PMID: 31745227 PMCID: PMC6864063 DOI: 10.1038/s41598-019-53447-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/30/2019] [Indexed: 01/09/2023] Open
Abstract
Choline kinase alpha is a 457-residue protein that catalyzes the reaction between ATP and choline to yield ADP and phosphocholine. This metabolic action has been well studied because of choline kinase's link to cancer malignancy and poor patient prognosis. As the myriad of x-ray crystal structures available for this enzyme show, chemotherapeutic drug design has centered on stopping the catalytic activity of choline kinase and reducing the downstream metabolites it produces. Furthermore, these crystal structures only reveal the catalytic domain of the protein, residues 80-457. However, recent studies provide evidence for a non-catalytic protein-binding role for choline kinase alpha. Here, we show that choline kinase alpha interacts with the SH3 domain of c-Src. Co-precipitation assays, surface plasmon resonance, and crystallographic analysis of a 1.5 Å structure demonstrate that this interaction is specific and is mediated by the poly-proline region found N-terminal to the catalytic domain of choline kinase. Taken together, these data offer strong evidence that choline kinase alpha has a heretofore underappreciated role in protein-protein interactions, which offers an exciting new way to approach drug development against this cancer-enhancing protein.
Collapse
Affiliation(s)
- Stefanie L Kall
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, 60607, USA
| | - Kindra Whitlatch
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15219, USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15219, USA
| | - Arnon Lavie
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, 60607, USA.
- The Jesse Brown VA Medical Center, Chicago, Illinois, 60612, USA.
| |
Collapse
|
5
|
Lead optimization-hit expansion of new asymmetrical pyridinium/quinolinium compounds as choline kinase α1 inhibitors. Future Med Chem 2018; 10:1769-1786. [PMID: 30043647 DOI: 10.4155/fmc-2018-0059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM Choline kinase α inhibitors represent one of the newest classes of cytotoxic drugs for cancer treatment, since aberrant choline metabolism is a characteristic shared by many human cancers. RESULTS Here, we present a new class of asymmetrical pyridinium/quinolinium derivatives developed and designed based on drug optimization. CONCLUSION Among all compounds described here, compound 8, bearing a 7-chloro-4N-methyl-p-chloroaniline quinolinium moiety, exhibited the greatest inhibitory activity at the enzyme (IC50 = 0.29 μM) and antiproliferative activity in cellular assays (GI50 = 0.29-0.92 μM). Specifically, compound 8 strongly induces a cell-cycle arrest in G1 phase, but it does not significantly induce apoptosis while causing senescence in the MDA-MB-231 cell line.
Collapse
|
6
|
Kall SL, Delikatny EJ, Lavie A. Identification of a Unique Inhibitor-Binding Site on Choline Kinase α. Biochemistry 2018; 57:1316-1325. [PMID: 29389115 DOI: 10.1021/acs.biochem.7b01257] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Choline kinase α (ChoKα) is an enzyme that is upregulated in many types of cancer and has been shown to be tumorigenic. As such, it makes a promising target for inhibiting tumor growth. Though there have been several inhibitors synthesized for ChoKα, not all of them demonstrate the same efficacy in vivo, though the reasons behind this difference in potency are not clear. One particular inhibitor, designated TCD-717, has recently completed phase I clinical trials. Cell culture and in vitro studies support the powerful inhibitory effect TCD-717 has on ChoKα, but an examination of the inhibitor's interaction with the ChoKα enzyme has been missing prior to this work. Here we detail the 2.35 Å structure of ChoKα in complex with TCD-717. Examination of this structure in conjunction with kinetic assays reveals that TCD-717 does not bind directly in the choline pocket as do previously characterized ChoKα inhibitors, but rather in a proximal but novel location near the surface of the enzyme. The unique binding site identified for TCD-717 lends insight for the future design of more potent in vivo inhibitors for ChoKα.
Collapse
Affiliation(s)
- Stefanie L Kall
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| | - Edward J Delikatny
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19083, United States
| | - Arnon Lavie
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago , Chicago, Illinois 60607, United States.,The Jesse Brown VA Medical Center , Chicago, Illinois 60612, United States
| |
Collapse
|
7
|
Design, synthesis, crystallization and biological evaluation of new symmetrical biscationic compounds as selective inhibitors of human Choline Kinase α1 (ChoKα1). Sci Rep 2016; 6:23793. [PMID: 27029499 PMCID: PMC4814829 DOI: 10.1038/srep23793] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/14/2016] [Indexed: 01/20/2023] Open
Abstract
A novel family of compounds derivative of 1,1′-(((ethane-1,2-diylbis(oxy))bis(4,1-phenylene))bis(methylene))-bispyridinium or –bisquinolinium bromide (10a-l) containing a pair of oxygen atoms in the spacer of the linker between the biscationic moieties, were synthesized and evaluated as inhibitors of choline kinase against a panel of cancer-cell lines. The most promising compounds in this series were 1,1′-(((ethane-1,2-diylbis(oxy))bis(4,1-phenylene))bis(methylene))bis(4-(dimethylamino)pyridinium) bromide (10a) and 1,1′-(((ethane-1,2-diylbis(oxy))bis(4,1-phenylene))bis(methylene))-bis(7-chloro-4-(pyrrolidin-1-yl)quinolinium) bromide (10l), which inhibit human choline kinase (ChoKα1) with IC50 of 1.0 and 0.92 μM, respectively, in a range similar to that of the previously reported biscationic compounds MN58b and RSM932A. Our compounds show greater antiproliferative activities than do the reference compounds, with unprecedented values of GI50 in the nanomolar range for several of the cancer-cell lines assayed, and more importantly they present low toxicity in non-tumoral cell lines, suggesting a cancer-cell-selective antiproliferative activity. Docking studies predict that the compounds interact with the choline-binding site in agreement with the binding mode of most previously reported biscationic compounds. Moreover, the crystal structure of ChoKα1 with compound 10a reveals that this compound binds to the choline-binding site and mimics HC-3 binding mode as never before.
Collapse
|
8
|
Zech SG, Kohlmann A, Zhou T, Li F, Squillace RM, Parillon LE, Greenfield MT, Miller DP, Qi J, Thomas RM, Wang Y, Xu Y, Miret JJ, Shakespeare WC, Zhu X, Dalgarno DC. Novel Small Molecule Inhibitors of Choline Kinase Identified by Fragment-Based Drug Discovery. J Med Chem 2016; 59:671-86. [PMID: 26700752 DOI: 10.1021/acs.jmedchem.5b01552] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Choline kinase α (ChoKα) is an enzyme involved in the synthesis of phospholipids and thereby plays key roles in regulation of cell proliferation, oncogenic transformation, and human carcinogenesis. Since several inhibitors of ChoKα display antiproliferative activity in both cellular and animal models, this novel oncogene has recently gained interest as a promising small molecule target for cancer therapy. Here we summarize our efforts to further validate ChoKα as an oncogenic target and explore the activity of novel small molecule inhibitors of ChoKα. Starting from weakly binding fragments, we describe a structure based lead discovery approach, which resulted in novel highly potent inhibitors of ChoKα. In cancer cell lines, our lead compounds exhibit a dose-dependent decrease of phosphocholine, inhibition of cell growth, and induction of apoptosis at low micromolar concentrations. The druglike lead series presented here is optimizable for improvements in cellular potency, drug target residence time, and pharmacokinetic parameters. These inhibitors may be utilized not only to further validate ChoKα as antioncogenic target but also as novel chemical matter that may lead to antitumor agents that specifically interfere with cancer cell metabolism.
Collapse
Affiliation(s)
- Stephan G Zech
- ARIAD Pharmaceuticals, Inc. , 26 Landsdowne Street, Cambridge, Massachusetts 02139, United States
| | - Anna Kohlmann
- ARIAD Pharmaceuticals, Inc. , 26 Landsdowne Street, Cambridge, Massachusetts 02139, United States
| | - Tianjun Zhou
- ARIAD Pharmaceuticals, Inc. , 26 Landsdowne Street, Cambridge, Massachusetts 02139, United States
| | - Feng Li
- ARIAD Pharmaceuticals, Inc. , 26 Landsdowne Street, Cambridge, Massachusetts 02139, United States
| | - Rachel M Squillace
- ARIAD Pharmaceuticals, Inc. , 26 Landsdowne Street, Cambridge, Massachusetts 02139, United States
| | - Lois E Parillon
- ARIAD Pharmaceuticals, Inc. , 26 Landsdowne Street, Cambridge, Massachusetts 02139, United States
| | - Matthew T Greenfield
- ARIAD Pharmaceuticals, Inc. , 26 Landsdowne Street, Cambridge, Massachusetts 02139, United States
| | - David P Miller
- ARIAD Pharmaceuticals, Inc. , 26 Landsdowne Street, Cambridge, Massachusetts 02139, United States
| | - Jiwei Qi
- ARIAD Pharmaceuticals, Inc. , 26 Landsdowne Street, Cambridge, Massachusetts 02139, United States
| | - R Mathew Thomas
- ARIAD Pharmaceuticals, Inc. , 26 Landsdowne Street, Cambridge, Massachusetts 02139, United States
| | - Yihan Wang
- ARIAD Pharmaceuticals, Inc. , 26 Landsdowne Street, Cambridge, Massachusetts 02139, United States
| | - Yongjin Xu
- ARIAD Pharmaceuticals, Inc. , 26 Landsdowne Street, Cambridge, Massachusetts 02139, United States
| | - Juan J Miret
- ARIAD Pharmaceuticals, Inc. , 26 Landsdowne Street, Cambridge, Massachusetts 02139, United States
| | - William C Shakespeare
- ARIAD Pharmaceuticals, Inc. , 26 Landsdowne Street, Cambridge, Massachusetts 02139, United States
| | - Xiaotian Zhu
- ARIAD Pharmaceuticals, Inc. , 26 Landsdowne Street, Cambridge, Massachusetts 02139, United States
| | - David C Dalgarno
- ARIAD Pharmaceuticals, Inc. , 26 Landsdowne Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|