1
|
Das A, Pathak MP, Pathak K, Saikia R, Gogoi U. Herbal medicine for the treatment of obesity-associated asthma: a comprehensive review. Front Pharmacol 2023; 14:1186060. [PMID: 37251328 PMCID: PMC10213975 DOI: 10.3389/fphar.2023.1186060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Obesity is fast growing as a global pandemic and is associated with numerous comorbidities like cardiovascular disease, hypertension, diabetes, gastroesophageal reflux disease, sleep disorders, nephropathy, neuropathy, as well as asthma. Studies stated that obese asthmatic subjects suffer from an increased risk of asthma, and encounter severe symptoms due to a number of pathophysiology. It is very vital to understand the copious relationship between obesity and asthma, however, a clear and pinpoint pathogenesis underlying the association between obesity and asthma is scarce. There is a plethora of obesity-asthma etiologies reported viz., increased circulating pro-inflammatory adipokines like leptin, resistin, and decreased anti-inflammatory adipokines like adiponectin, depletion of ROS controller Nrf2/HO-1 axis, nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) associated macrophage polarization, hypertrophy of WAT, activation of Notch signaling pathway, and dysregulated melanocortin pathway reported, however, there is a very limited number of reports that interrelates these pathophysiologies. Due to the underlying complex pathophysiologies exaggerated by obese conditions, obese asthmatics respond poorly to anti-asthmatic drugs. The poor response towards anti-asthmatic drugs may be due to the anti-asthmatics approach only that ignores the anti-obesity target. So, aiming only at the conventional anti-asthmatic targets in obese-asthmatics may prove to be futile until and unless treatment is directed towards ameliorating obesity pathogenesis for a holistic approach towards amelioration of obesity-associated asthma. Herbal medicines for obesity as well as obesity-associated comorbidities are fast becoming safer and more effective alternatives to conventional drugs due to their multitargeted approach with fewer adverse effects. Although, herbal medicines are widely used for obesity-associated comorbidities, however, a limited number of herbal medicines have been scientifically validated and reported against obesity-associated asthma. Notable among them are quercetin, curcumin, geraniol, resveratrol, β-Caryophyllene, celastrol, tomatidine to name a few. In view of this, there is a dire need for a comprehensive review that may summarize the role of bioactive phytoconstituents from different sources like plants, marine as well as essential oils in terms of their therapeutic mechanisms. So, this review aims to critically discuss the therapeutic role of herbal medicine in the form of bioactive phytoconstituents against obesity-associated asthma available in the scientific literature to date.
Collapse
Affiliation(s)
- Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Manash Pratim Pathak
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, India
| | - Kalyani Pathak
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| |
Collapse
|
2
|
Memarzia A, Saadat S, Behrouz S, Boskabady MH. Curcuma longa and curcumin affect respiratory and allergic disorders, experimental and clinical evidence: A comprehensive and updated review. Biofactors 2022; 48:521-551. [PMID: 34932258 DOI: 10.1002/biof.1818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/05/2021] [Indexed: 01/23/2023]
Abstract
Curcuma longa and its constituents, mainly curcumin, showed various of pharmacological effects in previous studies. This review article provides updated and comprehensive experimental and clinical evidence regarding the effects of C. longa and curcumin on respiratory, allergic, and immunologic disorders. Using appropriate keywords, databases including PubMed, Science Direct, and Scopus were searched until the end of October 2021. C. longa extracts and its constituent, curcumin, showed the relaxant effect on tracheal smooth muscle, which indicates their bronchodilatory effect in obstructive pulmonary diseases. The preventive effects of extracts of C. longa and curcumin were shown in experimental animal models of different respiratory diseases through antioxidant, immunomodulatory, and anti-inflammatory mechanisms. C. longa and curcumin also showed preventive effects on some lung disorders in the clinical studies. It was shown that the effects of C. longa on pulmonary diseases were mainly due to its constituent, curcumin. Pharmacological effects of C. longa extracts and curcumin on respiratory, allergic, and immunologic disorders indicate the possible therapeutic effect of the plant and curcumin on these diseases.
Collapse
Affiliation(s)
- Arghavan Memarzia
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeideh Saadat
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sepideh Behrouz
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Pawar KS, Mastud RN, Pawar SK, Pawar SS, Bhoite RR, Bhoite RR, Kulkarni MV, Deshpande AR. Oral Curcumin With Piperine as Adjuvant Therapy for the Treatment of COVID-19: A Randomized Clinical Trial. Front Pharmacol 2021; 12:669362. [PMID: 34122090 PMCID: PMC8193734 DOI: 10.3389/fphar.2021.669362] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Coronavirus disease-2019 (COVID-19) has a wide range of pathophysiological effects. Curcumin, an active constituent of Curcuma longa (turmeric), has several properties, including anti-inflammatory, antioxidant, antiviral, anti-thrombotic, and anti-proliferative effects, which make it a promising candidate for the symptomatic treatment of COVID-19. Objective: We aimed to determine the effects of curcumin administered with piperine (to optimize absorption) on symptoms in patients with COVID-19 in a double-blind, randomized, controlled trial at a 30-bed dedicated COVID Health Center (DCHC) in Maharashtra, India. Methods: In addition to conventional COVID-19 treatment, patients in the control group received a dose of probiotics twice a day, and patients in the study group received curcumin (525 mg) with piperine (2.5 mg) in tablet form twice a day. The effects of curcumin/piperine treatment on primary and secondary outcomes were assessed for the duration of hospitalization. Results: Patients with mild, moderate, and severe symptoms who received curcumin/piperine treatment showed early symptomatic recovery (fever, cough, sore throat, and breathlessness), less deterioration, fewer red flag signs, better ability to maintain oxygen saturation above 94% on room air, and better clinical outcomes compared to patients of the control group. Furthermore, curcumin/piperine treatment appeared to reduce the duration of hospitalization in patients with moderate to severe symptoms, and fewer deaths were observed in the curcumin/piperine treatment group. Conclusions: Administration of oral curcumin with piperine as an adjuvant symptomatic therapy in COVID-19 treatment could substantially reduce morbidity and mortality, and ease the logistical and supply-related burdens on the healthcare system. Curcumin could be a safe and natural therapeutic option to prevent Post-Covid thromboembolic events. Clinicaltrials.gov identifier:CTRI/2020/05/025482
Collapse
Affiliation(s)
- Kirti S Pawar
- Giriraj Hospital and Intensive Care unit, Baramati, India
| | - Rahul N Mastud
- Giriraj Hospital and Intensive Care unit, Baramati, India
| | | | - Samragni S Pawar
- HBT Medical College and Dr R N Cooper Municipal General Hospital, Mumbai, India
| | - Rahul R Bhoite
- Medstar Good Samaritan Hospital, Baltimore, MD, United States
| | | | - Meenal V Kulkarni
- Department of Preventive and Social Medicine, N K P Salve Medical College Nagpur, Nagpur, India
| | | |
Collapse
|
4
|
Active ingredients from Chinese medicine plants as therapeutic strategies for asthma: Overview and challenges. Biomed Pharmacother 2021; 137:111383. [PMID: 33761604 DOI: 10.1016/j.biopha.2021.111383] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Although considerable advance has been made in diagnosing and treating, asthma is still a serious public health challenge. Traditional Chinese medicine (TCM) is an effective therapy of complementary and alternative medicine. More and more scientific evidences support the use of TCM for asthma treatment, and active ingredients from Chinese medicine plants are becoming a hot issue. PURPOSE OF REVIEW To summarize the frontier knowledge on the function and underlying mechanisms of the active ingredients in asthma treatments and provide a fully integrated, reliable reference for exploring innovative treatments for asthma. METHODS The cited literature was obtained from the PubMed and CNIK databases (up to September 2020). Experimental studies on the active ingredients of Chinese medicine and their therapeutic mechanisms were identified. The key words used in the literature retrieval were "asthma" and "traditional Chinese medicine" or "Chinese herbal medicine". The literature on the active ingredients was then screened manually. RESULTS We summarized the effect of these active ingredients on asthma, primarily including the effect through which these ingredients can regulate the immunologic equilibrium mechanism by acting on a number of signalling pathways, such as Notch, JAK-STAT-MAPK, adiponectin-iNOS-NF-κB, PGD2-CRTH2, PI3K/AKT, Keap1-Nrf2/HO-1, T-bet/Gata-3 and Foxp3-RORγt, thereby regulating the progression of asthma. CONCLUSION The active ingredients from Chinese medicine have multilevel effects on asthma by regulating the immunologic equilibrium mechanism or signalling pathways, giving them great clinical value. However, the safety and functional mechanism of these ingredients still must be further determined.
Collapse
|
5
|
Raman spectroscopy: A novel experimental approach to evaluating cisplatin induced tissue damage. Talanta 2019; 207:120343. [PMID: 31594623 DOI: 10.1016/j.talanta.2019.120343] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 01/24/2023]
Abstract
The aim of this work is to clarify the effect of curcumin and beta-carotene on cisplatin-induced tissue damage and to demonstrate the potential of Raman spectroscopy to detect tissue changes consistent with liver and kidney histopathology as a potential diagnostic adjunct. İn the study, 56 Wistar albino female rats were used and randomly divided into 7 groups (n:8). Sham group received only sesame oil; Cisplatin group, received a single dose injection of cisplatin; Beta-carotene group, treated with beta-carotene orally; Cisplatin + Beta-carotene group, pretreated with beta-carotene 30 min prior to the cisplatin injection, then received cisplatin; Curcumin group, orally treated with curcumin; Cisplatin + Curcumin group, pretreated with curcumin 30min prior to the cisplatin injection, then received cisplatin. The second application was performed 1 week after the first application. One of the liver and kidney tissues was taken to 10% form for histopathological examinations and the others were taken to -80 °C for raman spectroscopy. Received sections were hematoxylin-eosin stained. The avidin-biotin peroxidase method was used for to investigate anti-TNF-α and IL1-β activities. TUNEL method was applied to determine apoptotic cells. According to our histopathological findings, beta-carotene and especially curcumin have been found to possess hepatorenal protective activities. These datas were supported by the microscopic damage scores. Although some of these findings were observed in both the cisplatin + curcumin and cisplatin + beta-carotene groups, the incidence and severity of histopathological lesions were less than the cisplatin group. Both immunohistochemical studies and Raman spectroscopy results consistent with histopathological examination of hematoxylen-eosin stained sections. Raman spectroscopy represents a suitable tool to provide insights into structural factors involved in the mechanisms underlying antitumor effects of platinum drug.
Collapse
|
6
|
Ahmed MF, El-Sayed AK, Chen H, Zhao R, Yusuf MS, Zuo Q, Zhang Y, Li B. Comparison between curcumin and all-trans retinoic acid in the osteogenic differentiation of mouse bone marrow mesenchymal stem cells. Exp Ther Med 2019; 17:4154-4166. [PMID: 30988793 PMCID: PMC6447915 DOI: 10.3892/etm.2019.7414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/06/2019] [Indexed: 12/18/2022] Open
Abstract
The use of bone marrow mesenchymal stem cells (BMSCs) has great potential in cell therapy, particularly in the orthopedic field. BMSCs represent a valuable renewable cell source that have been successfully utilized to treat damaged skeletal tissue and bone defects. BMSCs can be induced to differentiate into osteogenic lineages via the addition of inducers to the growth medium. The present study examined the effects of all-trans retinoic acid (ATRA) and curcumin on the osteogenic differentiation of mouse BMSCs. Morphological changes, the expression levels of the bone-associated gene markers bone morphogenetic protein 2, runt-related transcription factor and osterix during differentiation, an in vitro mineralization assay, and changes in osteocalcin expression revealed that curcumin supplementation promoted the osteogenic differentiation of BMSCs. By contrast, the application of ATRA increased osteogenic differentiation during the early stages, but during the later stages, it decreased the mineralization of differentiated cells. In addition, to the best of our knowledge, the present study is the first to examine the effect of curcumin on the osteogenic potency of mouse embryonic fibroblasts (MEFs) after reprogramming with human lim mineralization protein (hLMP-3), which is a positive osteogenic regulator. The results revealed that curcumin-supplemented culture medium increased hLMP-3 osteogenic potency compared with that of MEFs cultured in the non-supplemented medium. The present results demonstrate that enrichment of the osteogenic culture medium with curcumin, a natural osteogenic inducer, increased the osteogenic differentiation capacity of BMSCs as well as that of MEFs reprogrammed with hLMP-3.
Collapse
Affiliation(s)
- Mahmoud F Ahmed
- Key Laboratory of Animal Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,College of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | | | - Hao Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ruifeng Zhao
- Key Laboratory of Animal Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Mohamed S Yusuf
- College of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Yani Zhang
- Key Laboratory of Animal Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Bichun Li
- Key Laboratory of Animal Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| |
Collapse
|
7
|
Zeng J, Lu J. Mechanisms of action involved in ozone-therapy in skin diseases. Int Immunopharmacol 2018; 56:235-241. [PMID: 29414657 DOI: 10.1016/j.intimp.2018.01.040] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 12/14/2022]
Abstract
Ozone-therapy initially applied in medicine by an empirical approach, has now reached a new stage where most of the biological mechanisms of ozone action have been clarified, that refers to antimicrobial effects, immunoregulation, antioxidant defenses and epigenetic modification. Current ozone medical preparation in dermatology mainly classified as ozone hydrotherapy, ozonated oil externally used and ozone autohemotherapy (OAHT). Admittedly, ozone is widely used in various fields against gram-negative and gram-positive bacteria, viruses, and fungi. More recently, great progress has been obtained in wound healing which is a multiphase process that consists of three overlapping but distinct stages: inflammation, tissue proliferation and remodeling. While the exact mechanisms of ozone-therapy still remain unclear. Therefore, more evidence is required before ozone can be presented as a promising method for the management and prevention of various skin diseases. In this review, we review the application status of ozone in dermatology and summarize possible mechanisms of ozone-therapy on skin diseases, aims to shed a light on providing a series of theoretical basis for its applications.
Collapse
Affiliation(s)
- Jinrong Zeng
- Department of Dermatology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jianyun Lu
- Department of Dermatology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
8
|
Hwang JS, Kang ES, Han SG, Lim DS, Paek KS, Lee CH, Seo HG. Formononetin inhibits lipopolysaccharide-induced release of high mobility group box 1 by upregulating SIRT1 in a PPARδ-dependent manner. PeerJ 2018; 6:e4208. [PMID: 29312829 PMCID: PMC5756453 DOI: 10.7717/peerj.4208] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/09/2017] [Indexed: 12/27/2022] Open
Abstract
Background The release of high mobility group box 1 (HMGB1) induced by inflammatory signals acts as a cellular alarmin to trigger a chain of inflammatory responses. Although the inflammatory actions of HMGB1 are well studied, less is known about the therapeutic agents that can impede its release. This study investigated whether the isoflavonoid formononetin can modulate HMGB1 release in cellular inflammatory responses. Methods RAW264.7 murine macrophages were exposed to lipopolysaccharide (LPS) in the presence or absence of formononetin. The levels of HMGB1 release, sirtuin 1 (SIRT1) expression, and HMGB1 acetylation were analyzed by immunoblotting and real-time polymerase chain reaction. The effects of resveratrol and sirtinol, an activator and inhibitor of SIRT1, respectively, on LPS-induced HMGB1 release were also evaluated. Results Formononetin modulated cellular inflammatory responses by suppressing the release of HMGB1 by macrophages exposed to LPS. In RAW264.7 cells, formononetin significantly attenuated LPS-induced release of HMGB1 into the extracellular environment, which was accompanied by a reduction in its translocation from the nucleus to the cytoplasm. In addition, formononetin significantly induced mRNA and protein expression of SIRT1 in a peroxisome proliferator-activated receptor δ (PPARδ)-dependent manner. These effects of formononetin were dramatically attenuated in cells treated with small interfering RNA (siRNA) against PPARδ or with GSK0660, a specific inhibitor of PPARδ, indicating that PPARδ is involved in formononetin-mediated SIRT1 expression. In line with these effects, formononetin-mediated inhibition of HMGB1 release in LPS-treated cells was reversed by treatment with SIRT1-targeting siRNA or sirtinol, a SIRT1 inhibitor. By contrast, resveratrol, a SIRT1 activator, further potentiated the inhibitory effect of formononetin on LPS-induced HMGB1 release, revealing a possible mechanism by which formononetin regulates HMGB1 release through SIRT1. Furthermore, modulation of SIRT1 expression by transfection of SIRT1- or PPARδ-targeting siRNA significantly counteracted the inhibitory effects of formononetin on LPS-induced HMGB1 acetylation, which was responsible for HMGB1 release. Discussion This study shows for the first time that formononetin inhibits HMGB1 release by decreasing HMGB1 acetylation via upregulating SIRT1 in a PPARδ-dependent manner. Formononetin consequently exhibits anti-inflammatory activity. Identification of agents, such as formononetin, which can block HMGB1 release, may help to treat inflammation-related disorders.
Collapse
Affiliation(s)
- Jung Seok Hwang
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Eun Sil Kang
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Dae-Seog Lim
- Department of Biotechnology, CHA University, Seongnam, Korea
| | | | - Chi-Ho Lee
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Han Geuk Seo
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| |
Collapse
|
9
|
Theppawong A, De Vreese R, Vannecke L, Grootaert C, Van Camp J, D'hooghe M. Synthesis and biological assessment of novel N-(hydroxy/methoxy)alkyl β-enaminone curcuminoids. Bioorg Med Chem Lett 2016; 26:5650-5656. [PMID: 27843113 DOI: 10.1016/j.bmcl.2016.10.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/20/2016] [Accepted: 10/23/2016] [Indexed: 10/20/2022]
Abstract
Curcumin, a natural compound extracted from the rhizomes of Curcuma Longa, is known to display pronounced anticancer activity but lacks good pharmacokinetic properties. In that respect, augmenting the water solubility by structural modification of the curcumin scaffold may result in improved bioavailability and pharmacokinetics. A possible scaffold modification, especially important for this study, concerns the imination of the labile β-diketone moiety in curcumin. Previous work revealed that novel N-alkyl β-enaminones showed a similar water solubility as compared to curcumin, accompanied by a stronger anti-proliferative activity. To extend this β-enaminone compound library, new analogues were prepared in this work using more polar amines (hydroxyalkylamines and methoxyalkylamines instead of alkylamines) with the main purpose to improve the water solubility without compromising the biological activity of the resulting curcuminoids. Compared to their respective parent compounds, i.e. curcumin and bisdemethoxycurcumin, the bisdemethoxycurcumin N-(hydroxy/methoxy)alkyl enaminone analogues showed better water solubility, antioxidant and anti-proliferative activities. In addition, the curcumin enaminones displayed activities comparable to or better than curcumin, and the water solubility was improved significantly. The constructed new analogues may thus be of interest for further exploration concerning their impact on oxidative stress related diseases such as cancer.
Collapse
Affiliation(s)
- Atiruj Theppawong
- SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Rob De Vreese
- SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Lore Vannecke
- SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Charlotte Grootaert
- Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - John Van Camp
- Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
10
|
Polyphenols as Modulator of Oxidative Stress in Cancer Disease: New Therapeutic Strategies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:6475624. [PMID: 26649142 PMCID: PMC4663347 DOI: 10.1155/2016/6475624] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/21/2015] [Indexed: 12/19/2022]
Abstract
Cancer onset and progression have been linked to oxidative stress by increasing DNA mutations or inducing DNA damage, genome instability, and cell proliferation and therefore antioxidant agents could interfere with carcinogenesis. It is well known that conventional radio-/chemotherapies influence tumour outcome through ROS modulation. Since these antitumour treatments have important side effects, the challenge is to develop new anticancer therapeutic strategies more effective and less toxic for patients. To this purpose, many natural polyphenols have emerged as very promising anticancer bioactive compounds. Beside their well-known antioxidant activities, several polyphenols target epigenetic processes involved in cancer development through the modulation of oxidative stress. An alternative strategy to the cytotoxic treatment is an approach leading to cytostasis through the induction of therapy-induced senescence. Many anticancer polyphenols cause cellular growth arrest through the induction of a ROS-dependent premature senescence and are considered promising antitumour therapeutic tools. Furthermore, one of the most innovative and interesting topics is the evaluation of efficacy of prooxidant therapies on cancer stem cells (CSCs). Several ROS inducers-polyphenols can impact CSCs metabolisms and self-renewal related pathways. Natural polyphenol roles, mainly in chemoprevention and cancer therapies, are described and discussed in the light of the current literature data.
Collapse
|
11
|
Perrone D, Ardito F, Giannatempo G, Dioguardi M, Troiano G, Lo Russo L, DE Lillo A, Laino L, Lo Muzio L. Biological and therapeutic activities, and anticancer properties of curcumin. Exp Ther Med 2015; 10:1615-1623. [PMID: 26640527 DOI: 10.3892/etm.2015.2749] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/14/2015] [Indexed: 12/18/2022] Open
Abstract
Curcumin (diferuloylmethane) is a polyphenol derived from the Curcuma longa plant. Curcumin has been used extensively in Ayurvedic medicine, as it is nontoxic and exhibits a variety of therapeutic properties, including antioxidant, analgesic, anti-inflammatory and antiseptic activities. Recently, certain studies have indicated that curcumin may exert anticancer effects in a variety of biological pathways involved in mutagenesis, apoptosis, tumorigenesis, cell cycle regulation and metastasis. The present study reviewed previous studies in the literature, which support the therapeutic activity of curcumin in cancer. In addition, the present study elucidated a number of the challenges concerning the use of curcumin as an adjuvant chemotherapeutic agent. All the studies reviewed herein suggest that curcumin is able to exert anti-inflammatory, antiplatelet, antioxidative, hepatoprotective and antitumor activities, particularly against cancers of the liver, skin, pancreas, prostate, ovary, lung and head neck, as well as having a positive effect in the treatment of arthritis.
Collapse
Affiliation(s)
- Donatella Perrone
- Department of Clinical and Experimental Medicine, Foggia University, Foggia 71122, Italy
| | - Fatima Ardito
- Department of Clinical and Experimental Medicine, Foggia University, Foggia 71122, Italy
| | - Giovanni Giannatempo
- Department of Clinical and Experimental Medicine, Foggia University, Foggia 71122, Italy
| | - Mario Dioguardi
- Department of Clinical and Experimental Medicine, Foggia University, Foggia 71122, Italy
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, Foggia University, Foggia 71122, Italy
| | - Lucio Lo Russo
- Department of Clinical and Experimental Medicine, Foggia University, Foggia 71122, Italy
| | - Alfredo DE Lillo
- Department of Clinical and Experimental Medicine, Foggia University, Foggia 71122, Italy
| | - Luigi Laino
- Department of Clinical and Experimental Medicine, Foggia University, Foggia 71122, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, Foggia University, Foggia 71122, Italy
| |
Collapse
|
12
|
Curcumin attenuated acute Propionibacterium acnes -induced liver injury through inhibition of HMGB1 expression in mice. Int Immunopharmacol 2015; 24:159-165. [PMID: 25510585 DOI: 10.1016/j.intimp.2014.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/19/2014] [Accepted: 12/03/2014] [Indexed: 12/27/2022]
|
13
|
Rahardjo B, Widjajanto E, Sujuti H, Keman K. Curcumin decreased level of proinflammatory cytokines in monocyte cultures exposed to preeclamptic plasma by affecting the transcription factors NF-κB and PPAR-γ. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.bgm.2014.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Abidi A, Gupta S, Agarwal M, Bhalla HL, Saluja M. Evaluation of Efficacy of Curcumin as an Add-on therapy in Patients of Bronchial Asthma. J Clin Diagn Res 2014; 8:HC19-24. [PMID: 25302215 DOI: 10.7860/jcdr/2014/9273.4705] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/02/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND Bronchial asthma being a chronic inflammatory disease of airways has numerous treatment options none of which have disease modifying properties. Curcumin, a yellow dietary pigment has varied pharmacological activities, prominent among which is an anti-inflammatory activity which may be crucial in bronchial asthma as has been proved by various in vitro and in vivo animal studies. AIMS To determine the efficacy and safety of curcumin as an 'add-on' therapy in patients of bronchial asthma. SETTINGS AND DESIGN This study was conducted on 77 patients of mild to moderate Bronchial asthma who had a documented positive bronchodilator reversibility test with ≥15% improvement in forced expiratory volume one second (FEV1). MATERIALS AND METHODS Seventy seven patients were recruited for the study and randomized into either of the two groups, but 17 patients were lost to follow up. Thus Group A - Receiving standard therapy for bronchial asthma for 30d (n=30) and Group B - Receiving standard therapy for bronchial asthma + Cap Curcumin 500mg BD daily for 30d (n=30). The predefined primary endpoints were clinical assessments of dyspnoea, wheezing, cough, chest tightness and nocturnal symptoms, change in the pre-bronchodilator FEV1 during the treatment and hematological improvement. The secondary end points were assessed by the change in the post-bronchodilator FEV1, C-reactive protein (CRP) concentration and incidence of adverse events. STATISTICAL ANALYSIS USED The data was analysed by SPSS 17.0 software using one-way ANOVA or Paired t-test. RESULTS AND CONCLUSION The results showed that curcumin capsules help in improving the airway obstruction which was evident by significant improvement in the mean FEV1 values. There was also significant improvement in the hematological parameters and absence of any clinically significant adverse events indicates dependable safety profile of curcumin capsules, though there was no apparent clinical efficacy. Therefore, it is concluded that curcumin is effective and safe as an add-on therapy for the treatment of bronchial asthma.
Collapse
Affiliation(s)
- Afroz Abidi
- Associate Professor, Department of Pharmacology, Era's Lucknow Medical College , Lucknow, U.P., India
| | - Surabhi Gupta
- Professor, Department of Pharmacology, Subharti Medical College , Meerut, U.P., India
| | - Manu Agarwal
- Junior Resident, Department of Pharmacology, Subharti Medical College , Meerut, U.P., India
| | - H L Bhalla
- Associate Professor, Department of Pharmacology, Subharti Medical College , Meerut, U.P., India
| | - Mahip Saluja
- Professor, Department of TB & Chest, Subharti Medical College , Meerut, U.P., India
| |
Collapse
|
15
|
Ayissi VBO, Ebrahimi A, Schluesenner H. Epigenetic effects of natural polyphenols: a focus on SIRT1-mediated mechanisms. Mol Nutr Food Res 2013; 58:22-32. [PMID: 23881751 DOI: 10.1002/mnfr.201300195] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/12/2013] [Accepted: 05/14/2013] [Indexed: 12/21/2022]
Abstract
Polyphenols are a class of natural compounds widely distributed in fruits, vegetables, and plants. They have been reported to possess a wide range of activities in prevention and alleviation of various diseases like cancer, neuroinflammation, diabetes, and aging. Polyphenols are effective against chronic diseases and recent reports indicated strong epigenetic effects of polyphenols. Most of the studies investigating epigenetic effects of natural polyphenols have focused on their beneficial effects in cancer treatment. However, epigenetic defects have been demonstrated in many other diseases as well, and application of polyphenols to modulate the epigenome is becoming an interesting field of research. This review summarizes the effects of natural polyphenols in modulating epigenetic-related enzymes as well as their effect in prevention and treatment of chronic diseases with a focus on SIRT1 modulation. We have also discussed the relation between the structure and function of epigenetic-modifying polyphenols.
Collapse
Affiliation(s)
- Vincent B Owona Ayissi
- Division of Immunopathology of the Nervous System, Department of Neuropathology, Institute of Pathology, University of Tübingen, Tübingen, Germany; Laboratory of Pharmacology and Toxicology, University of Yaoundé I, Cameroon
| | | | | |
Collapse
|
16
|
The involvement of NRF2 in lung cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:746432. [PMID: 23577226 PMCID: PMC3614183 DOI: 10.1155/2013/746432] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/20/2013] [Accepted: 02/26/2013] [Indexed: 12/22/2022]
Abstract
Nuclear factor, erythroid-derived 2, like 2 (NRF2) is a key regulator of antioxidants and cellular stress responses. The role of NRF2 in pulmonary neoplasia, a diverse disease for which few biomarkers exist, is complicated and appears to depend on several main factors including the existence of activating mutations in NRF2 and/or loss of function mutations in KEAP1 and the stage of carcinogenesis studied, particularly in the mouse models tested. Therapeutic strategies for lung cancer targeting NRF2 have observed mixed results, both anti- and protumorigenic effects; however, these differences seem to reflect the mutation status of NRF2 or KEAP1. In this paper, we will discuss the studies on human NRF2 and the mechanisms proposed, several mouse models using various mice deficient in NRF2, as well as xenograft models, and the chemotherapeutic strategies using the NRF2 pathway.
Collapse
|
17
|
Abstract
Curcumin (diferuloylmethane), a yellow coloring agent extracted from turmeric is also used as a remedy for the treatment and prevention of inflammatory diseases. Acute and chronic inflammation is a major factor in the progression of obesity, type II diabetes, arthritis, pancreatitis, cardiovascular, neurodegenerative and metabolic diseases, as well as certain types of cancer. Turmeric has a long history of use in Ayurvedic medicine for the treatment of inflammatory disorders. Recent studies on the efficacy and therapeutic applicability of turmeric have suggested that the active ingredient of tumeric is curcumin. Further, compelling evidence has shown that curcumin has the ability to inhibit inflammatory cell proliferation, invasion, and angiogenesis through multiple molecular targets and mechanisms of action. Curcumin is safe, non-toxic, and mediates its anti-inflammatory effects through the down-regulation of inflammatory transcription factors, cytokines, redox status, protein kinases, and enzymes that all promote inflammation. In addition, curcumin induces apoptosis through mitochondrial and receptor-mediated pathways, as well as activation of caspase cascades. In the current study, the anti-inflammatory effects of curcumin were evaluated relative to various chronic inflammatory diseases. Based on the available pharmacological data obtained from in vitro and in vivo research, as well as clinical trials, an opportunity exists to translate curcumin into clinics for the prevention of inflammatory diseases in the near future.
Collapse
Affiliation(s)
- Adeeb Shehzad
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Korea
| | | | | |
Collapse
|
18
|
Moran JM, Roncero-Martin R, Rodriguez-Velasco FJ, Calderon-Garcia JF, Rey-Sanchez P, Vera V, Canal-Macias ML, Pedrera-Zamorano JD. Effects of curcumin on the proliferation and mineralization of human osteoblast-like cells: implications of nitric oxide. Int J Mol Sci 2012; 13:16104-18. [PMID: 23443113 PMCID: PMC3546681 DOI: 10.3390/ijms131216104] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 12/20/2022] Open
Abstract
Curcumin (diferuloylmethane) is found in the rhizomes of the turmeric plant (Curcuma longa L.) and has been used for centuries as a dietary spice and as a traditional Indian medicine used to treat different conditions. At the cellular level, curcumin modulates important molecular targets: transcription factors, enzymes, cell cycle proteins, cytokines, receptors and cell surface adhesion molecules. Because many of the curcumin targets mentioned above participate in the regulation of bone remodeling, curcumin may affect the skeletal system. Nitric oxide (NO) is a gaseous molecule generated from l-arginine during the catalization of nitric oxide synthase (NOS), and it plays crucial roles in catalization and in the nervous, cardiovascular and immune systems. Human osteoblasts have been shown to express NOS isoforms, and the exact mechanism(s) by which NO regulates bone formation remain unclear. Curcumin has been widely described to inhibit inducible nitric oxide synthase expression and nitric oxide production, at least in part via direct interference in NF-κB activation. In the present study, after exposure of human osteoblast-like cells (MG-63), we have observed that curcumin abrogated inducible NOS expression and decreased NO levels, inhibiting also cell prolifieration. This effect was prevented by the NO donor sodium nitroprusside. Under osteogenic conditions, curcumin also decreased the level of mineralization. Our results indicate that NO plays a role in the osteoblastic profile of MG-63 cells.
Collapse
Affiliation(s)
- Jose M Moran
- Metabolic Bone Diseases Research Group, School of Nursing and Occupational Therapy, University of Extremadura, Caceres 10003, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Yang Q, Wu S, Mao X, Wang W, Tai H. Inhibition effect of curcumin on TNF-α and MMP-13 expression induced by advanced glycation end products in chondrocytes. Pharmacology 2012. [PMID: 23183190 DOI: 10.1159/000345345] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AIMS Accumulation of advanced glycation end products (AGEs) plays a pivotal role in the mechanism by which aging contributes to osteoarthritis (OA). In the present study, we examined the effect of curcumin, a pharmacologically safe phytochemical agent, on AGE-induced tumor necrosis factor-α (TNF-α) and matrix metalloproteinase-13 (MMP-13) in rabbit chondrocytes. METHODS Chondrocytes were derived from rabbit articular cartilage by enzymatic digestion. TNF-α and MMP-13 mRNA was monitored by RT-PCR. TNF-α protein was determined using cytokine-specific ELISA. The reactive oxygen species was determined by the fluorescent probe 29,79-dichlorofluorescein diacetate. The phosphorylation and nuclear translocation of the nuclear factor-ĸB (NF-ĸB) system were studied by Western blot and immunofluorescence respectively. RESULTS Curcumin significantly decreased AGE-stimulated TNF-α and MMP-13 mRNA and suppressed the NF-ĸB activation via inhibition of ĸBα (I-ĸBα) phosphorylation, I-ĸBα degradation and p65 nuclear translocation. CONCLUSIONS These novel pharmacological actions of curcumin on AGE-stimulated chondrocytes provide new suggestions that curcumin has nutritional potential as a naturally occurring anti-inflammatory agent for treating OA.
Collapse
Affiliation(s)
- Qingshan Yang
- Department of Orthopaedics, Gan Su Province Hospital, Lan Zhou, PR China
| | | | | | | | | |
Collapse
|
20
|
Gu Q, Cai Y, Huang C, Shi Q, Yang H. Curcumin increases rat mesenchymal stem cell osteoblast differentiation but inhibits adipocyte differentiation. Pharmacogn Mag 2012; 8:202-8. [PMID: 23060694 PMCID: PMC3466455 DOI: 10.4103/0973-1296.99285] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/12/2011] [Accepted: 08/02/2012] [Indexed: 12/31/2022] Open
Abstract
Background: Curcumin is a phenolic natural product isolated from the rhizome of Curcuma longa (turmeric) and has effects on bone health and fat formation. The bone marrow mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into osteoblasts and adipocytes. Osteoblast differentiation of MSCs can be a result of upregulation of heme oxygenase (HO)-1 expression. Curcumin can potently induce HO-1 expression. Objective: The present study describes the effects of curcumin on rat MSC (rMSCs) differentiation into osteoblasts and adipocytes. Materials and Methods: Rat bone marrow MSCs were isolated and treated with or without curcumin. Osteoblast differentiation was confirmed and determined by alkaline phosphatase (ALP) activity, mineralized nodule formation, the expression of Runx2 (runt-related transcription factor 2) and osteocalcin. Adipocyte differentiation was determined by Oil red O staining and the expression of peroxisome proliferator-activated receptor-γ 2 (PPARγ2) and CCAAT/enhancer-binding protein (C/EBP) α. Results: Curcumin increased ALP activity and osteoblast-specific mRNA expression of Runx2 and osteocalcin when rMSCs were cultured in osteogenic medium. In contrast, curcumin decreased adipocyte differentiation and inhibited adipocyte-specific mRNA expression of PPARγ2 and C/EBPα when rMSCs were cultured in adipogenic medium. HO-1 expression was increased during osteogenic differentiation of rMSCs. Conclusions: These findings demonstrate that curcumin can promote osteogenic differentiation of rMSCs and inhibit adipocyte formation. The effect of curcumin on osteogenic differentiation of rMSCs is correlated with HO-1 expression.
Collapse
Affiliation(s)
- Qiaoli Gu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, Jiangsu- 215006, People's Republic of China
| | | | | | | | | |
Collapse
|
21
|
Na LX, Li Y, Pan HZ, Zhou XL, Sun DJ, Meng M, Li XX, Sun CH. Curcuminoids exert glucose-lowering effect in type 2 diabetes by decreasing serum free fatty acids: a double-blind, placebo-controlled trial. Mol Nutr Food Res 2012; 57:1569-77. [DOI: 10.1002/mnfr.201200131] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/02/2012] [Accepted: 06/12/2012] [Indexed: 12/16/2022]
Affiliation(s)
- Li-Xin Na
- Department of Nutrition and Food Hygiene; Public Health College; Harbin Medical University; Harbin; P. R. China
| | - Ying Li
- Department of Nutrition and Food Hygiene; Public Health College; Harbin Medical University; Harbin; P. R. China
| | - Hong-Zhi Pan
- Department of Nutrition and Food Hygiene; Public Health College; Harbin Medical University; Harbin; P. R. China
| | - Xian-Li Zhou
- Department of Type B Transonic Diagnosis; 2nd Affiliated Hospital of Harbin Medical University; Harbin; P. R. China
| | - Dian-Jun Sun
- Center for Endemic Disease Control; Chinese Center for Disease Control and Prevention; Harbin; P. R. China
| | - Man Meng
- Department of Nutrition and Food Hygiene; Public Health College; Harbin Medical University; Harbin; P. R. China
| | - Xiao-Xia Li
- Department of Nutrition and Food Hygiene; Public Health College; Harbin Medical University; Harbin; P. R. China
| | - Chang-Hao Sun
- Department of Nutrition and Food Hygiene; Public Health College; Harbin Medical University; Harbin; P. R. China
| |
Collapse
|
22
|
Pacheco KA. Epigenetics mediate environment : gene effects on occupational sensitization. Curr Opin Allergy Clin Immunol 2012; 12:111-8. [PMID: 22306555 DOI: 10.1097/aci.0b013e328351518f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW Epigenetics is the study of stable modifications of fixed genomes that direct which genes are expressed and which are silenced. Epigenetic changes are modulated by environmental exposures, making epigenetics the interface between genes and environment. This has particular relevance in understanding the effect of occupational exposures on the expression of allergic disease. The goal of this review is to describe how epigenetic changes affect transcription potential, and to examine more closely the effect of specific environmental and occupational exposures on epigenetic variations that alter allergy gene transcripts and the inflammatory milieu. RECENT FINDINGS Gene transcription is activated when specific CpG sites are demethylated and histones are acetylated, and, conversely, silenced when sites are methylated and histones deacetylated. The development of Th1 and Th2 phenotypes, and expression of Treg cells, are now known to be modulated by epigenetic mechanisms. Workplace exposures such as tobacco smoke, particulates, diesel exhaust, polyaromatic hydrocarbons, ozone, and endotoxin, among others, suppress Treg development, and enhance expression of inflammatory cytokines and allergic phenotypes by epigenetic means. SUMMARY Epigenetic manipulation to open and close transcription sites provides flexibility of gene expression in response to changing environmental cues. It may also be the window whereby allergic disease in the workplace can be reduced by targeted environmental interventions.
Collapse
Affiliation(s)
- Karin A Pacheco
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Health, Denver and Department of Environmental and Occupational Health, Colorado School of Public Health, Aurora, Colorado, USA.
| |
Collapse
|
23
|
Mazzolani F. Pilot study of oral administration of a curcumin-phospholipid formulation for treatment of central serous chorioretinopathy. Clin Ophthalmol 2012; 6:801-6. [PMID: 22701080 PMCID: PMC3373230 DOI: 10.2147/opth.s31859] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background The purpose of this open-label study was to investigate the effect of a curcumin-phospholipid (lecithin, Meriva®) formulation (Norflo® tablet) on visual acuity and retinal thickness in patients with acute or chronic central serous chorioretinopathy. Methods Visual acuity was assessed by ophthalmologic evaluation, and optical coherence tomography was used to measure retinal thickness. Norflo tablets were administered twice a day to patients affected by central serous chorioretinopathy. The study included 18 eyes from 12 patients who completed a 6-month follow-up period. Visual acuity before and after Norflo treatment was the primary endpoint. The secondary endpoints were neuroretinal or pigment epithelial detachment, as measured by optical coherence tomography. Results After 6 months of therapy, 0% of eyes showed reduction in visual acuity, 39% showed stabilization, and 61% showed improvement. The improvement was statistically significant (P = 0.08). After 6 months of therapy, 78% of eyes showed reduction of neuroretinal or retinal pigment epithelium detachment, 11% showed stabilization, and 11% showed an increase. Conclusion Our results, albeit preliminary, show that curcumin administered as Norflo tablets is efficacious for the management of central serous chorioretinopathy, a relapsing eye disease, and suggest that bioavailable curcumin is worth considering as a therapeutic agent for the management of inflammatory and degenerative eye conditions, including those that activate the retinal microglia.
Collapse
|
24
|
Matera MG, Calzetta L, Segreti A, Cazzola M. Emerging drugs for chronic obstructive pulmonary disease. Expert Opin Emerg Drugs 2012; 17:61-82. [DOI: 10.1517/14728214.2012.660917] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
25
|
Karaman M, Arıkan Ayyıldız Z, Fırıncı F, Kiray M, Bağrıyanık A, Yilmaz O, Uzuner N, Karaman O. Effects of curcumin on lung histopathology and fungal burden in a mouse model of chronic asthma and oropharyngeal candidiasis. Arch Med Res 2011; 42:79-87. [PMID: 21565619 DOI: 10.1016/j.arcmed.2011.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 01/18/2011] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND AIMS Oropharyngeal candidiasis (OPC) is one of the most common local side effects of current therapy in chronic asthma. New therapeutic options with fewer side effects and reverse chronic changes are needed. Curcumin, as a promising antiinflammatory and antifungal agent, could be a candidate of alternative therapy in asthma. This study aimed to determine the efficacy of orally administrated curcumin on lung histopathology, serum nitric oxide levels and fungal burden in a murine model of asthma and OPC. METHODS Thirty five BALB/c mice were divided into five groups: I, II, III, IV (placebo) and V (control). All groups except the control were sensitized and challenged with ovalbumin. OPC model was established after the model of chronic asthma. Lung histology, serum nitric oxide levels and fungal burden were evaluated after 5 days of treatment with curcumin, dexamethasone, curcumin-dexamethasone combination and placebo. Evaluation of lung histology included subepithelial smooth muscle and epithelial thickness and number of goblet and mast cells by using light microscopy. RESULTS All histological parameters improved in curcumin group similar to dexamethasone group. Curcumin and dexamethasone-curcumin combination were also as effective as dexamethasone on decreasing nitric oxide levels. Oral fungal burden was significantly lower in curcumin-treated group than dexamethasone. CONCLUSIONS In our study we demonstrated that curcumin administration alleviates the pathological changes in asthma and decreases the fungal burden. Curcumin may have a potential effect on treating chronic asthma and decreasing the frequency of the OPC.
Collapse
Affiliation(s)
- Meral Karaman
- Department of Multidisciplinary Laboratory, Dokuz Eylul University Hospital, Izmir, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Allegri P, Mastromarino A, Neri P. Management of chronic anterior uveitis relapses: efficacy of oral phospholipidic curcumin treatment. Long-term follow-up. Clin Ophthalmol 2010; 4:1201-6. [PMID: 21060672 PMCID: PMC2964958 DOI: 10.2147/opth.s13271] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Curcumin has been successfully applied to treat inflammatory conditions in experimental research and in clinical trials. The purpose of our study is to evaluate the efficacy of an adjunctive-to-traditional treatment with Norflo tablets (curcumin-phosphatidylcholine complex; Meriva) administered twice a day in recurrent anterior uveitis of different etiologies. The study group consisted of 106 patients who completed a 12-month follow-up therapeutic period. We divided the patients into three main groups of different uveitis origin: group 1 (autoimmune uveitis), group 2 (herpetic uveitis), and group 3 (different etiologies of uveitis). The primary end point of our work was the evaluation of relapse frequency in all treated patients, before and after Norflo treatment, followed by the number of relapses in the three etiological groups. Wilcoxon signed-rank test showed a P < 0.001 in all groups. The secondary end points were the evaluation of relapse severity and of the overall quality of life. The results showed that Norflo was well tolerated and could reduce eye discomfort symptoms and signs after a few weeks of treatment in more than 80% of patients. In conclusion, our study is the first to report the potential therapeutic role of curcumin and its efficacy in eye relapsing diseases, such as anterior uveitis, and points out other promising curcumin-related benefits in eye inflammatory and degenerative conditions, such as dry eye, maculopathy, glaucoma, and diabetic retinopathy.
Collapse
Affiliation(s)
- Pia Allegri
- Uveitis Center, Ophthalmological Department of Lavagna Hospital, Genova, Italy.
| | | | | |
Collapse
|
27
|
Park HS, Kim SR, Kim JO, Lee YC. The roles of phytochemicals in bronchial asthma. Molecules 2010; 15:6810-34. [PMID: 20924320 PMCID: PMC6259268 DOI: 10.3390/molecules15106810] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 09/16/2010] [Accepted: 09/30/2010] [Indexed: 02/02/2023] Open
Abstract
Despite gaps in our knowledge of how phytochemicals interfere with cellular functions, several natural plant products are utilized to prevent or treat a wide range of diseases. Identification of an agent with therapeutic potential requires multiple steps involving in vitro studies, efficacy and toxicity studies in animal models, and then human clinical trials. This review provides a brief introduction on natural products that may help to treat and/or prevent bronchial asthma and describes our current understanding of their molecular mechanisms based on various in vitro, in vivo, and clinical studies. We focus on the anti-inflammatory and anti-vascular actions of the plant products and other roles beyond the anti-oxidative effects.
Collapse
Affiliation(s)
- Hee Sun Park
- Department of Internal Medicine, Chungnam National University Medical School, Daejeon, Korea
| | | | | | | |
Collapse
|
28
|
Environmental epigenetics of asthma: an update. J Allergy Clin Immunol 2010; 126:453-65. [PMID: 20816181 DOI: 10.1016/j.jaci.2010.07.030] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 07/27/2010] [Accepted: 07/29/2010] [Indexed: 12/29/2022]
Abstract
Asthma, a chronic inflammatory disorder of the airway, is influenced by interplay between genetic and environmental factors now known to be mediated by epigenetics. Aberrant DNA methylation, altered histone modifications, specific microRNA expression, and other chromatin alterations orchestrate a complex early-life reprogramming of immune T-cell response, dendritic cell function, macrophage activation, and a breach of airway epithelial barrier that dictates asthma risk and severity in later life. Adult-onset asthma is under analogous regulation. The sharp increase in asthma prevalence over the past 2 or 3 decades and the large variations among populations of similar racial/ethnic background but different environmental exposures favors a strong contribution of environmental factors. This review addresses the fundamental question of whether environmental influences on asthma risk, severity, and steroid resistance are partly due to differential epigenetic modulations. Current knowledge on the epigenetic effects of tobacco smoke, microbial allergens, oxidants, airborne particulate matter, diesel exhaust particles, polycyclic aromatic hydrocarbons, dietary methyl donors and other nutritional factors, and dust mites is discussed. Exciting findings have been generated by rapid technological advances and well-designed experimental and population studies. The discovery and validation of epigenetic biomarkers linked to exposure, asthma, or both might lead to better epigenotyping of risk, prognosis, treatment prediction, and development of novel therapies.
Collapse
|
29
|
Folwarczna J, Zych M, Trzeciak HI. Effects of curcumin on the skeletal system in rats. Pharmacol Rep 2010; 62:900-9. [DOI: 10.1016/s1734-1140(10)70350-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 04/13/2010] [Indexed: 12/14/2022]
|
30
|
Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 2008; 41:40-59. [PMID: 18662800 DOI: 10.1016/j.biocel.2008.06.010] [Citation(s) in RCA: 1192] [Impact Index Per Article: 70.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 06/16/2008] [Accepted: 06/23/2008] [Indexed: 12/12/2022]
Abstract
Although safe in most cases, ancient treatments are ignored because neither their active component nor their molecular targets are well defined. This is not the case, however, with curcumin, a yellow-pigment substance and component of turmeric (Curcuma longa), which was identified more than a century ago. For centuries it has been known that turmeric exhibits anti-inflammatory activity, but extensive research performed within the past two decades has shown that this activity of turmeric is due to curcumin (diferuloylmethane). This agent has been shown to regulate numerous transcription factors, cytokines, protein kinases, adhesion molecules, redox status and enzymes that have been linked to inflammation. The process of inflammation has been shown to play a major role in most chronic illnesses, including neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. In the current review, we provide evidence for the potential role of curcumin in the prevention and treatment of various proinflammatory chronic diseases. These features, combined with the pharmacological safety and negligible cost, render curcumin an attractive agent to explore further.
Collapse
|