1
|
Rijia A, Krishnamoorthi R, Mahalingam PU, Kaviyadharshini M, Rajeswari M, Kumar KKS, Rasmi M, Chung YK, Fang JY. Unveiling the anticancer potential and toxicity of Ganoderma applanatum wild mushroom derived bioactive compounds: An in vitro, in vivo and in silico evaluation. Bioorg Chem 2025; 156:108233. [PMID: 39908734 DOI: 10.1016/j.bioorg.2025.108233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/25/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
This study explores the anticancer potential of methanolic extract from Ganoderma applanatum, focusing on its cytotoxicity across various cancer cell lines and its safety and efficacy in an in vivo hepatocellular carcinoma (HCC) model, along with molecular docking analysis of its bioactive compounds targeting B-cell lymphoma 2 (Bcl-2) protein. The MTT assay revealed significant cytotoxicity of the extract against epidermoid carcinoma (A431), human alveolar carcinoma (A549), and hepatocellular carcinoma (HepG2) cell lines, with the extract exhibiting the highest potency (IC50 of 95.65 µg/ml) against HepG2 cells. Apoptosis induction and DNA degradation in HepG2 cells were confirmed through mitochondrial membrane potential analysis, ethidium bromide/acridine orange staining, and DNA fragmentation assays. In vivo studies on Wistar albino rats showed that administration of the extract up to 1000 mg/ml did not significantly affect body weight or hematological parameters, suggesting a favorable safety profile. Histopathological examination revealed normal liver architecture at most doses, with mild inflammation observed at the highest dose (1000 mg/ml). The G. applanatum extract were showed reducing liver weight and improving body weight in a Diethylnitrosamine (DEN)-induced HCC model was comparable to cyclophosphamide, indicating its potential as a less toxic alternative or adjunct to conventional chemotherapy. Additionally, the extract reduced elevated serum liver enzymes, demonstrating hepatoprotective effects. Molecular docking of nine bioactive compounds from G. applanatum identified 2h-3,11c-(epoxymethano)phenanthro[10,1-bc]pyran as a promising candidate for further investigation. These findings suggest G. applanatum as a novel anticancer agent with the potential for natural, effective cancer therapy.
Collapse
Affiliation(s)
- Akbar Rijia
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram-624302, Dindigul, Tamil Nadu, India
| | - Raman Krishnamoorthi
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, 333, Taiwan.
| | - Pambayan Ulagan Mahalingam
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram-624302, Dindigul, Tamil Nadu, India.
| | | | - Murugan Rajeswari
- Department of Chemistry, The Gandhigram Rural Institute (Deemed to be University), Gandhigram-624302, Dindigul, Tamil Nadu, India
| | - Konda Kannan Satheesh Kumar
- Department of Chemistry, The Gandhigram Rural Institute (Deemed to be University), Gandhigram-624302, Dindigul, Tamil Nadu, India
| | - Madhusoodhanan Rasmi
- Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Yu-Kuo Chung
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, 333, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, 333, Taiwan
| |
Collapse
|
2
|
Szeleszczuk Ł, Brożyna M, Dudek B, Czarnecki M, Junka A, Czerwińska ME. The Potential Impact of Edible Fruit Extracts on Bacterial Nucleases in Preliminary Research-In Silico and In Vitro Insight. Int J Mol Sci 2025; 26:1757. [PMID: 40004218 PMCID: PMC11855197 DOI: 10.3390/ijms26041757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/02/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
The extracts from fruits of Chaenomeles japonica (Thunb.) Lindl. ex Spach (CJE), Cornus mas L. (CME), and Hippophaё rhamnoides L. (HRE) are known inhibitors of a variety of eukaryotic hydrolases, engaged in the digestion of fats and polysaccharides. However, there are no data on their potential interaction with the bacterial hydrolases participating in the replication of microbial nucleic acids. This analysis predicted the interaction of the most abundant constituents of HRE, CJE, and CME with the bacterial nucleases. The analysis covered the molecular docking of isorhamnetin glycosides, procyanidins C1 and B2, epicatechin, loganic acid, and cornuside with bacterial enzymes (Escherichia coli endonuclease 1, colicin E9, and ribonuclease H; or Staphylococcus aureus thermonuclease and nuclease SbcCD). The suggested complexes have been subjected to molecular mechanics with generalized Born and surface area solvation (MM/GBSA) calculations. The second aim was the in vitro evaluation of the influence of the CJE, HRE, and CME on the metabolic activity of bacterial biofilm of selected microbial strains, as well as fibroblasts (L929) and adenocarcinoma intestinal cells (Caco-2) toxicity. Among all extracts, CME showed the most relevant effect on the survival of planktonic cells and biofilm of E. coli and Pseudomonas aeruginosa. As a result of in silico studies, most virtual hits were predicted to inhibit the proteins under investigation, except for procyanidin C1. Further research on the direct interaction of phytochemicals and selected enzymes in vitro is required and challenged.
Collapse
Affiliation(s)
- Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Malwina Brożyna
- Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (M.B.); (B.D.); (A.J.)
| | - Bartłomiej Dudek
- Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (M.B.); (B.D.); (A.J.)
| | - Marcin Czarnecki
- Department of Infectious Diseases, Liver Diseases and Acquired Immune Deficiencies, Wroclaw Medical University, Koszarowa 5, 51-149 Wroclaw, Poland;
| | - Adam Junka
- Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (M.B.); (B.D.); (A.J.)
| | - Monika E. Czerwińska
- Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| |
Collapse
|
3
|
Gualtieri G, Citriniti EL, Rocca R, Arciuolo V, Amato J, Randazzo A, Alcaro S. Kanamycin and G-Quadruplexes: An Exploration of Binding Interactions. Molecules 2024; 29:5932. [PMID: 39770021 PMCID: PMC11676551 DOI: 10.3390/molecules29245932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
G-quadruplexes (G4s) are distinctive four-stranded nucleic acid structures formed by guanine-rich sequences, making them attractive targets for drug repurposing efforts. Modulating their stability and function holds promise for treating diseases like cancer. To identify potential drug candidates capable of interacting with these complex DNA formations, docking studies and molecular dynamics (MDs) simulations were conducted. Our analysis revealed kanamycin's ability to bind to various G4 structures, offering valuable insights into its potential as a modulator of G4 activity. Kanamycin exhibited favorable interactions with both parallel and hybrid G4 topologies in human structures, suggesting a broader mechanism of action for aminoglycosides. These findings may also shed light on aminoglycoside-associated toxicities, indicating that their effects might extend to binding non-ribosomal RNA structures. In summary, this research highlights kanamycin's potential as a promising tool for influencing G4 dynamics, paving the way for innovative therapeutic strategies targeting G4-related pathways.
Collapse
Affiliation(s)
- Gianmarco Gualtieri
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (G.G.); (E.L.C.); (S.A.)
| | - Emanuele Liborio Citriniti
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (G.G.); (E.L.C.); (S.A.)
| | - Roberta Rocca
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (G.G.); (E.L.C.); (S.A.)
- Net4Science SRL, Università “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Valentina Arciuolo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (J.A.); (A.R.)
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (J.A.); (A.R.)
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (J.A.); (A.R.)
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (G.G.); (E.L.C.); (S.A.)
- Net4Science SRL, Università “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
4
|
Rocca R, Ascrizzi S, Citriniti EL, Scionti F, Juli G, Di Martino MT, Caracciolo D, Artese A, Tagliaferri P, Tassone P, Grillone K, Alcaro S. TERRA G-quadruplex stabilization behind the anti-multiple myeloma activity: Novel insights about resveratrol pleiotropic effects. Arch Pharm (Weinheim) 2024; 357:e2400269. [PMID: 39365272 DOI: 10.1002/ardp.202400269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 10/05/2024]
Abstract
Resveratrol (RSV) is a nutraceutical compound belonging to the nonflavonoid polyphenol family, whose antioxidants, anti-inflammatory, and antitumoral properties have been widely investigated. The ability of RSV to provide beneficial effects for neurological, cardiovascular, and cancer disorders rekindled the interest to explore the molecular mechanisms behind its pleiotropic effects, which are due to the modulation of coding and noncoding genes involved in many key biological pathways. With a computational approach, including docking studies and thermodynamics calculations followed by 200-ns-long molecular dynamics and a clustering analysis, we hypothesized the stabilizing binding between RSV and G4 structures of telomeric repeat-containing RNA (TERRA), which is a tumor-suppressive long noncoding RNAs (lncRNA) involved in the regulation of telomere maintenance. In vitro studies performed on cellular models of multiple myeloma (MM) strengthened our hypothesis by highlighting that the antiproliferative and apoptotic effect induced by the treatment with RSV is associated with an increase of TERRA transcript and with upregulation of telomeric heterochromatin markers, such as H3K27Me3 and H4K20Me3, and of the hallmark of apoptosis, cleaved-poly(ADP-ribose) polymerase-1. Our results propose innovative insights underlying the multifaceted role of RSV in MM, by pointing out the role of this natural compound in an lncRNA-mediated regulation to counteract cellular immortality.
Collapse
Affiliation(s)
- Roberta Rocca
- Net4Science srl, University Magna Græcia, Catanzaro, Italy
- Associazione CRISEA-Centro di Ricerca e Servizi Avanzati per l'Innovazione Rurale, Località Condoleo di Belcastro, Catanzaro, Italy
- Department of Health Sciences, University Magna Græcia, Catanzaro, Italy
| | - Serena Ascrizzi
- Department of Experimental and Clinical Medicine, University Magna Græcia, Catanzaro, Italy
| | | | - Francesca Scionti
- Department of Medical and Surgery Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Giada Juli
- Department of Experimental and Clinical Medicine, University Magna Græcia, Catanzaro, Italy
| | | | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, University Magna Græcia, Catanzaro, Italy
| | - Anna Artese
- Net4Science srl, University Magna Græcia, Catanzaro, Italy
- Department of Health Sciences, University Magna Græcia, Catanzaro, Italy
| | | | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, University Magna Græcia, Catanzaro, Italy
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, University Magna Græcia, Catanzaro, Italy
| | - Stefano Alcaro
- Net4Science srl, University Magna Græcia, Catanzaro, Italy
- Associazione CRISEA-Centro di Ricerca e Servizi Avanzati per l'Innovazione Rurale, Località Condoleo di Belcastro, Catanzaro, Italy
- Department of Health Sciences, University Magna Græcia, Catanzaro, Italy
| |
Collapse
|
5
|
Ye H, Zhang H, Xiang J, Shen G, Yang F, Wang F, Wang J, Tang Y. Advances and prospects of natural dietary polyphenols as G-quadruplex stabilizers in biomedical applications. Int J Biol Macromol 2024; 254:127825. [PMID: 37926317 DOI: 10.1016/j.ijbiomac.2023.127825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
G-quadruplexes (G4s) have arrested continuous interest in cancer research, and targeting G4s with small molecules has become an ideal approach for drug development. Plant-based dietary polyphenols have attracted much attention for their remarkable anti-cancer effects. Studies have suggested that polyphenols exhibit interesting scaffolds to bind G4s, which can effectively downregulate the proto-oncogenes by stabilizing those G4 structures. Therefore, this review not only summarizes studies on natural dietary polyphenols (including analogs) as G4 stabilizers, but also reveals their anti-cancer activities. Furthermore, the structural and antioxidant insights of polyphenols with G4s are discussed, and future development is proposed. These insights may pave the way for the development of the next generation of anti-cancer drugs targeting nucleic acids.
Collapse
Affiliation(s)
- Huanfeng Ye
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hong Zhang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China.
| | - Junfeng Xiang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Gang Shen
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China
| | - Fengmin Yang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China
| | - Fangfang Wang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, PR China.
| | - Yalin Tang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China.
| |
Collapse
|
6
|
Bivacqua R, Romeo I, Barreca M, Barraja P, Alcaro S, Montalbano A. HSV-1 Glycoprotein D and Its Surface Receptors: Evaluation of Protein-Protein Interaction and Targeting by Triazole-Based Compounds through In Silico Approaches. Int J Mol Sci 2023; 24:ijms24087092. [PMID: 37108255 PMCID: PMC10138673 DOI: 10.3390/ijms24087092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Protein-protein interactions (PPI) represent attractive targets for drug design. Thus, aiming at a deeper insight into the HSV-1 envelope glycoprotein D (gD), protein-protein docking and dynamic simulations of gD-HVEM and gD-Nectin-1 complexes were performed. The most stable complexes and the pivotal key residues useful for gD to anchor human receptors were identified and used as starting points for a structure-based virtual screening on a library of both synthetic and designed 1,2,3-triazole-based compounds. Their binding properties versus gD interface with HVEM and Nectin-1 along with their structure-activity relationships (SARs) were evaluated. Four [1,2,3]triazolo[4,5-b]pyridines were identified as potential HSV-1 gD inhibitors, for their good theoretical affinity towards all conformations of HSV-1 gD. Overall, this study suggests promising basis for the design of new antiviral agents targeting gD as a valuable strategy to prevent viral attachment and penetration into the host cell.
Collapse
Affiliation(s)
- Roberta Bivacqua
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Isabella Romeo
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Marilia Barreca
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Paola Barraja
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Alessandra Montalbano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
7
|
Rocca R, Scionti F, Nadai M, Moraca F, Maruca A, Costa G, Catalano R, Juli G, Di Martino MT, Ortuso F, Alcaro S, Tagliaferri P, Tassone P, Richter SN, Artese A. Chromene Derivatives as Selective TERRA G-Quadruplex RNA Binders with Antiproliferative Properties. Pharmaceuticals (Basel) 2022; 15:ph15050548. [PMID: 35631373 PMCID: PMC9147070 DOI: 10.3390/ph15050548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022] Open
Abstract
In mammalian cells, telomerase transcribes telomeres in large G-rich non-coding RNA, known as telomeric repeat-containing RNA (TERRA), which folds into noncanonical nucleic acid secondary structures called G-quadruplexes (G4s). Since TERRA G4 has been shown to be involved in telomere length and translation regulation, it could provide valuable insight into fundamental biological processes, such as cancer growth, and TERRA G4 binders could represent an innovative strategy for cancer treatment. In this work, the three best candidates identified in our previous virtual screening campaign on bimolecular DNA/RNA G4s were investigated on the monomolecular Tel DNA and TERRA G4s by means of molecular modelling simulations and in vitro and in cell analysis. The results obtained in this work highlighted the stabilizing power of all the three candidates on TERRA G4. In particular, the two compounds characterized by a chromene scaffold were selective TERRA G4 binders, while the compound with a naphthyridine core acted as a dual Tel/TERRA G4-binder. A biophysical investigation by circular dichroism confirmed the relative stabilization efficiency of the compounds towards TERRA and Tel G4s. The TERRA G4 stabilizing hits showed good antiproliferative activity against colorectal and lung adenocarcinoma cell lines. Lead optimization to increase TERRA G4 stabilization may provide new powerful tools against cancer.
Collapse
Affiliation(s)
- Roberta Rocca
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy; (R.R.); (G.J.); (M.T.D.M.); (P.T.); (P.T.)
- Net4science Srl, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.M.); (A.M.); (G.C.); (R.C.); (F.O.); (S.A.)
| | - Francesca Scionti
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Matteo Nadai
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy;
| | - Federica Moraca
- Net4science Srl, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.M.); (A.M.); (G.C.); (R.C.); (F.O.); (S.A.)
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Annalisa Maruca
- Net4science Srl, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.M.); (A.M.); (G.C.); (R.C.); (F.O.); (S.A.)
- Department of Health Sciences, Magna Graecia University of Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Giosuè Costa
- Net4science Srl, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.M.); (A.M.); (G.C.); (R.C.); (F.O.); (S.A.)
- Department of Health Sciences, Magna Graecia University of Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Raffaella Catalano
- Net4science Srl, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.M.); (A.M.); (G.C.); (R.C.); (F.O.); (S.A.)
- Department of Health Sciences, Magna Graecia University of Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Giada Juli
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy; (R.R.); (G.J.); (M.T.D.M.); (P.T.); (P.T.)
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy; (R.R.); (G.J.); (M.T.D.M.); (P.T.); (P.T.)
| | - Francesco Ortuso
- Net4science Srl, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.M.); (A.M.); (G.C.); (R.C.); (F.O.); (S.A.)
- Department of Health Sciences, Magna Graecia University of Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Net4science Srl, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.M.); (A.M.); (G.C.); (R.C.); (F.O.); (S.A.)
- Department of Health Sciences, Magna Graecia University of Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy; (R.R.); (G.J.); (M.T.D.M.); (P.T.); (P.T.)
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy; (R.R.); (G.J.); (M.T.D.M.); (P.T.); (P.T.)
| | - Sara N. Richter
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy;
- Correspondence: (S.N.R.); (A.A.)
| | - Anna Artese
- Net4science Srl, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.M.); (A.M.); (G.C.); (R.C.); (F.O.); (S.A.)
- Department of Health Sciences, Magna Graecia University of Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
- Correspondence: (S.N.R.); (A.A.)
| |
Collapse
|
8
|
Zhang J, Wang T, Geng X, Liu L, Gao J. Identification of Trovafloxacin, Ozanimod, and Ozenoxacin as potent c-Myc G-quadruplex stabilizers to suppress c-Myc transcription and myeloma growth. Mol Inform 2022; 41:e2200011. [PMID: 35355429 DOI: 10.1002/minf.202200011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/31/2022] [Indexed: 11/06/2022]
Abstract
c-Myc is a major oncogene that is estimated to result in almost all human cancers and the c-Myc downregulation has become an attractive strategy for cancer treatment. For it is hard to design compounds that can directly interact with the c-Myc protein, the DNA G-quadruplex (G4) was discovered in its promoter region which was referred to as a potential drug target for controlling c-Myc expression. In this study, a combined strategy of molecular docking-based virtual screening, molecular dynamics (MD) simulation, and molecular mechanics/generalized Born surface area (MM/GBSA) free energy calculation was conducted on the existing FDA-Approved Drugs Library, eight compounds were selected for further experimental assay. Among them, five compounds exhibited dose-dependently anticancer activities against RPMI-8226 cells with IC50 values less than 18.4 μM. Further experiments showed that Trovafloxacin, Ozanimod, and Ozenoxacin decreased c-Myc mRNA level obviously and downregulated c-Myc expression significantly. In summary, compounds Trovafloxacin, Ozanimod, and Ozenoxacin might be regarded as new c-Myc G4 stabilizers for the treatment of c-Myc related cancers in the future.
Collapse
Affiliation(s)
| | - Tao Wang
- Xuzhou Medical University, CHINA
| | | | | | - Jian Gao
- Xuzhou Medical University, CHINA
| |
Collapse
|
9
|
Cilibrasi V, Spanò V, Bortolozzi R, Barreca M, Raimondi MV, Rocca R, Maruca A, Montalbano A, Alcaro S, Ronca R, Viola G, Barraja P. Synthesis of 2H-Imidazo[2',1':2,3] [1,3]thiazolo[4,5-e]isoindol-8-yl-phenylureas with promising therapeutic features for the treatment of acute myeloid leukemia (AML) with FLT3/ITD mutations. Eur J Med Chem 2022; 235:114292. [PMID: 35339838 DOI: 10.1016/j.ejmech.2022.114292] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 11/28/2022]
Abstract
Despite progressive advances in understanding the molecular biology of acute myeloid leukemia (AML), the conventional therapeutic approach has not changed substantially, and the outcome for most patients is poor. Thus, continuous efforts on the discovery of new compounds with improved features are required. Following a multistep sequence, we have identified a new tetracyclic ring system with strong antiproliferative activity towards several haematological cell lines. The new compounds possess structural properties typical of inactive-state-binding kinase inhibitors and are structurally related to quizartinib which is known as type-II tyrosine kinase inhibitor. In particular, the high activity found in two cell lines MOLM-13 and MV4-11, expressing the constitutively activated mutant FLT3/ITD, indicates inhibition of FLT3 kinase and on the basis of structure-activity relationship (SAR) the presence of an ureido moiety demonstrates to play a key role in driving the antiproliferative activity towards these cell lines. Molecular modelling studies supported the mechanism of recognition of the most active compounds within the FLT3 pocket where quizartinib binds. Moreover, Molecular Dynamics simulation (MDs) revealed the formation of a recurrent H-bond with Asp829, which more stabilizes the complex of 9c and the FLT3 inactive state. In MV4-11 cell line compound 9c reduces the phosphorylation of FLT3 (Y591) and some of its downstream targets leading to cell cycle arrest at G1 phase and induction of apoptosis. In an MV4-11 xenograft mouse model, 9c significantly reduces the tumor growth at the dose of 1-3 mg/kg without apparent toxicity.
Collapse
Affiliation(s)
- Vincenzo Cilibrasi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Virginia Spanò
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Roberta Bortolozzi
- Istituto di Ricerca Pediatrica IRP, Fondazione Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy
| | - Marilia Barreca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Maria Valeria Raimondi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Roberta Rocca
- Net4Science srl, Academic Spinoff, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy; Dipartimento di Medicina Sperimentale e Clinica, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Annalisa Maruca
- Dipartimento di Scienze della Salute, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Academic Spinoff, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Alessandra Montalbano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| | - Stefano Alcaro
- Net4Science srl, Academic Spinoff, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy; Dipartimento di Scienze della Salute, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy.
| | - Roberto Ronca
- Dipartimento di Medicina Molecolare e Traslazionale Unità di Oncologia Sperimentale ed Immunologia, Università di Brescia, 25123, Brescia, Italy
| | - Giampietro Viola
- Istituto di Ricerca Pediatrica IRP, Fondazione Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy; Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia Università di Padova, Via Giustiniani 2, 35131, Padova, Italy.
| | - Paola Barraja
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| |
Collapse
|
10
|
Evaluating Molecular Docking Software for Small Molecule Binding to G-Quadruplex DNA. Int J Mol Sci 2021; 22:ijms221910801. [PMID: 34639142 PMCID: PMC8509811 DOI: 10.3390/ijms221910801] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/08/2023] Open
Abstract
G-quadruplexes are four-stranded nucleic acid secondary structures of biological significance and have emerged as an attractive drug target. The G4 formed in the MYC promoter (MycG4) is one of the most studied small-molecule targets, and a model system for parallel structures that are prevalent in promoter DNA G4s and RNA G4s. Molecular docking has become an essential tool in structure-based drug discovery for protein targets, and is also increasingly applied to G4 DNA. However, DNA, and in particular G4, binding sites differ significantly from protein targets. Here we perform the first systematic evaluation of four commonly used docking programs (AutoDock Vina, DOCK 6, Glide, and RxDock) for G4 DNA-ligand binding pose prediction using four small molecules whose complex structures with the MycG4 have been experimentally determined in solution. The results indicate that there are considerable differences in the performance of the docking programs and that DOCK 6 with GB/SA rescoring performs better than the other programs. We found that docking accuracy is mainly limited by the scoring functions. The study shows that current docking programs should be used with caution to predict G4 DNA-small molecule binding modes.
Collapse
|
11
|
Ratnasinghe BD, Salsbury AM, Lemkul JA. Ion Binding Properties and Dynamics of the bcl-2 G-Quadruplex Using a Polarizable Force Field. J Chem Inf Model 2020; 60:6476-6488. [PMID: 33264004 DOI: 10.1021/acs.jcim.0c01064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
G-quadruplexes (GQs) are topologically diverse, highly thermostable noncanonical nucleic acid structures that form in guanine-rich sequences in DNA and RNA. GQs are implicated in transcriptional and translational regulation and genome maintenance, and deleterious alterations to their structures contribute to diseases such as cancer. The expression of the B-cell lymphoma 2 (Bcl-2) antiapoptotic protein, for example, is under transcriptional control of a GQ in the promoter of the bcl-2 gene. Modulation of the bcl-2 GQ by small molecules is of interest for chemotherapeutic development but doing so requires knowledge of the factors driving GQ folding and stabilization. To develop a greater understanding of the electrostatic properties of the bcl-2 promoter GQ, we performed molecular dynamics simulations using the Drude-2017 polarizable force field and compared relevant outcomes to the nonpolarizable CHARMM36 force field. Our simulation outcomes highlight the importance of dipole-dipole interactions in the bcl-2 GQ, particularly during the recruitment of a bulk K+ ion to the solvent-exposed face of the tetrad stem. We also predict and characterize an "electronegative pocket" at the tetrad-long loop junction that induces local backbone conformational change and may induce local conformational changes at cellular concentrations of K+. These outcomes suggest that moieties within the bcl-2 GQ can be targeted by small molecules to modulate bcl-2 GQ stability.
Collapse
Affiliation(s)
- Brian D Ratnasinghe
- Department of Biochemistry, Virginia Tech, 303 Engel Hall, 340 West Campus Dr., Blacksburg, Virginia 24061, United States
| | - Alexa M Salsbury
- Department of Biochemistry, Virginia Tech, 303 Engel Hall, 340 West Campus Dr., Blacksburg, Virginia 24061, United States
| | - Justin A Lemkul
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, 303 Engel Hall, 340 West Campus Dr., Blacksburg, Virginia 24061, United States
| |
Collapse
|
12
|
In Silico Food-Drug Interaction: A Case Study of Eluxadoline and Fatty Meal. Int J Mol Sci 2020; 21:ijms21239127. [PMID: 33266221 PMCID: PMC7731208 DOI: 10.3390/ijms21239127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/24/2020] [Accepted: 11/29/2020] [Indexed: 11/17/2022] Open
Abstract
Food-drug interaction is an infrequently considered aspect in clinical practice. Usually, drugs are taken together with meals and what follows may adversely affect pharmacokinetic and pharmacodynamic properties, and hence, the therapeutic effects. In this study, a computational protocol was proposed to explain the different assimilations of two µ-receptors agonists, eluxadoline and loperamide, with a peculiar pharmacokinetic profile. Compared to loperamide, eluxadoline is absorbed less after the intake of a fatty meal, and the LogP values do not explain this event. Firstly, keeping in mind the different pH in the intestinal tract, the protonation states of both compounds were calculated. Then, all structures were subjected to a conformational search by using MonteCarlo and Molecular Dynamics methods, with solvation terms mimicking the water and weak polar solvent (octanol). Both computational results showed that eluxadoline has less conformational freedom in octanol, unlike loperamide, which exhibits constant behavior in both solvents. Therefore, we hypothesize that fatty meal causes the "closure" of the eluxadoline molecule to prevent the exposure of the polar groups and their interaction with water, necessary for the drug absorption. Based on our results, this work could be a reasonable "case study", useful for future investigation of the drug pharmacokinetic profile.
Collapse
|
13
|
Maruca A, Rocca R, Catalano R, Mesiti F, Costa G, Lanzillotta D, Salatino A, Ortuso F, Trapasso F, Alcaro S, Artese A. Natural Products Extracted from Fungal Species as New Potential Anti-Cancer Drugs: A Structure-Based Drug Repurposing Approach Targeting HDAC7. Molecules 2020; 25:E5524. [PMID: 33255661 PMCID: PMC7728054 DOI: 10.3390/molecules25235524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Mushrooms can be considered a valuable source of natural bioactive compounds with potential polypharmacological effects due to their proven antimicrobial, antiviral, antitumor, and antioxidant activities. In order to identify new potential anticancer compounds, an in-house chemical database of molecules extracted from both edible and non-edible fungal species was employed in a virtual screening against the isoform 7 of the Histone deacetylase (HDAC). This target is known to be implicated in different cancer processes, and in particular in both breast and ovarian tumors. In this work, we proposed the ibotenic acid as lead compound for the development of novel HDAC7 inhibitors, due to its antiproliferative activity in human breast cancer cells (MCF-7). These promising results represent the starting point for the discovery and the optimization of new HDAC7 inhibitors and highlight the interesting opportunity to apply the "drug repositioning" paradigm also to natural compounds deriving from mushrooms.
Collapse
Affiliation(s)
- Annalisa Maruca
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (A.M.); (R.C.); (F.M.); (G.C.); (F.O.); (A.A.)
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy;
| | - Roberta Rocca
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy;
- Dipartimento di Medicina Sperimentale e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (D.L.); (A.S.); (F.T.)
| | - Raffaella Catalano
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (A.M.); (R.C.); (F.M.); (G.C.); (F.O.); (A.A.)
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy;
| | - Francesco Mesiti
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (A.M.); (R.C.); (F.M.); (G.C.); (F.O.); (A.A.)
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy;
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (A.M.); (R.C.); (F.M.); (G.C.); (F.O.); (A.A.)
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy;
| | - Delia Lanzillotta
- Dipartimento di Medicina Sperimentale e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (D.L.); (A.S.); (F.T.)
| | - Alessandro Salatino
- Dipartimento di Medicina Sperimentale e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (D.L.); (A.S.); (F.T.)
| | - Francesco Ortuso
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (A.M.); (R.C.); (F.M.); (G.C.); (F.O.); (A.A.)
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy;
| | - Francesco Trapasso
- Dipartimento di Medicina Sperimentale e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (D.L.); (A.S.); (F.T.)
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (A.M.); (R.C.); (F.M.); (G.C.); (F.O.); (A.A.)
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy;
| | - Anna Artese
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (A.M.); (R.C.); (F.M.); (G.C.); (F.O.); (A.A.)
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy;
| |
Collapse
|
14
|
Pandya N, Khan E, Jain N, Satham L, Singh R, Makde RD, Mishra A, Kumar A. Curcumin analogs exhibit anti-cancer activity by selectively targeting G-quadruplex forming c-myc promoter sequence. Biochimie 2020; 180:205-221. [PMID: 33188859 DOI: 10.1016/j.biochi.2020.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 10/10/2020] [Accepted: 11/03/2020] [Indexed: 12/30/2022]
Abstract
Curcumin exhibits a broad spectrum of beneficial health properties that include anti-tumor and anti-cancer activities. The down-regulation of c-myc transcription via stabilizing the G-quadruplex structure formed at the promoter region of the human c-myc gene allows the repression in cancer growth. Small molecules can bind and stabilize this structure to provide an exciting and promising strategy for anti-cancer therapeutics. Herein, we investigated the interaction of Curcumin and its synthetic analogs with G-quadruplex DNA formed at the c-myc promoter by using various biophysical and biochemical assays. Further, its cytotoxic effect and mechanistic insights were explored in various cancer cell lines as well as in multicellular tumor spheroid (MCTS) model. The MCTS possesses almost similar microenvironment as avascular tumors, and micro-metastases can be used as a suitable model for the small molecule-based therapeutics development. Our study provides an expanded overview of the anti-cancer effect of a new Curcumin analog via targeting G-quadruplex structures formed at the promoter region of the human c-myc gene.
Collapse
Affiliation(s)
- Nirali Pandya
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Eshan Khan
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Neha Jain
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Lakshminarayana Satham
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, Maharashtra, India
| | - Rahul Singh
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Ravindra D Makde
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342011, India
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, India.
| |
Collapse
|
15
|
Zeng L, Wu Q, Wang T, Li LP, Zhao X, Chen K, Qian J, Yuan L, Xu H, Mei WJ. Selective stabilization of multiple promoter G-quadruplex DNA by using 2-phenyl-1H-imidazole-based tanshinone IIA derivatives and their potential suppressing function in the metastatic breast cancer. Bioorg Chem 2020; 106:104433. [PMID: 33213893 DOI: 10.1016/j.bioorg.2020.104433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/24/2020] [Accepted: 10/25/2020] [Indexed: 11/17/2022]
Abstract
The G-quadruplex (G4) DNA, which has been developed as a potential anticancer target in drug screening and design, plays a crucial role in the oncogene transcription and translation. Tanshinone IIA derivatives with a planar heterocycle structure may function as G4 stabilizers. We present an innovative case of imidazole-based tanshinone IIA derivatives (1-8) especially compound 4 that improve the selectivity and the binding affinity with G4 DNA and enhance the target tumor inhibition. Cellular and in vivo experiments indicate that the tanshinone IIA derivative 4 inhibits the growth, metastasis, and angiogenesis of triple-negative breast cancer cells possibly through the stabilization of multiple G4 DNAs (e.g., c-myc, K-ras, and VEGF) to induce DNA damage. Further investigation of the intermolecular interaction and the molecular docking indicates that tanshinone IIA derivatives have better selective binding capability to various G4 DNAs than to double-stranded DNA. These findings provide guidance in modifying the molecular structures of tanshinone IIA derivatives and reveal their potential to function as specific G4 stabilizers.
Collapse
Affiliation(s)
- Liang Zeng
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Qiong Wu
- The School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Province Engineering Centre for Molecular Probe & Biomedicine Imaging, Guangzhou 510006, China
| | - Teng Wang
- The School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Li-Ping Li
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Xuanhao Zhao
- The School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Kai Chen
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Jiayi Qian
- The School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Li Yuan
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Hui Xu
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Wen-Jie Mei
- The School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Province Engineering Centre for Molecular Probe & Biomedicine Imaging, Guangzhou 510006, China.
| |
Collapse
|
16
|
In Silico Identification and Biological Evaluation of Antioxidant Food Components Endowed with IX and XII hCA Inhibition. Antioxidants (Basel) 2020; 9:antiox9090775. [PMID: 32825614 PMCID: PMC7555330 DOI: 10.3390/antiox9090775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/30/2022] Open
Abstract
The tumor-associated isoenzymes hCA IX and hCA XII catalyze the hydration of carbon dioxide to bicarbonate and protons. These isoforms are highly overexpressed in many types of cancer, where they contribute to the acidification of the tumor environment, promoting tumor cell invasion and metastasis. In this work, in order to identify novel dual hCA IX and XII inhibitors, virtual screening techniques and biological assays were combined. A structure-based virtual screening towards hCA IX and XII was performed using a database of approximately 26,000 natural compounds. The best shared hits were submitted to a thermodynamic analysis and three promising best hits were identified and evaluated in terms of their hCA IX and XII inhibitor activity. In vitro biological assays were in line with the theoretical studies and revealed that syringin, lithospermic acid, and (-)-dehydrodiconiferyl alcohol behave as good hCA IX and hCA XII dual inhibitors.
Collapse
|
17
|
A drug repurposing screening reveals a novel epigenetic activity of hydroxychloroquine. Eur J Med Chem 2019; 183:111715. [DOI: 10.1016/j.ejmech.2019.111715] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/24/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
|
18
|
Catalogna G, Moraca F, D'Antona L, Dattilo V, Perrotti G, Lupia A, Costa G, Ortuso F, Iuliano R, Trapasso F, Amato R, Alcaro S, Perrotti N. Review about the multi-target profile of resveratrol and its implication in the SGK1 inhibition. Eur J Med Chem 2019; 183:111675. [PMID: 31539779 DOI: 10.1016/j.ejmech.2019.111675] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 01/08/2023]
Abstract
Resveratrol (trans-3,4',5-trihydroxystilbene) is a polyphenolic natural product with a well-known polypharmacological profile that places it among the multi-target-directed ligands (MTDLs). Given its protective action against a wide number of chronic diseases, in this review, we introduce a general overview about the cardioprotective and antioxidant effects, the antidiabetic, neuroprotective and anti-inflammatory effects of this polyphenol. In the second part of the manuscript, we focused our attention on the anticancer activity of Resveratrol, given the alteration of many different signaling pathways, leading to suppression of tumor cell proliferation in numerous cancer types. Among the several anticancer targets involved in the mechanism of action of Resveratrol, here we introduce experimental and molecular modeling studies performed against the SGK1 protein as a novel anticancer target of Resveratrol. SGK1 inhibitors have been demonstrated to inhibit cell growth of different cancer cells. We demonstrated that resveratrol inhibits SGK1 in vitro and in intact cells, affecting proliferation and survival of HUH7 human hepatoma cells. Our findings demonstrate that resveratrol may function as a SGK1 inhibitor, suggesting possible applications in sodium retention and cancer.
Collapse
Affiliation(s)
- Giada Catalogna
- Dipartimento di Medicina Sperimentale e Clinica, University "Magna Græcia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Federica Moraca
- Dipartimento di Scienze Della Salute, University "Magna Græcia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy; Department of Pharmacy, University of Napoli "Federico II", Via D. Montesano 49, I-80131 Napoli, Italy; Net4Science Srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Lucia D'Antona
- Dipartimento di Medicina Sperimentale e Clinica, University "Magna Græcia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Vincenzo Dattilo
- Dipartimento di Medicina Sperimentale e Clinica, University "Magna Græcia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Giuseppe Perrotti
- Dipartimento di Medicina Sperimentale e Clinica, University "Magna Græcia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Antonio Lupia
- Dipartimento di Scienze Della Salute, University "Magna Græcia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy; Net4Science Srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Giosuè Costa
- Dipartimento di Scienze Della Salute, University "Magna Græcia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy; Net4Science Srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Francesco Ortuso
- Dipartimento di Scienze Della Salute, University "Magna Græcia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy; Net4Science Srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Rodolfo Iuliano
- Dipartimento di Medicina Sperimentale e Clinica, University "Magna Græcia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Francesco Trapasso
- Dipartimento di Medicina Sperimentale e Clinica, University "Magna Græcia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Rosario Amato
- Dipartimento di Medicina Sperimentale e Clinica, University "Magna Græcia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze Della Salute, University "Magna Græcia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy; Net4Science Srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy.
| | - Nicola Perrotti
- Dipartimento di Medicina Sperimentale e Clinica, University "Magna Græcia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy.
| |
Collapse
|