1
|
Resveratrol Treatment in Human Parkin-Mutant Fibroblasts Modulates cAMP and Calcium Homeostasis Regulating the Expression of Mitochondria-Associated Membranes Resident Proteins. Biomolecules 2021; 11:biom11101511. [PMID: 34680144 PMCID: PMC8534032 DOI: 10.3390/biom11101511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022] Open
Abstract
Parkin plays an important role in ensuring efficient mitochondrial function and calcium homeostasis. Parkin-mutant human fibroblasts, with defective oxidative phosphorylation activity, showed high basal cAMP level likely ascribed to increased activity/expression of soluble adenylyl cyclase and/or low expression/activity of the phosphodiesterase isoform 4 and to a higher Ca2+ level. Overall, these findings support the existence, in parkin-mutant fibroblasts, of an abnormal Ca2+ and cAMP homeostasis in mitochondria. In our previous studies resveratrol treatment of parkin-mutant fibroblasts induced a partial rescue of mitochondrial functions associated with stimulation of the AMPK/SIRT1/PGC-1α pathway. In this study we provide additional evidence of the potential beneficial effects of resveratrol inducing an increase in the pre-existing high Ca2+ level and remodulation of the cAMP homeostasis in parkin-mutant fibroblasts. Consistently, we report in these fibroblasts higher expression of proteins implicated in the tethering of ER and mitochondrial contact sites along with their renormalization after resveratrol treatment. On this basis we hypothesize that resveratrol-mediated enhancement of the Ca2+ level, fine-tuned by the ER-mitochondria Ca2+ crosstalk, might modulate the pAMPK/AMPK pathway in parkin-mutant fibroblasts.
Collapse
|
2
|
Jhanji M, Rao CN, Sajish M. Towards resolving the enigma of the dichotomy of resveratrol: cis- and trans-resveratrol have opposite effects on TyrRS-regulated PARP1 activation. GeroScience 2021; 43:1171-1200. [PMID: 33244652 PMCID: PMC7690980 DOI: 10.1007/s11357-020-00295-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
Unlike widely perceived, resveratrol (RSV) decreased the average lifespan and extended only the replicative lifespan in yeast. Similarly, although not widely discussed, RSV is also known to evoke neurite degeneration, kidney toxicity, atherosclerosis, premature senescence, and genotoxicity through yet unknown mechanisms. Nevertheless, in vivo animal models of diseases and human clinical trials demonstrate inconsistent protective and beneficial effects. Therefore, the mechanism of action of RSV that elicits beneficial effects remains an enigma. In a previously published work, we demonstrated structural similarities between RSV and tyrosine amino acid. RSV acts as a tyrosine antagonist and competes with it to bind to human tyrosyl-tRNA synthetase (TyrRS). Interestingly, although both isomers of RSV bind to TyrRS, only the cis-isomer evokes a unique structural change at the active site to promote its interaction with poly-ADP-ribose polymerase 1 (PARP1), a major determinant of cellular NAD+-dependent stress response. However, retention of trans-RSV in the active site of TyrRS mimics its tyrosine-bound conformation that inhibits the auto-poly-ADP-ribos(PAR)ylation of PARP1. Therefore, we proposed that cis-RSV-induced TyrRS-regulated auto-PARylation of PARP1 would contribute, at least in part, to the reported health benefits of RSV through the induction of protective stress response. This observation suggested that trans-RSV would inhibit TyrRS/PARP1-mediated protective stress response and would instead elicit an opposite effect compared to cis-RSV. Interestingly, most recent studies also confirmed the conversion of trans-RSV and its metabolites to cis-RSV in the physiological context. Therefore, the finding that cis-RSV and trans-RSV induce two distinct conformations of TyrRS with opposite effects on the auto-PARylation of PARP1 provides a potential molecular basis for the observed dichotomic effects of RSV under different experimental paradigms. However, the fact that natural RSV exists as a diastereomeric mixture of its cis and trans isomers and cis-RSV is also a physiologically relevant isoform has not yet gained much scientific attention.
Collapse
Affiliation(s)
- Megha Jhanji
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Chintada Nageswara Rao
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Mathew Sajish
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
3
|
Resveratrol Stimulates the Na+–Ca2+ Exchanger on the Plasma Membrane to Reduce Cytosolic Ca2+ in Rat Aortic Smooth Muscle Cells. J Cardiovasc Pharmacol 2020; 76:610-616. [DOI: 10.1097/fjc.0000000000000897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Hoppe S, Breves G, Klinger S. Calcium-induced chloride secretion is decreased by Resveratrol in ileal porcine tissue. BMC Res Notes 2018; 11:719. [PMID: 30309374 PMCID: PMC6182809 DOI: 10.1186/s13104-018-3825-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/08/2018] [Indexed: 11/16/2022] Open
Abstract
Objective Chloride (Cl−) secretion is crucial for intestinal fluid secretion. Therefore, effects of the polyphenol Resveratrol (RSV) on Cl− secretion have been investigated. In a previous study, we observed effects of RSV on forskolin-induced Cl− secretion in the porcine jejunum but not the ileum although RSV itself induced a transepithelial ion current that may represent Cl− secretion in the ileum. The aim of this study was to gain further insights regarding the effects of RSV on characteristics of Cl− secretion in the porcine ileum using the Ussing chamber technique (recording of short circuit currents (Isc) as a measure for epithelial net ion transfer). Results RSV increased the Isc in the porcine ileum but not in the porcine jejunum as is already known. This increase was absent in a Cl−-free buffer system, indicating that RSV indeed induces Cl− secretion. However, the carbachol-induced Isc was significantly inhibited by RSV indicating an inhibition of Ca2+-induced Cl− secretion. The cellular basis for these contradictory, segment specific results of RSV on Cl− secretion has to be subjected to further studies. The results also underline, that is difficult to generalize effects of RSV between different intestinal locations, organs, cell culture models or species. Electronic supplementary material The online version of this article (10.1186/s13104-018-3825-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susanne Hoppe
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Gerhard Breves
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Stefanie Klinger
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany.
| |
Collapse
|
5
|
Chen GH, Li YC, Lin NH, Kuo PC, Tzen JTC. Characterization of Vasorelaxant Principles from the Needles of Pinus morrisonicola Hayata. Molecules 2017; 23:molecules23010086. [PMID: 29301239 PMCID: PMC6017640 DOI: 10.3390/molecules23010086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 12/29/2017] [Accepted: 12/30/2017] [Indexed: 12/18/2022] Open
Abstract
Pinus morrisonicola Hayata, usually called Taiwan five-leaf pine (5LP), is an endemic species in Taiwan and is traditionally used to relieve hypertension symptoms and improve cardiovascular function. In this study, the needle extract of 5LP was fractionated and analyzed by LC/MS/MS to search for possible antihypertensive candidates. In addition, bioassay-guided purification of the bioactive components was performed by Ca2+ fluorescent signal (Fluo 4-AM) assays. Two dihydrobenzofuran lignans, pinumorrisonide A (1) and icariside E4 (2), and one acylated flavonoid glycoside, kaempferol 3-O-α-(6‴-p-coumaroylglucosyl-β-1,4-rhamnoside) (3) were characterized from the active fractions. The structure of a new compound 1 was established on the basis of 2D NMR spectroscopic and mass spectrometric analyses, and the known compounds 2 and 3 were identified by comparison of their physical and spectroscopic data with those reported in the literature. The purified compounds 1–3 exhibited significant inhibition of Ca2+ fluorescence with IC50 values of 0.71, 0.36, and 0.20 mM, respectively. A mechanism study showed that these compounds showed vasorelaxant effects by blocking the voltage-operated Ca2+ channel (VOCC) and inhibiting Ca2+ influx to the cytoplasmic. These results suggested that 5LP and the three characterized components could be promising antihypertensive candidates for the use as VOCC blockers.
Collapse
Affiliation(s)
- Guan-Heng Chen
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan.
| | - Yue-Chiun Li
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan.
| | - Nan-Hei Lin
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan.
| | - Ping-Chung Kuo
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Jason T C Tzen
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
6
|
Liu W, Chen P, Deng J, Lv J, Liu J. Resveratrol and polydatin as modulators of Ca 2+ mobilization in the cardiovascular system. Ann N Y Acad Sci 2017; 1403:82-91. [PMID: 28665033 DOI: 10.1111/nyas.13386] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/29/2022]
Abstract
In the cardiovascular system, Ca2+ controls cardiac excitation-contraction coupling and vascular contraction and dilation. Disturbances in intracellular Ca2+ homeostasis induce malfunctions of the cardiovascular system, including cardiac pump dysfunction, arrhythmia, remodeling, and apoptosis, as well as hypertension and impairment of vascular reactivity. Therefore, developing drugs and strategies manipulating Ca2+ handling are highly valued in the treatment of cardiovascular disease. Resveratrol (Res) and polydatin (PD), a Res glucoside, have been well established to have beneficial effects on improving cardiovascular function. Studies from our laboratory and others have demonstrated that they exhibit inotropic effects on normal heart and therapeutic effects on hypertension, cardiac ischemia/reperfusion injury, hypertrophy, and heart failure by manipulating Ca2+ mobilization. The actions of Res and PD on Ca2+ signals delicately manipulated by multiple Ca2+ -handling proteins are pleiotropic and somewhat controversial, depending on cellular species and intracellular oxidative status. Here, we focus on the effects of Res and PD on controlling Ca2+ homeostasis in the heart and vasculature under normal and diseased conditions and highlight the key direct and indirect molecules mediating these effects.
Collapse
Affiliation(s)
- Wenjuan Liu
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Peiya Chen
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Jianxin Deng
- Department of Endocrinology, the First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China.,Department of Endocrinology, Shenzhen No. 2 People's Hospital, Shenzhen, China
| | - Jingzhang Lv
- Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen, China
| | - Jie Liu
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| |
Collapse
|
7
|
Peterson JA, Oblad RV, Mecham JC, Kenealey JD. Resveratrol inhibits plasma membrane Ca 2+-ATPase inducing an increase in cytoplasmic calcium. Biochem Biophys Rep 2016; 7:253-258. [PMID: 28955914 PMCID: PMC5613515 DOI: 10.1016/j.bbrep.2016.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 06/17/2016] [Accepted: 06/29/2016] [Indexed: 02/03/2023] Open
Abstract
Plasma membrane Ca2+-ATPase (PMCA) plays a vital role in maintaining cytosolic calcium concentration ([Ca2+]i). Given that many diseases have modified PMCA expression and activity, PMCA is an important potential target for therapeutic treatment. This study demonstrates that the non-toxic, naturally-occurring polyphenol resveratrol (RES) induces increases in [Ca2+]i via PMCA inhibition in primary dermal fibroblasts and MDA-MB-231 breast cancer cells. Our results also illustrate that RES and the fluorescent intracellular calcium indicator Fura-2, are compatible for simultaneous use, in contrast to previous studies, which indicated that RES modulates the Fura-2 fluorescence independent of calcium concentration. Because RES has been identified as a PMCA inhibitor, further studies may be conducted to develop more specific PMCA inhibitors from RES derivatives for potential therapeutic use. Resveratrol induces a rise in [Ca2+]i via plasma membrane Ca2+-ATPase inhibition. FURA-2 is compatible with resveratrol in measuring [Ca2+]i. PMCA inhibition is novel to resveratrol among naturally occurring polyphenols.
Collapse
Key Words
- BAPTA, BAPTA-Acetoxymethyl ester
- Calcium signaling
- DMEM, Dulbecco's modified Eagle medium
- DMSO, dimethyl sulfoxide
- EGCG, epigallocatechin gallate
- ER, endoplasmic reticulum
- FBS, fetal bovine serum
- Fura-2
- Fura-2, Fura-2-Acetoxymethyl ester
- HBSS, Ca2+- and Mg2+-free Hank's Balanced Salt Solution
- PBS, phosphate-buffered saline
- PMCA, plasma membrane Ca2+-ATPase
- Plasma membrane Ca2+-ATPase
- RES, resveratrol
- ROI, region of interest
- Resveratrol
- SERCA, sarcoendoplasmic reticular Ca2+-ATPase
- TG, thapsigargin
- [Ca2+]i, cytosolic calcium concentration
Collapse
Affiliation(s)
- Joshua Allen Peterson
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, ESC S-127, Provo, UT, United States
| | - Richard Vernon Oblad
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, ESC S-127, Provo, UT, United States
| | - Jeffrey Chad Mecham
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, ESC S-127, Provo, UT, United States
| | - Jason Donald Kenealey
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, ESC S-127, Provo, UT, United States
| |
Collapse
|
8
|
Segade M, Bermejo R, Silva A, Paiva-Martins F, Gil-Longo J, Campos-Toimil M. Involvement of endothelium in the vasorelaxant effects of 3,4-DHPEA-EA and 3,4-DHPEA-EDA, two major functional bioactives in olive oil. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.03.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
9
|
Cuíñas A, García-Morales V, Viña D, Gil-Longo J, Campos-Toimil M. Activation of PKA and Epac proteins by cyclic AMP depletes intracellular calcium stores and reduces calcium availability for vasoconstriction. Life Sci 2016; 155:102-9. [PMID: 27142830 DOI: 10.1016/j.lfs.2016.03.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/23/2016] [Accepted: 03/03/2016] [Indexed: 12/15/2022]
Abstract
AIMS We investigated the implication of PKA and Epac proteins in the endothelium-independent vasorelaxant effects of cyclic AMP (cAMP). MAIN METHODS Cytosolic Ca(2+) concentration ([Ca(2+)]c) was measured by fura-2 imaging in rat aortic smooth muscle cells (RASMC). Contraction-relaxation experiments were performed in rat aortic rings deprived of endothelium. KEY FINDINGS In extracellular Ca(2+)-free solution, cAMP-elevating agents induced an increase in [Ca(2+)]c in RASMC that was reproduced by PKA and Epac activation and reduced after depletion of intracellular Ca(2+) reservoirs. Arginine-vasopressin (AVP)-evoked increase of [Ca(2+)]c and store-operated Ca(2+) entry (SOCE) were inhibited by cAMP-elevating agents, PKA or Epac activation in these cells. In aortic rings, the contractions induced by phenylephrine in absence of extracellular Ca(2+) were inhibited by cAMP-elevating agents, PKA or Epac activation. In these conditions, reintroduction of Ca(2+) induced a contraction that was inhibited by cAMP-elevating agents, an effect reduced by PKA inhibition and reproduced by PKA or Epac activators. SIGNIFICANCE Our results suggest that increased cAMP depletes intracellular, thapsigargin-sensitive Ca(2+) stores through activation of PKA and Epac in RASMC, thus reducing the amount of Ca(2+) released by IP3-generating agonists during the contraction of rat aorta. cAMP rise also inhibits the contraction induced by depletion of intracellular Ca(2+), an effect mediated by reduction of SOCE after PKA or Epac activation. Both effects participate in the cAMP-induced endothelium-independent vasorelaxation.
Collapse
Affiliation(s)
- Andrea Cuíñas
- Farmacología de las Enfermedades Crónicas (CDPHARMA), Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Verónica García-Morales
- Farmacología de las Enfermedades Crónicas (CDPHARMA), Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Dolores Viña
- Farmacología de las Enfermedades Crónicas (CDPHARMA), Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José Gil-Longo
- Farmacología de las Enfermedades Crónicas (CDPHARMA), Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuel Campos-Toimil
- Farmacología de las Enfermedades Crónicas (CDPHARMA), Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
10
|
Ulke‐Lemée A, Turner SR, MacDonald JA. In situ Analysis of Smoothelin‐like 1 and Calmodulin Interactions in Smooth Muscle Cells by Proximity Ligation. J Cell Biochem 2015; 116:2667-75. [DOI: 10.1002/jcb.25215] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 04/22/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Annegret Ulke‐Lemée
- Department of Biochemistry and Molecular BiologyCumming School of MedicineUniversity of CalgaryCalgaryAlbertaT2N 4Z6Canada
| | - Sara R. Turner
- Department of Biochemistry and Molecular BiologyCumming School of MedicineUniversity of CalgaryCalgaryAlbertaT2N 4Z6Canada
| | - Justin A. MacDonald
- Department of Biochemistry and Molecular BiologyCumming School of MedicineUniversity of CalgaryCalgaryAlbertaT2N 4Z6Canada
| |
Collapse
|
11
|
Gonzalez-Vicente A, Cabral PD, Garvin JL. Resveratrol increases nitric oxide production in the rat thick ascending limb via Ca2+/calmodulin. PLoS One 2014; 9:e110487. [PMID: 25314136 PMCID: PMC4196991 DOI: 10.1371/journal.pone.0110487] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/19/2014] [Indexed: 12/12/2022] Open
Abstract
The thick ascending limb of the loop of Henle reabsorbs 30% of the NaCl filtered through the glomerulus. Nitric oxide (NO) produced by NO synthase 3 (NOS3) inhibits NaCl absorption by this segment. Resveratrol, a polyphenol, has beneficial cardiovascular and renal effects, many of which are mediated by NO. Resveratrol increases intracellular Ca2+ (Cai) and AMP kinase (AMPK) and NAD-dependent deacetylase sirtuin1 (SIRT1) activities, all of which could activate NO production. We hypothesized that resveratrol stimulates NO production by thick ascending limbs via a Ca2+/calmodulin-dependent mechanism. To test this, the effect of resveratrol on NO bioavailability was measured in thick ascending limb suspensions. Cai was measured in single perfused thick ascending limbs. SIRT1 activity and expression were measured in thick ascending limb lysates. Resveratrol (100 µM) increased NO bioavailability in thick ascending limb suspensions by 1.3±0.2 AFU/mg/min (p<0.03). The NOS inhibitor L-NAME blunted resveratrol-stimulated NO bioavailability by 96±11% (p<0.03). The superoxide scavenger tempol had no effect. Resveratrol elevated Cai from 48±7 to 135±24 nM (p<0.01) in single tubules. In Ca2+-free media, the resveratrol-induced increase in NO was blunted by 60±20% (p<0.05) and the rise in Cai reduced by 80%. Calmodulin inhibition prevented the resveratrol-induced increase in NO (p<0.002). AMPK inhibition had no effect. Resveratrol did not increase SIRT1 activity. We conclude that resveratrol increases NO production in thick ascending limbs via a Ca2+/calmodulin dependent mechanism, and SIRT1 and AMPK do not participate. Resveratrol-stimulated NO production in thick ascending limbs may account for part of its beneficial effects.
Collapse
Affiliation(s)
- Agustin Gonzalez-Vicente
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, Ohio, United States of America
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Pablo D. Cabral
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, Ohio, United States of America
- Universidad de Buenos Aires, Facultad de Medicina, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Jeffrey L. Garvin
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, Ohio, United States of America
- Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
12
|
Resveratrol is not compatible with a Fura-2-based assay for measuring intracellular Ca2+ signaling. Biochem Biophys Res Commun 2014; 450:1626-30. [DOI: 10.1016/j.bbrc.2014.07.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 07/10/2014] [Indexed: 11/23/2022]
|
13
|
Synthesis, biological evaluation and structure–activity relationships of new phthalazinedione derivatives with vasorelaxant activity. Eur J Med Chem 2014; 82:407-17. [DOI: 10.1016/j.ejmech.2014.05.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 05/19/2014] [Accepted: 05/22/2014] [Indexed: 11/18/2022]
|
14
|
McCalley AE, Kaja S, Payne AJ, Koulen P. Resveratrol and calcium signaling: molecular mechanisms and clinical relevance. Molecules 2014; 19:7327-40. [PMID: 24905603 PMCID: PMC4160047 DOI: 10.3390/molecules19067327] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/23/2014] [Accepted: 05/23/2014] [Indexed: 11/16/2022] Open
Abstract
Resveratrol is a naturally occurring compound contributing to cellular defense mechanisms in plants. Its use as a nutritional component and/or supplement in a number of diseases, disorders, and syndromes such as chronic diseases of the central nervous system, cancer, inflammatory diseases, diabetes, and cardiovascular diseases has prompted great interest in the underlying molecular mechanisms of action. The present review focuses on resveratrol, specifically its isomer trans-resveratrol, and its effects on intracellular calcium signaling mechanisms. As resveratrol's mechanisms of action are likely pleiotropic, its effects and interactions with key signaling proteins controlling cellular calcium homeostasis are reviewed and discussed. The clinical relevance of resveratrol's actions on excitable cells, transformed or cancer cells, immune cells and retinal pigment epithelial cells are contrasted with a review of the molecular mechanisms affecting calcium signaling proteins on the plasma membrane, cytoplasm, endoplasmic reticulum, and mitochondria. The present review emphasizes the correlation between molecular mechanisms of action that have recently been identified for resveratrol and their clinical implications.
Collapse
Affiliation(s)
- Audrey E McCalley
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri-Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA.
| | - Simon Kaja
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri-Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA.
| | - Andrew J Payne
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri-Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA.
| | - Peter Koulen
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri-Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA.
| |
Collapse
|
15
|
Yang B, Li JJ, Cao JJ, Yang CB, Liu J, Ji QM, Liu ZG. Polydatin attenuated food allergy via store-operated calcium channels in mast cell. World J Gastroenterol 2013; 19:3980-3989. [PMID: 23840142 PMCID: PMC3703184 DOI: 10.3748/wjg.v19.i25.3980] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/10/2013] [Accepted: 05/17/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of polydatin (PD), a resveratrol glucoside, on mast cell degranulation and anti-allergic activity.
METHODS: After the rats were orally sensitized with ovalbumin (OVA) for 48 d and underwent PD treatment for 4 d, all the rats were stimulated by 100 mg/mL OVA for 24 h and then sacrificed for the following experiments. The small intestines from all the groups were prepared for morphology examination by hematoxylin and eosin staining. We also used a smooth muscle organ bath to evaluate the motility of the small intestines. The OVA-specific immunoglobulin E (IgE) production and interleukin-4 (IL-4) levels in serum or supernatant of intestinal mucosa homogenates were analyzed by enzyme-linked immunosorbent assay (ELISA). Using toluidine blue stain, the activation and degranulation of isolated rat peritoneal mast cells (RPMCs) were analyzed. Release of histamine from RPMCs was measured by ELISA, and regulation of PD on intracellular Ca2+ mobilization was investigated by probing intracellular Ca2+ with fluo-4 fluorescent dye, with the signal recorded and analyzed.
RESULTS: We found that intragastric treatment with PD significantly reduced loss of mucosal barrier integrity in the small intestine. However, OVA-sensitization caused significant hyperactivity in the small intestine of allergic rats, which was attenuated by PD administration by 42% (1.26 ± 0.13 g vs OVA 2.18 ± 0.21 g, P < 0.01). PD therapy also inhibited IgE production (3.95 ± 0.53 ng/mL vs OVA 4.53 ± 0.52 ng/mL, P < 0.05) by suppressing the secretion of Th2-type cytokine, IL-4, by 34% (38.58 ± 4.41 pg/mL vs OVA 58.15 ± 6.24 pg/mL, P < 0.01). The ratio of degranulated mast cells, as indicated by vehicles (at least five) around the cells, dramatically increased in the OVA group by 5.5 fold (63.50% ± 15.51% vs phosphate-buffered saline 11.15% ± 8.26%, P < 0.001) and fell by 65% after PD treatment (21.95% ± 4.37% vs OVA 63.50% ± 15.51%, P < 0.001). PD mediated attenuation of mast cell degranulation was further confirmed by decreased histamine levels in both serum (5.98 ± 0.17 vs OVA 6.67 ± 0.12, P < 0.05) and intestinal mucosa homogenates (5.83 ± 0.91 vs OVA 7.35 ± 0.97, P < 0.05). Furthermore, we demonstrated that administration with PD significantly decreased mast cell degranulation due to reduced Ca2+ influx through store-operated calcium channels (SOCs) (2.35 ± 0.39 vs OVA 3.51 ± 0.38, P < 0.01).
CONCLUSION: Taken together, our data indicate that PD stabilizes mast cells by suppressing intracellular Ca2+ mobilization, mainly through inhibiting Ca2+ entry via SOCs, thus exerting a protective role against OVA-sensitized food allergy.
Collapse
|
16
|
Trans-resveratrol down-regulates caveolin-1, up-regulates endothelial NO synthase and reduces their interaction in vascular smooth muscle and endothelial cells. FOOD BIOSCI 2013. [DOI: 10.1016/j.fbio.2013.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Stimulation of cytosolic and mitochondrial calcium mobilization by indomethacin in Caco-2 cells: Modulation by the polyphenols quercetin, resveratrol and rutin. Biochim Biophys Acta Gen Subj 2012; 1820:2052-61. [DOI: 10.1016/j.bbagen.2012.09.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 09/02/2012] [Accepted: 09/19/2012] [Indexed: 12/23/2022]
|
18
|
Yuan M, Li J, Lv J, Mo X, Yang C, Chen X, Liu Z, Liu J. Polydatin (PD) inhibits IgE-mediated passive cutaneous anaphylaxis in mice by stabilizing mast cells through modulating Ca2+ mobilization. Toxicol Appl Pharmacol 2012. [DOI: 10.10.1016/j.taap.2012.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Yuan M, Li J, Lv J, Mo X, Yang C, Chen X, Liu Z, Liu J. Polydatin (PD) inhibits IgE-mediated passive cutaneous anaphylaxis in mice by stabilizing mast cells through modulating Ca²⁺ mobilization. Toxicol Appl Pharmacol 2012; 264:462-9. [PMID: 22959927 DOI: 10.1016/j.taap.2012.08.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 12/11/2022]
Abstract
Mast cells play a key role in the pathogenesis of asthma and are a promising target for therapeutic intervention in asthma. This study investigated the effects of polydatin (PD), a resveratrol glucoside, on mast cell degranulation upon cross-linking of the high-affinity IgE receptors (FcεRI), as well as the anti-allergic activity of PD in vivo. Herein, we demonstrated that PD treatment for 30 min suppressed FcεRI-mediated mast cell degranulation in a dose-dependent manner. Concomitantly, PD significantly decreased FcεRI-mediated Ca²⁺ increase in mast cells. The suppressive effects of PD on FcεRI-mediated Ca²⁺ increase were largely inhibited by using LaCl₃ to block the Ca²⁺ release-activated Ca²⁺ channels (CRACs). Furthermore, PD significantly inhibited Ca²⁺ entry through CRACs evoked by thapsigargin (TG). Knocking down protein expression of Orai1, the pore-forming subunit of CRACs, significantly decreased PD suppression of FcεRI-induced intracellular Ca²⁺ influx and mast cell degranulation. In a mouse model of mast cell-dependent passive cutaneous anaphylaxis (PCA), in vivo PD administration suppressed mast cell degranulation and inhibited anaphylaxis. Taken together, our data indicate that PD stabilizes mast cells by suppressing FcεRI-induced Ca²⁺ mobilization mainly through inhibiting Ca²⁺ entry via CRACs, thus exerting a protective effect against PCA.
Collapse
Affiliation(s)
- Meichun Yuan
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Garcia-Sanchez L, Santofimia-Castaño P, Miro-Moran A, Tapia JA, Salido GM, Gonzalez A. Resveratrol mobilizes Ca2+ from intracellular stores and induces c-Jun N-terminal kinase activation in tumoral AR42J cells. Mol Cell Biochem 2012; 362:15-23. [PMID: 22012614 DOI: 10.1007/s11010-011-1123-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 10/12/2011] [Indexed: 10/16/2022]
Abstract
Resveratrol (3,4',5-trihydroxy-trans-stilbene), a phytoalexin naturally found in grapes and red wine, is a redox-active compound endowed with significant positive activities. In this study, the effects of resveratrol on intracellular free Ca(2+) concentration ([Ca(2+)](c)) and on cell viability in tumoral AR42J pancreatic cells are examined. The results show that resveratrol (100 μM and 1 mM) induced changes in [Ca(2+)](c), that consisted of single or short lasting spikes followed by a slow reduction toward a value close to the resting level. Lower concentrations of resveratrol (1 and 10 μM) did not show detectable effects on [Ca(2+)](c). Depletion of intracellular Ca(2+) stores by stimulation of cells with 1 nM CCK-8, 20 pM CCK-8 or 1 μM thapsigargin, blocked Ca(2+) responses evoked by resveratrol. Conversely, prior stimulation of cells with resveratrol inhibited Ca(2+) mobilization in response to a secondary application of CCK-8 or thapsigargin. In addition, resveratrol inhibited oscillations in [Ca(2+)](c) evoked by a physiological concentration of CCK-8 (20 pM). On the other hand, incubation of cells in the presence of resveratrol induced a reduction of cell viability. Finally, incubation of AR42J cells in the presence of resveratrol led to activation of c-Jun N-terminal kinase (JNK), a mitogen-activated protein kinase responsive to stress stimuli. Activation of JNK was reduced in the absence of extracellular Ca(2+). In summary, the results show that resveratrol releases Ca(2+) from intracellular stores, most probably from the endoplasmic reticulum, and reduces AR42J cells viability. Reorganization of cell's survival/death processes in the presence of resveratrol may involve Ca(2+)-mediated JNK activation.
Collapse
|
21
|
Akar F, Pektas MB, Tufan C, Soylemez S, Sepici A, Ulus AT, Gokalp B, Ozturk K, Surucu HS. Resveratrol shows vasoprotective effect reducing oxidative stress without affecting metabolic disturbances in insulin-dependent diabetes of rabbits. Cardiovasc Drugs Ther 2012; 25:119-31. [PMID: 20676927 DOI: 10.1007/s10557-010-6255-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Resveratrol has been shown to have vasoprotective effects by upregulating oxidative defense mechanisms in a variety of pathophysiological conditions. However, the effect of resveratrol on diabetic oxidative stress and vascular and metabolic abnormalities is not completely understood. Therefore, this study was designed to evaluate whether long-term resveratrol supplementation has a protective effect on vascular function and integrity in association with metabolic parameters and oxidative stress in insulin-dependent diabetes. METHODS Diabetes was induced in rabbits with alloxan and maintained for 8 weeks. We used a resveratrol dose of 5 mg/L (10 weeks, starting 14 days before alloxan injection) and 50 mg/L (8 or 10 weeks, starting concomitantly or 14 days before alloxan injection) in the drinking water of rabbits. RESULTS Relaxation to acetylcholine was impaired (control 75.6 ± 3.59%, versus diabetic 42.23 ± 2.53%) and contractions to phenylephrine increased (control 136.89 ± 2.27%, versus diabetic 159.37 ± 6.27%) in aortas from diabetic animals. These changes were associated with increased basal or NAD(P)H-induced superoxide production, as well as lipid peroxide and superoxide dismutase (SOD) levels in the aortic samples. The maximal relaxation to acetylcholine improved by 75.74 ± 9.04% in diabetic rabbits treated with resveratrol. The increased contractions to phenylephrine were not restored to control values after resveratrol treatments, but sensitivity to the contractions tended to decrease. Resveratrol increased nitrite/nitrate levels and suppressed basal or NAD(P)H-induced superoxide production and lipid peroxide levels in the aortas. Importantly, resveratrol increased serum insulin levels without affecting blood glucose and the lipid profile in diabetic rabbits. Using electron microscopic examinations, resveratrol was found to markedly protect the endothelial integrity from diabetes. CONCLUSION Overall, there was no noticeable difference between resveratrol treatment groups on the recovery from diabetes. Our results indicate that resveratrol alleviates type 1 diabetes-induced vasculopathy by decreasing vascular oxidative stress and thereby increasing the bioavailability of nitric oxide without changing metabolic abnormalities.
Collapse
Affiliation(s)
- Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Etiler, Ankara, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Elíes J, Cuíñas A, García-Morales V, Orallo F, Campos-Toimil M. Trans-resveratrol simultaneously increases cytoplasmic Ca(2+) levels and nitric oxide release in human endothelial cells. Mol Nutr Food Res 2011; 55:1237-48. [PMID: 21710562 DOI: 10.1002/mnfr.201100240] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/12/2011] [Accepted: 05/16/2011] [Indexed: 12/23/2022]
Abstract
SCOPE The aim of this study was to investigate whether the dietary polyphenol trans-resveratrol (t-Resv) increases [Ca(2+)](c) in endothelial cells, leading to a simultaneous augmentation of nitric oxide (NO) biosynthesis. METHODS AND RESULTS We have separately and simultaneously measured [Ca(2+)](c) and NO in human endothelial cells using the Ca(2+) indicator fura-2 and the NO-sensitive fluorescent probe 4,5-diaminofluorescein. In ∼30% of cells, t-Resv (30 μM) induced an increase in [Ca(2+)](c) with a transient as well as sustained component and a simultaneous increase in NO biosynthesis. This effect was reduced by non-selective Ca(2+) channel blockers, inhibition of intracellular Ca(2+) release, inhibition of endothelial nitric oxide synthase (eNOS) and, to a lesser extent, inhibition of extracellular signal-regulated kinase 1/2 (ERK 1/2) or 5' adenosine monophosphate-activated protein kinase (AMPK). t-Resv did not modify in vitro eNOS activity, suggesting that the observed stimulation of NO generation proceeds via mobilisation of Ca(2+) and not through direct effects on eNOS. CONCLUSION We therefore show, for the first time, that t-Resv induces a concentration-dependent, simultaneous increase in [Ca(2+)](c) and NO biosynthesis that could be linked to its endothelium-dependent vasorelaxant effect. Under the assumption that t-Resv exhibits similar behaviour in human blood vessels in vivo, the pharmacological properties described here may contribute to the beneficial cardiovascular effects of this polyphenol by improving endothelial function.
Collapse
Affiliation(s)
- Jacobo Elíes
- Departamento de Farmacoloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
23
|
Basavaraj S, Benson HAE, Cruickshank C, Brown DH, Chen Y. Development of a liquid chromatography/mass spectrometry methodology to separate, detect, characterize and quantify PEG-resveratrol prodrugs and the conjugation reaction precursors and intermediates. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:1543-1551. [PMID: 21594928 DOI: 10.1002/rcm.5000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A simple and reliable liquid chromatography/mass spectrometry (LC/MS) method to monitor pegylation of resveratrol is described. The developed LC/MS method can separate and quantify unmodified MeO-PEG-OH, carboxylic acid terminated PEG, resveratrol and PEG-resveratrol prodrugs. This methodology was able to monitor and determine the extent of conversion of MeO-PEG-OH into respective acidic functional derivatives such as MeO-PEG succinylester acid (MeO-PEGO-SuccOH), which was found to be complete. The developed method was also utilised to determine the extent of conjugation of resveratrol to carboxylic acid terminated PEG. The conversion of carboxylic acid terminated PEG into a PEG-resveratrol conjugate was found to be 100% and 73%, respectively, for MeO-PEG succinylamide resveratrol (MeO-PEGN-Succ-RSV) and MeO-PEG succinylester resveratrol (MeO-PEGO-Succ-RSV). The 100% conjugation of MeO-PEGN-Succ-RSV is consistent with the result obtained from a nuclear magnetic resonance (NMR) study. The average molecular weights determined by LC/MS for MeO-PEG-OH, MeO-PEGO-SuccOH and MeO-PEGO-Succ-RSV were found to be 2108, 2321 and 2423 Da, respectively. These data correlate well with the theoretical values. This methodology proved to be simple and effective in determining the extent of functionalisation of PEG and its conjugation to resveratrol. Overall our LC/MS method coupled with NMR permitted complete characterisation of the polymeric prodrug pegylated-resveratrol and the reaction precursors.
Collapse
Affiliation(s)
- S Basavaraj
- School of Pharmacy, CHIRI, WABRI, Curtin University, Perth, Western Australia
| | | | | | | | | |
Collapse
|
24
|
Kim H, Oh SJ, Liu Y, Lee MY. A Comparative Study of the Anti-Platelet Effects of cis- and trans-Resveratrol. Biomol Ther (Seoul) 2011. [DOI: 10.4062/biomolther.2011.19.2.201] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
25
|
Wang L, Ma Q, Chen X, Sha H, Ma Z. Effects of resveratrol on calcium regulation in rats with severe acute pancreatitis. Eur J Pharmacol 2007; 580:271-6. [PMID: 18031730 DOI: 10.1016/j.ejphar.2007.10.068] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 10/08/2007] [Accepted: 10/22/2007] [Indexed: 10/22/2022]
Abstract
Intracellular calcium overload plays a key role in severe acute pancreatitis. Resveratrol can decrease the severity of pancreatitis; however, the mechanism of action of resveratrol has not been determined. The aim of our study was to examine the relationship between calcium overload and the effects of resveratrol in severe acute pancreatitis. Animals were randomly divided into 3 groups: control group (sham operation), model group (0.1 ml/100 g of 3.5% sodium taurocholate used to induce severe acute pancreatitis), and treated group (treated with resveratrol, 10 mg/kg). In model group, the severity of pancreatitis was aggravated; this was evaluated by pancreatic weight/body weight and lung weight/body weight ratios, serum amylase activities, and pancreatic histopathological scoring; the Ca(2+)-Mg(2+)-ATPase and Ca(2+)-ATPase activities decreased while PLA(2) activity and [Ca(2+)](i) increased gradually with time. Compared to the control group, in the model group, these changes were observed in the pancreatic tissue at the 3 h time point and in the lung tissue at the 6 h time point. Resveratrol ameliorated the changes in the laboratory parameters and significantly reduced the pathological damage in the tissues at the corresponding time points. In conclusion, intracellular calcium overload leads to tissue damage in severe acute pancreatitis, and the beneficial effects of resveratrol appear to be mediated by reducing the intracellular calcium overload; this not only limits pancreatic cellular injury but also secondary lung injury.
Collapse
Affiliation(s)
- Liancai Wang
- Department of Hepatobiliary Surgery, First Hospital of Xi'an Jiaotong University, 1 Jiankang Road, Xi'an, 710061, Shaanxi Province, China
| | | | | | | | | |
Collapse
|
26
|
Szkudelski T. Resveratrol-induced inhibition of insulin secretion from rat pancreatic islets: evidence for pivotal role of metabolic disturbances. Am J Physiol Endocrinol Metab 2007; 293:E901-7. [PMID: 17578889 DOI: 10.1152/ajpendo.00564.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Resveratrol is a stilbene present in different plant species and exerting numerous beneficial effects, including prevention of diabetes and attenuation of some diabetic complications. Its inhibitory effect on insulin secretion was recently documented, but the exact mechanism underlying this action remains unknown. Experiments employing diazoxide and a high concentration of K(+) revealed that, in depolarized pancreatic islets incubated for 90 min with resveratrol (1, 10, and 100 microM), insulin secretion stimulated by glucose and leucine was impaired. The attenuation of the insulin secretory response to 6.7 mM glucose was not abrogated by blockade of intracellular estrogen receptors and was found to be accompanied by diminished islet glucose oxidation, enhanced lactate production, and reduced ATP levels. Glucose-induced hyperpolarization of the mitochondrial membrane was also reduced in the presence of resveratrol. Moreover, in depolarized islets incubated with 2.8 mM glucose, activation of protein kinase C or protein kinase A potentiated insulin release; however, under these conditions, resveratrol was ineffective. Further studies also revealed that, under conditions of blocked voltage-dependent calcium channels, the stilbene reduced insulin secretion induced by a combination of glucose with forskolin. These data demonstrate that resveratrol 1) inhibits the amplifying pathway of insulin secretion, 2) exerts an insulin-suppressive effect independently of its estrogenic/anti-estrogenic activity, 3) shifts islet glucose metabolism from mitochondrial oxidation to anaerobic,4) fails to abrogate insulin release promoted without metabolic events, and 5) does not suppress hormone secretion as a result of the direct inhibition of Ca(2+) influx through voltage-dependent calcium channels.
Collapse
Affiliation(s)
- Tomasz Szkudelski
- Dept. of Animal Physiology and Biochemistry, August Cieszkowski Univ. of Agriculture, 60-637 Wolynska 35, Poznan, Poland.
| |
Collapse
|
27
|
Campos-Toimil M, Elíes J, Alvarez E, Verde I, Orallo F. Effects of trans- and cis-resveratrol on Ca2+ handling in A7r5 vascular myocytes. Eur J Pharmacol 2007; 577:91-9. [PMID: 17822692 DOI: 10.1016/j.ejphar.2007.08.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 08/01/2007] [Accepted: 08/06/2007] [Indexed: 12/20/2022]
Abstract
Although the natural polyphenol resveratrol posses a direct vasorelaxant effect, its effects on cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) in vascular cells remain still unclear. Here, we have investigated the effects of the isomers trans- and cis-resveratrol on agonist- and high-K(+)-induced [Ca(2+)](i) increases and on voltage-activated transmembrane Ca(2+) fluxes using imaging and patch-clamp techniques in vascular A7r5 myocytes. Arginine vasopressin (AVP) or angiotensin II caused a biphasic increase in [Ca(2+)](i) that was reduced by preincubation with trans-resveratrol and cis-resveratrol. Both isomers also reduced the agonist-induced increase in [Ca(2+)](i) in absence of extracellular Ca(2+). In high-K(+) Ca(2+)-free solution, reintroduction of Ca(2+) caused a sustained rise in [Ca(2+)](i) that was reduced by preincubation with trans-resveratrol or cis-resveratrol. When the isomers were applied during the plateau phase of the agonist- or the high-K(+)-induced response, a biphasic change in [Ca(2+)](i) was observed: a transient reduction of the plateau (<5 min) followed by an increase (>10 min). Finally, trans-resveratrol and cis-resveratrol inhibited voltage-dependent L-type Ca(2+) currents (I(Ca(L))). In conclusion, resveratrol isomers exert a dual effect on [Ca(2+)](i) handling in A7r5 myocytes: 1) a blockade of I(Ca(L)) and 2) an increase in [Ca(2+)](i) by depletion of intracellular Ca(2+) stores (which interferes with the agonist-induced release of intracellular Ca(2+)) and influx of Ca(2+), mainly due to activation of capacitative Ca(2+) entry, although other Ca(2+)-permeable channels are also involved. Taken together, these effects may explain, in part, the endothelium-independent vasorelaxant effects of resveratrol in rat aorta.
Collapse
Affiliation(s)
- Manuel Campos-Toimil
- Departamento de Farmacoloxía, Facultade de Farmacia. Universidade de Santiago de Compostela. Campus Universitario Sur, E-15782, Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
28
|
Yu CKY, Lam CNW, Springob K, Schmidt J, Chu IK, Lo C. Constitutive Accumulation of
cis
-piceid in Transgenic Arabidopsis Overexpressing a Sorghum Stilbene Synthase Gene. ACTA ACUST UNITED AC 2006; 47:1017-21. [PMID: 16731548 DOI: 10.1093/pcp/pcj061] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Sorghum SbSTS1 was the first example of a stilbene synthase gene in monocots. Previously, we demonstrated that the gene was involved in defense responses. To examine its biochemical function in planta, SbSTS1 was overexpressed in transgenic Arabidopsis. Metabolite analysis revealed that cis-resveratrol glucoside (piceid) accumulated as the major stilbene in the transgenic lines. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in selected reaction monitoring mode, up to 580 microg g(-1) FW of cis-piceid were detected in 2-week-old plants, which represent a convenient source of the cis-isomers for pharmacological investigations. Our results also suggested the presence of unknown stilbene isomerase activities in Arabidopsis.
Collapse
Affiliation(s)
- Christine K Y Yu
- Department of Botany, The University of Hong Kong, Pokfulam Road, Hong Kong, PR China
| | | | | | | | | | | |
Collapse
|
29
|
Orallo F. Biological Effects of Cis- Versus Trans-Resveratrol. OXIDATIVE STRESS AND DISEASE 2005. [DOI: 10.1201/9781420026474.ch24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|