1
|
Pi X, Zhu L, Wang Y, Sun F, Zhang B. Effect of the Combined Ultrasound with Other Technologies on Food Allergenicity: Ultrasound before, under, and after Other Technologies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16095-16111. [PMID: 38984512 DOI: 10.1021/acs.jafc.4c03562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Food allergies are a main public health disease in the world. Ultrasound is an environmentally friendly technology that typically leads to protein unfolding and loss of protein structure, which means it has the potential to be combined with other technologies to achieve a great reduction of allergenicity in foods. This review concludes the effects of the combined ultrasound with other technologies on food allergenicity from three combinations: ultrasound before other technologies, ultrasound under other technologies, and ultrasound after other technologies. Each combination affects food allergenicity through different mechanisms: (1) as for ultrasound before other technologies, ultrasound pretreatment can unfold and lose the protein structure to improve the accessibility of other technologies to epitopes; (2) as for ultrasound under other technologies, ultrasound can continuously affect the accessibility of other technologies to epitopes; (3) as for ultrasound after other technologies, ultrasound further induces structural changes to mask and disrupt the epitopes. The reduction of allergenicity is related to the ultrasound/other technologies conditions and food types/cultivars, etc. The comparison of ultrasound before, under, and after other technologies to decrease food allergenicity should be further investigated in the future. The combination of ultrasound with other technologies is promising to produce hypoallergenic foods.
Collapse
Affiliation(s)
- Xiaowen Pi
- College of Food Science, Southwest University, Chongqing 400715, China
- Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Lilin Zhu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yixuan Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Farong Sun
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Binjia Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
- Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| |
Collapse
|
2
|
Maria Medeiros Theóphilo Galvão A, Lamy Rasera M, de Figueiredo Furtado G, Grossi Bovi Karatay G, M Tavares G, Dupas Hubinger M. Lentil protein isolate (Lens culinaris) subjected to ultrasound treatment combined or not with heat-treatment: structural characterization and ability to stabilize high internal phase emulsions. Food Res Int 2024; 183:114212. [PMID: 38760140 DOI: 10.1016/j.foodres.2024.114212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/20/2024] [Accepted: 03/10/2024] [Indexed: 05/19/2024]
Abstract
This study evaluated the effect of ultrasound treatment combined or not with heat treatment applied to lentil protein isolate (LPI) aiming to enhance its ability to stabilize high internal phase emulsions (HIPE). LPI dispersion (2%, w/w) was ultrasound-treated at 60% (UA) and 70% (UB) amplitude for 7 min; these samples were subjected to and then heat treatments at 70 °C (UAT70 and UBT70, respectively) or 80 °C (UAT80 and UBT80, respectively) for 20 min. HIPEs were produced with 25% untreated and treated LPI dispersions and 75% soybean oil using a rotor-stator (15,500 rpm/1 min). The LPI dispersions were evaluated for particle size, solubility, differential scanning calorimetry, electrophoresis, secondary structure estimation (circular dichroism and FT-IR), intrinsic fluorescence, surface hydrophobicity, and free sulfhydryl groups content. The HIPEs were evaluated for droplet size, morphology, rheology, centrifugal stability, and the Turbiscan test. Ultrasound treatment decreased LPI dispersions' particle size (∼80%) and increased solubility (∼90%). Intrinsic fluorescence and surface hydrophobicity confirmed LPI modification due to the exposure to hydrophobic patches. The combination of ultrasound and heat treatments resulted in a reduction in the free sulfhydryl group content of LPI. HIPEs produced with ultrasound-heat-treated LPI had a lower droplet size distribution mode, greater oil retention values in the HIPE structure (> 98%), lower Turbiscan stability index (< 2), and a firmer and more homogeneous appearance compared to HIPE produced with untreated LPI, indicating higher stability for the HIPEs stabilized by treated LPI. Therefore, combining ultrasound and heat treatments could be an effective method for the functional modification of lentil proteins, allowing their application as HIPE emulsifiers.
Collapse
Affiliation(s)
- Andrêssa Maria Medeiros Theóphilo Galvão
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil.
| | - Mariana Lamy Rasera
- Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil
| | - Guilherme de Figueiredo Furtado
- Centro de Ciências da Natureza, Universidade Federal de São Carlos, Rod. Lauri Simões de Barros, km 12 - SP 189, Buri, SP 18290-000, Brazil
| | - Graziele Grossi Bovi Karatay
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil
| | - Guilherme M Tavares
- Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil
| | - Míriam Dupas Hubinger
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil
| |
Collapse
|
3
|
Wang M, Wang S, Sun X, Deng Z, Niu B, Chen Q. Study on mechanism of increased allergenicity induced by Ara h 3 from roasted peanut using bone marrow-derived dendritic cells. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Zhong ZH, Zhang YQ. Long-term preservation at low temperature of Escherichia coli cells embedded in egg white glass formed by slow drying at room temperature. Int J Biol Macromol 2023; 225:1129-1139. [PMID: 36427618 DOI: 10.1016/j.ijbiomac.2022.11.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/05/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Sterile homogeneous egg white (EW) is obtained through a three-step process, high-speed homogenization, centrifugation, and ultraviolet radiation. After incorporating 1.056 × 1010 CFU/g of Escherichia coli, the EW mixture was dehydrated by slow drying to form a brittle, water-soluble, and transparent bacteria-embedded egg white glass (BE-EWG). The BE-EWG stored at -20 °C for 4 months maintains almost all the cell growth functions and proliferation activities of the labeled E. coli, and most of the cell functions and 60 % of the proliferation activities are maintained for up to one year. The BE-EWG exhibits a porous hydrogel membrane structure after heat treatment, and many E. coli cells are accommodated in a grid with a pore size of 2-10 mm. The loss of bacteria-carrying viability after storage at room temperature may be related to the Maillard reaction between protein and glucose in EW, which results in the structural changes caused by protein cross-linking, darkened color and water insolubility of the BE-EWG. Therefore, the method of embedding E. coli cells in EWG as solid form at room temperature to avoid ice crystal formation during cryopreservation is more beneficial for storage, packaging and shipping at -20 °C.
Collapse
Affiliation(s)
- Zhi-Hao Zhong
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, RM702-2303, No. 199, Renai Road, Industrial Park, Suzhou 215123, China.
| | - Yu-Qing Zhang
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, RM702-2303, No. 199, Renai Road, Industrial Park, Suzhou 215123, China.
| |
Collapse
|
5
|
Yang J, Kuang H, Xiong X, Li N, Song J. Alteration of the allergenicity of cow's milk proteins using different food processing modifications. Crit Rev Food Sci Nutr 2022; 64:4622-4642. [PMID: 36377678 DOI: 10.1080/10408398.2022.2144792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Milk is an essential source of protein for infants and young children. At the same time, cow's milk is also one of the most common allergenic foods causing food allergies in children. Recently, cow's milk allergy (CMA) has become a common public health issue worldwide. Modern food processing technologies have been developed to reduce the allergenicity of milk proteins and improve the quality of life of patients with CMA. In this review, we summarize the main allergens in cow's milk, and introduce the recent findings on CMA responses. Moreover, the reduced effects and underlying mechanisms of different food processing techniques (such as heating, high pressure, γ-ray irradiation, ultrasound irradiation, hydrolysis, glycosylation, etc.) on the allergenicity of cow's milk proteins, and the application of processed cow's milk in clinical studies, are discussed. In addition, we describe the changes of nutritional value in cow's milk treated by different food processing technologies. This review provides an in-depth understanding of the allergenicity reduction of cow's milk proteins by various food processing techniques.
Collapse
Affiliation(s)
- Jing Yang
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China
- College of Modern Industry for Nutrition & Health, Chongqing Technology and Business University, Chongqing, China
| | - Hong Kuang
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China
| | - Xiaoli Xiong
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China
| | - Ning Li
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
6
|
Zhang S, Li X, Ai B, Zheng L, Zheng X, Yang Y, Xiao D, Sheng Z. Binding of β-lactoglobulin to three phenolics improves the stability of phenolics studied by multispectral analysis and molecular modeling. Food Chem X 2022; 15:100369. [PMID: 35769329 PMCID: PMC9234335 DOI: 10.1016/j.fochx.2022.100369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/16/2022] [Accepted: 06/12/2022] [Indexed: 10/25/2022] Open
|
7
|
Wollborn T, Michaelis M, Ciacchi LC, Fritsching U. Protein conformational changes at the oil/water-interface induced by premix membrane emulsification. J Colloid Interface Sci 2022; 628:72-81. [PMID: 35908433 DOI: 10.1016/j.jcis.2022.07.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/16/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022]
Abstract
We present combined experimental and modelling evidence that β-lactoglobulin proteins employed as stabilizers of oil/water emulsions undergo minor but significant conformational changes during premix membrane emulsification processes. Circular Dichroism spectroscopy and Molecular Dynamics simulations reveal that the native protein structure is preserved as a metastable state after adsorption at stress-free oil/water interfaces. However, the shear stress applied to the oil droplets during their fragmentation in narrow membrane pores causes a transition into a more stable, partially unfolded interfacial state. The protein's β-sheet content is reduced by up to 8% in a way that is largely independent of the pressure applied during emulsification, and is driven by an increase of contacts between the oil and hydrophobic residues at the expense of structural order within the protein core.
Collapse
Affiliation(s)
- Tobias Wollborn
- Leibniz Institute for Materials Engineering - IWT, Badgasteiner Straße 3, 28359 Bremen, Germany.
| | - Monika Michaelis
- Hybrid Materials Interfaces Group, University of Bremen, Faculty of Production Engineering, Bremen Center for Computational Materials Science, Center for Environmental Research and Sustainable Technology (UFT), Am Fallturm 1, 28359 Bremen, Germany; Biomolecular and Materials Interface Research Group, Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Lucio Colombi Ciacchi
- Hybrid Materials Interfaces Group, University of Bremen, Faculty of Production Engineering, Bremen Center for Computational Materials Science, Center for Environmental Research and Sustainable Technology (UFT), Am Fallturm 1, 28359 Bremen, Germany; MAPEX Center for Materials and Processes, Am Fallturm 1, 28359 Bremen, Germany
| | - Udo Fritsching
- Leibniz Institute for Materials Engineering - IWT, Badgasteiner Straße 3, 28359 Bremen, Germany; MAPEX Center for Materials and Processes, Am Fallturm 1, 28359 Bremen, Germany; Particles and Process Engineering, University of Bremen, Badgasteiner Straße 3, 28359 Bremen, Germany
| |
Collapse
|
8
|
Liu B, Jin F, Li Y, Wang H, Chi Y, Tian B, Feng Z. Pasteurization of egg white by integrating ultrasound and microwave: Effect on structure and functional properties. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Ultrasonication as an emerging technology for processing of animal derived foods: A focus on in vitro protein digestibility. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Alternatives to Cow’s Milk-Based Infant Formulas in the Prevention and Management of Cow’s Milk Allergy. Foods 2022; 11:foods11070926. [PMID: 35407012 PMCID: PMC8997926 DOI: 10.3390/foods11070926] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/27/2022] Open
Abstract
Cow’s milk-based infant formulas are the most common substitute to mother’s milk in infancy when breastfeeding is impossible or insufficient, as cow’s milk is a globally available source of mammalian proteins with high nutritional value. However, cow’s milk allergy (CMA) is the most prevalent type of food allergy among infants, affecting up to 3.8% of small children. Hypoallergenic infant formulas based on hydrolysed cow’s milk proteins are commercially available for the management of CMA. Yet, there is a growing demand for more options for infant feeding, both in general but especially for the prevention and management of CMA. Milk from other mammalian sources than the cow, such as goat, sheep, camel, donkey, and horse, has received some attention in the last decade due to the different protein composition profile and protein amino acid sequences, resulting in a potentially low cross-reactivity with cow’s milk proteins. Recently, proteins from plant sources, such as potato, lentil, chickpeas, quinoa, in addition to soy and rice, have gained increased interest due to their climate friendly and vegan status as well as potential lower allergenicity. In this review, we provide an overview of current and potential future infant formulas and their relevance in CMA prevention and management.
Collapse
|
11
|
Can ultrasound treatment replace conventional high temperature short time pasteurization of milk? A critical review. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
Wang J, He Z, Raghavan V. Soybean allergy: characteristics, mechanisms, detection and its reduction through novel food processing techniques. Crit Rev Food Sci Nutr 2022; 63:6182-6195. [PMID: 35075969 DOI: 10.1080/10408398.2022.2029345] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Human beings have consumed soybean as an excellent food source for thousand years due to its rich protein, fatty acids, minerals, and fibers. However, soybeans were recognized as one of the big eight allergens resulting in allergic symptoms and even could lead to death. With the increasing demand for soybean products, the challenges caused by soybean allergy need to be solved urgently. This review detailly described the pathogenesis and clinical characteristics of soybean allergy, and also the advantages and disadvantages of four different diagnostic methods were summarized. The major soybean allergens and their structures were summarized. Three types of soybean allergy including Type I, III, and IV, which could trigger allergic reactions were reported in this review. Summary in four different diagnostic methods showed that double-blind, placebo-controlled food challenge is recognized as a gold standard for diagnosing soybean allergy. Three types of processing techniques in reducing soybean allergy were discussed, and the results concluded that some novel food processing techniques such as ultrasound, cold-plasma treatment, showed potential application in the reduction of soybean allergenicity. Further, some suggestions regarding the management and treatment of food allergies were addressed in this review.
Collapse
Affiliation(s)
- Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Zhaoyi He
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Effects of Microwaves, Ultrasonication, and Thermosonication on the Secondary Structure and Digestibility of Bovine Milk Protein. Foods 2022; 11:foods11020138. [PMID: 35053870 PMCID: PMC8774360 DOI: 10.3390/foods11020138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 01/27/2023] Open
Abstract
Cow’s milk is considered an excellent protein source. However, the digestibility of milk proteins needs to be improved. This study aimed to evaluate the relationship between the functional properties of milk proteins and their structure upon microwave, ultrasound, and thermosonication treatments. The protein content, digestibility, and secondary-structure changes of milk proteins were determined. The results demonstrated that almost 35% of the proteins in the untreated samples had a α-helix structure and approximately 29% a β-sheet and turns structure. Regarding the untreated samples, the three treatments increased the α-helices and correspondingly decreased the β-sheets and turns. Moreover, the highest milk protein digestibility was observed for the ultrasound-treated samples (90.20–94.41%), followed by the microwave-treated samples (72.56–93.4%), whereas thermosonication resulted in a lower digestibility (68.76–78.81%). The milk protein content was reduced as the microwave processing time and the temperature increased. The final milk protein available in the sample was lower when microwave processing was conducted at 75 °C and 90 °C compared to 60 °C, whereas the ultrasound treatment significantly improved the protein content, and no particular trend was observed for the thermosonicated samples. Thus, ultrasound processing shows a potential application in improving the protein quality of cow’s milk.
Collapse
|
14
|
Zhang L, Xiao Q, Wang Y, Hu J, Xiong H, Zhao Q. Effects of sequential enzymatic hydrolysis and transglutaminase crosslinking on functional, rheological, and structural properties of whey protein isolate. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Bhat ZF, Morton JD, Bekhit AEDA, Kumar S, Bhat HF. Effect of processing technologies on the digestibility of egg proteins. Compr Rev Food Sci Food Saf 2021; 20:4703-4738. [PMID: 34355496 DOI: 10.1111/1541-4337.12805] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/06/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023]
Abstract
Egg and egg products are a rich source of highly bioavailable animal proteins. Several processing technologies can affect the structural and functional properties of these proteins differently and can influence their fate inside the gastrointestinal tract. The present review examines some of the processing technologies for improving egg protein digestibility and discusses how different processing conditions affect the digestibility of egg proteins under gastrointestinal digestion environments. To provide up-to-date information, most of the studies included in this review have been published in the last 5 years on different aspects of egg protein digestibility. Digestibility of egg proteins can be improved by employing some processing technologies that are able to improve the susceptibility of egg proteins to gastrointestinal proteases. Processing technologies, such as pulsed electric field, high-pressure, and ultrasound, can induce conformational and microstructural changes that lead to unfolding of the polypeptides and expose active sites for further interactions. These changes can enhance the accessibility of digestive proteases to cleavage sites. Some of these technologies may inactivate some egg proteins that are enzyme inhibitors, such as trypsin inhibitors. The underlying mechanisms of how different technologies mediate the egg protein digestibility have been discussed in detail. The proteolysis patterns and digestibility of the processed egg proteins are not always predictable and depends on the processing conditions. Empirical input is required to tailor the optimization of processing conditions for favorable effects on protein digestibility.
Collapse
Affiliation(s)
- Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST of Jammu, Jammu, Jammu and Kashmir, India
| | - James D Morton
- Department of Wine Food and Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| | | | - Sunil Kumar
- Division of Livestock Products Technology, SKUAST of Jammu, Jammu, Jammu and Kashmir, India
| | - Hina F Bhat
- Division of Biotechnology, SKUAST of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
16
|
Zhang Q, Li H, Cen C, Zhang J, Wang S, Wang Y, Fu L. Ultrasonic pre-treatment modifies the pH-dependent molecular interactions between β-lactoglobulin and dietary phenolics: Conformational structures and interfacial properties. ULTRASONICS SONOCHEMISTRY 2021; 75:105612. [PMID: 34098127 PMCID: PMC8190473 DOI: 10.1016/j.ultsonch.2021.105612] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/27/2021] [Indexed: 05/13/2023]
Abstract
There is a need to understand the ultrasound-induced changes in the interactions between proteins and phenolic compounds at different pH. This study systematically explored the role of high-intensity ultrasound pre-treatment on the binding mechanisms of β-lactoglobulin (β-LG) to two common phenolic compounds, i.e., (-)-epigallocatechin-3-gallate (EGCG) and chlorogenic acid (CA) at neutral and acidic pH (pH 7.2 and 2.4). Tryptophan fluorescence revealed that compared to proteins sonicated at 20% and 50% amplitudes, 35%-amplitude ultrasound pre-treatment (ULG-35) strengthened the binding affinities of EGCG/CA to β-LG without altering the main interaction force. After phenolic addition, ULG-35 displayed a similar but a greater extent of protein secondary and tertiary structural changes than the native protein, ascribed to the ultrasound-driven hydrophobic stacking among interacted molecules. The dominant form of β-LG (dimer/monomer) played a crucial role in the conformational and interfacial properties of complexes, which can be explained by the distinct binding sites at different pH as unveiled by molecular docking. Combining pre-ultrasound with EGCG interaction notably increased the foaming and emulsifying properties of β-LG, providing a feasible way for the modification of bovine whey proteins. These results shed light on the understanding of protein-phenolic non-covalent binding under ultrasound and help to develop complex systems with desired functionality and delivery.
Collapse
Affiliation(s)
- Qiaozhi Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Huatao Li
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Congnan Cen
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Jie Zhang
- Food Safety Institute, Science and Technology Research Center of China Customs, Beijing 100026, PR China
| | - Shunyu Wang
- Zhejiang Liziyuan Food Co., LTD, Jinhua 321031, PR China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| |
Collapse
|
17
|
Carrillo-Lopez LM, Garcia-Galicia IA, Tirado-Gallegos JM, Sanchez-Vega R, Huerta-Jimenez M, Ashokkumar M, Alarcon-Rojo AD. Recent advances in the application of ultrasound in dairy products: Effect on functional, physical, chemical, microbiological and sensory properties. ULTRASONICS SONOCHEMISTRY 2021; 73:105467. [PMID: 33508590 PMCID: PMC7840480 DOI: 10.1016/j.ultsonch.2021.105467] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 05/03/2023]
Abstract
Alternative methods for improving traditional food processing have increased in the last decades. Additionally, the development of novel dairy products is gaining importance due to an increased consumer demand for palatable, healthy, and minimally processed products. Ultrasonic processing or sonication is a promising alternative technology in the food industry as it has potential to improve the technological and functional properties of milk and dairy products. This review presents a detailed summary of the latest research on the impact of high-intensity ultrasound techniques in dairy processing. It explores the ways in which ultrasound has been employed to enhance milk properties and processes of interest to the dairy industry, such as homogenization, emulsification, yogurt and fermented beverages production, and food safety. Special emphasis has been given to ultrasonic effects on milk components; fermentation and spoilage by microorganisms; and the technological, functional, and sensory properties of dairy foods. Several current and potential applications of ultrasound as a processing technique in milk applications are also discussed in this review.
Collapse
Affiliation(s)
- Luis M Carrillo-Lopez
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico; National Council of Science and Technology, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez, Ciudad de México C.P. 03940, Mexico
| | - Ivan A Garcia-Galicia
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico
| | - Juan M Tirado-Gallegos
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico
| | - Rogelio Sanchez-Vega
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico
| | - Mariana Huerta-Jimenez
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico; National Council of Science and Technology, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez, Ciudad de México C.P. 03940, Mexico.
| | | | - Alma D Alarcon-Rojo
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico.
| |
Collapse
|
18
|
Effects of Pulsed Electric Fields and Ultrasound Processing on Proteins and Enzymes: A Review. Processes (Basel) 2021. [DOI: 10.3390/pr9040722] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There is increasing demand among consumers for food products free of chemical preservatives, minimally processed and have fresh-like natural flavors. To meet these growing demands, the industries and researchers are finding alternative processing methods, which involve nonthermal methods to obtain a quality product that meets the consumer demands and adheres to the food safety protocols. In the past two decades’ various research groups have developed a wide range of nonthermal processing methods, of which few have shown potential in replacing the traditional thermal processing systems. Among all the methods, ultrasonication (US) and pulsed electric field (PEF) seem to be the most effective in attaining desirable food products. Several researchers have shown that these methods significantly affect various major and minor nutritional components present in food, including proteins and enzymes. In this review, we are going to discuss the effect of nonthermal methods on proteins, including enzymes. This review comprises results from the latest studies conducted from all over the world, which would help the research community and industry investigate the future pathway for nonthermal processing methods, especially in preserving the nutritional safety and integrity of the food.
Collapse
|
19
|
Ultrasound as an emerging technology for the elimination of chemical contaminants in food: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Are Physicochemical Properties Shaping the Allergenic Potency of Animal Allergens? Clin Rev Allergy Immunol 2021; 62:1-36. [DOI: 10.1007/s12016-020-08826-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 12/31/2022]
|
21
|
Stevanović N, Apostolović D, Milčić M, Lolić A, van Hage M, Veličković TĆ, Baošić R. Interaction, binding capacity and anticancer properties of N, N′-bis(acetylacetone)-propylenediimine-copper( ii) on colorectal cancer cell line Caco-2. NEW J CHEM 2021. [DOI: 10.1039/d1nj00040c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The binding capacity and interaction of N,N′-bis(acetylacetone)propylenediimine-copper(ii) with HSA were systemically investigated in vitro and in silico.
Collapse
Affiliation(s)
| | - Danijela Apostolović
- Immunology and Allergy Divison
- Department of Medicine Solna
- Karolinska Institutet
- Stockholm
- Sweden
| | - Miloš Milčić
- University of Belgrade – Faculty of Chemistry
- Belgrade
- Serbia
| | | | - Marianne van Hage
- Immunology and Allergy Divison
- Department of Medicine Solna
- Karolinska Institutet
- Stockholm
- Sweden
| | - Tanja Ćirković Veličković
- University of Belgrade – Faculty of Chemistry
- Belgrade
- Serbia
- Serbian Academy of Science and Art
- Belgrade
| | - Rada Baošić
- University of Belgrade – Faculty of Chemistry
- Belgrade
- Serbia
| |
Collapse
|
22
|
Zhou X, Wang C, Sun X, Zhao Z, Guo M. Effects of High Intensity Ultrasound on Physiochemical and Structural Properties of Goat Milk β-Lactoglobulin. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25163637. [PMID: 32785104 PMCID: PMC7464314 DOI: 10.3390/molecules25163637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/21/2020] [Accepted: 08/09/2020] [Indexed: 11/21/2022]
Abstract
This study aimed to compare the effects of high intensity ultrasound (HIU) applied at various amplitudes (20~40%) and for different durations (1~10 min) on the physiochemical and structural properties of goat milk β-lactoglobulin. No significant change was observed in the protein electrophoretic patterns by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Deconvolution and second derivative of the Fourier transform infrared spectra (FTIR) showed that the percentage of β-sheet of goat milk β-lactoglobulin was significantly decreased while those of α-helix and random coils increased after HIU treatment The surface hydrophobicity index and intrinsic fluorescence intensity of samples was enhanced and increased with increasing HIU amplitude or time. Differential scanning calorimetry (DSC) results exhibited that HIU treatments improved the thermal stability of goat milk β-lactoglobulin. Transmission electron microscopy (TEM) of samples showed that the goat milk β-lactoglobulin microstructure had changed and it contained larger aggregates when compared with the untreated goat milk β-lactoglobulin sample. Data suggested that HIU treatments resulted in secondary and tertiary structural changes of goat milk β-lactoglobulin and improved its thermal stability.
Collapse
Affiliation(s)
- Xinhui Zhou
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China; (X.Z.); (C.W.); (X.S.); (Z.Z.)
| | - Cuina Wang
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China; (X.Z.); (C.W.); (X.S.); (Z.Z.)
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xiaomeng Sun
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China; (X.Z.); (C.W.); (X.S.); (Z.Z.)
| | - Zixuan Zhao
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China; (X.Z.); (C.W.); (X.S.); (Z.Z.)
| | - Mingruo Guo
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China; (X.Z.); (C.W.); (X.S.); (Z.Z.)
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
- Correspondence: ; Tel.: +1-802-656-8168; Fax: +1-802-656-0001
| |
Collapse
|
23
|
Shao YH, Zhang Y, Zhu MF, Liu J, Tu ZC. Glycation of β-lactoglobulin combined by sonication pretreatment reduce its allergenic potential. Int J Biol Macromol 2020; 164:1527-1535. [PMID: 32738325 DOI: 10.1016/j.ijbiomac.2020.07.223] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/23/2020] [Accepted: 07/24/2020] [Indexed: 01/09/2023]
Abstract
β-lactoglobulin (β-Lg) was treated through different ultrasonic power and subsequently glycated with galactose to investigate its structural changes and immunological properties, and then evaluated by high-resolution mass spectrometry, enzyme-linked immunosorbent assay and basophil histamine release test. Ultrasonication combined with glycation (UCG) modification significantly reduced the IgE/IgG-binding capacity, and the release of β-hexosaminidase, histamine and interleukin-6, accompanied with changes in the secondary and tertiary structures. The decrease in the allergenicity of β-Lg depended not only on the glycation of K47, 60, 83, 91 and 135 within the linear epitopes, but also on the denaturation of conformational epitopes, which was supported by the glycation-induced alterations of the secondary and tertiary structures. This study confirmed that UCG modification is a promising method for decreasing the allergenic potential of allergic proteins, which is likely to develop a practical technology to produce hypo-allergenic milk.
Collapse
Affiliation(s)
- Yan-Hong Shao
- National R&D Branch Center for Conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yao Zhang
- National R&D Branch Center for Conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Min-Fang Zhu
- National R&D Branch Center for Conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Jun Liu
- National R&D Branch Center for Conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Zong-Cai Tu
- National R&D Branch Center for Conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
24
|
Yang F, Zou L, Wu Y, Wu Z, Yang A, Chen H, Li X. Structure and allergenicity assessments of bovine β-lactoglobulin treated by sonication-assisted irradiation. J Dairy Sci 2020; 103:4109-4120. [DOI: 10.3168/jds.2019-17070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/18/2019] [Indexed: 12/19/2022]
|
25
|
Zhao W, Shu Q, He G, Qihe C. Reducing antigenicity of bovine whey proteins by Kluyveromyces marxianus fermentation combined with ultrasound treatment. Food Chem 2020; 311:125893. [PMID: 31767476 DOI: 10.1016/j.foodchem.2019.125893] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 01/23/2023]
Abstract
This work investigated the reduction of bovine whey proteins antigenicity by ultrasonic pretreatment and microbial fermentation. Firstly, bovine whey proteins was pretreated by ultrasonic techniques, and its secondary structure was detected by circular dichroism. The pretreated whey proteins was used as the fermentation substrate by Kluyveromyces marxianus for microbial transformation. The single factor design and Box-Behnken Design (BBD) were carried out with the aim to optimize culture temperature, initial pH, inoculum volume and rotation speed. After optimization process, culture temperature, initial pH, inoculum volume and rotation speed were determined. Under culture temperature 35 °C, pH 7.25, inoculum level 10% and shaking speed 150 rpm, the α-LA and β-LG antigenicity in bovine whey proteins were reduced by 29% and 53%, respectively. The findings showed that combined with microbial fermentation for hydrolysis of whey proteins, ultrasonic pretreatment can be used in order to produce hypoallergenic bovine whey proteins.
Collapse
Affiliation(s)
- Wenjun Zhao
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, PR China
| | - Qing Shu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, PR China
| | - Guoqing He
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, PR China
| | - Chen Qihe
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
26
|
Chen G, Ding X, Zhou W. Study on ultrasonic treatment for degradation of Microcystins (MCs). ULTRASONICS SONOCHEMISTRY 2020; 63:104900. [PMID: 31945576 DOI: 10.1016/j.ultsonch.2019.104900] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
In recent years, The ecological environment of rivers and lakes have been seriously polluted, and the eutrophication of water bodies has become increasingly prominent, which not only seriously affects the living environment of surrounding residents, but also poses a major threat to the ecological security of water environment. The growth of algae is characterized by short cycle, rapid reproduction and great harmfulness. Conventional algal removal technology is expensive, easy to produce secondary pollution, and difficult to effectively inhibit algae outbreaks, therefore, a new environmental protection technology, ultrasonic algae removal technology, has been put forward. Under the background of ecological environment pollution, in this paper, the effect of ultrasonic technology on degradation of Microcystins (MCs) under different conditions and is investigated. Results show that Microcystins removal rate reaches 81% when Microcystin solution with a concentration of 12.43 mu/L is treated by ultrasound (1200 W) for 5 min; the removal rate of Microcystin reaches 99% after 15 min of ultrasound treatment (1200 W), and almost all of them are removed; no matter wastewater containing Microcystis is treated by ultrasound alone or ultrasound-coagulation method, the levels of Microcystins in the water do not increase. The results also prove that ultrasound can directly destroy the wall and kill algae, inhibit the growth activity of un-killed algae and degrade Microcystins. In addition, the technical principle and application prospect of ultrasonic algae removal instrument in ecological environment are introduced. The paper provided certain direction and theoretical support for the subsequent improvement of ultrasonic algae removal technology.
Collapse
Affiliation(s)
- Guobin Chen
- Chongqing Key Laboratory of Spatial Data Mining and Big Data Integration for Ecology and Environment, Rongzhi College of Chongqing Technology and Business University, Chongqing 401320, PR China
| | - Xinmin Ding
- The College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, PR China.
| | - Wen Zhou
- The Second Clinical College of GuangZhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, 55 Neihuanxi Road, Guangzhou 510006, PR China.
| |
Collapse
|
27
|
Wang C, Xie Q, Wang Y, Fu L. Effect of Ultrasound Treatment on Allergenicity Reduction of Milk Casein via Colloid Formation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4678-4686. [PMID: 32274927 DOI: 10.1021/acs.jafc.9b08245] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cow's milk protein allergy, which occurs in approximately 5-10% of the population of infants and children, has become an important public food safety problem. As a major allergen in cow's milk, the most abundant protein casein (CN) is considered to be potent in inducing food allergy. In recent years, ultrasound treatment has played a significant role in the field of colloidal particulate system. In this study, we found that ultrasound treatment dramatically decreased the diameter of a CN particle to less than 100 nm in the presence of Tween 80, producing colloidal casein (c-CN) with high transparency. The electrophoretic and transmission electron microscopy analysis showed that the advanced protein structure of CN changed significantly. In addition, the enzyme-linked immunosorbent assay with allergic sera showed that the immunoglobulin-E-binding capacity of c-CN was significantly decreased. In the meantime, the LAD2 mast cell line degranulation assay demonstrated that ultrasound treatment made CN hypoallergenic. The colloidal and hypoallergenic properties of c-CN were stably maintained for more than 30 days. Likewise, the allergenicity of fresh whole milk also decreased after ultrasound treatment. This work provided an effective way to reduce the allergenicity of milk allergen, which could be beneficial to the production of hypoallergenic cow's milk.
Collapse
Affiliation(s)
- Chong Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xuezheng Road, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Qiang Xie
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xuezheng Road, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xuezheng Road, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xuezheng Road, Hangzhou, Zhejiang 310018, People's Republic of China
| |
Collapse
|
28
|
Kehinde BA, Sharma P, Kaur S. Recent nano-, micro- and macrotechnological applications of ultrasonication in food-based systems. Crit Rev Food Sci Nutr 2020; 61:599-621. [PMID: 32208850 DOI: 10.1080/10408398.2020.1740646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
There is a neoteric and rising demand for nutritional and functional foods which behooves food processors to adopt processing techniques with optimal conservation of bioactive components in foods and with minimal pernicious impacts on the environment. Ultrasonication, a mechanochemical technique has proven to be an efficacious panacea to these concerns. In this review, an analytic exploration of recent researches and designs regarding ultrasound methodology and equipment on diverse food systems, technological scales, procedural parameters and outcomes of such experimentations optimally scrutinized. The relative effects of ultrasonication on food formulations, components and attributes such as nanoemulsions, nanocapsules, proteins, micronutrients, sensory and mechanical characteristics are evaluatively delineated. In food systems where ultrasonication was employed, it was found to have a remarkable effect on one or more quality parameters. This review is a supplementation to the pedagogical awareness to scholars on the suitability of ultrasonication for research procedures, and a call to industrial food brands on the adoption of this technique for the development of foods with optimally sustained nutrient profiles.
Collapse
Affiliation(s)
- Bababode Adesegun Kehinde
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Poorva Sharma
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
29
|
Dong X, Wang J, Raghavan V. Critical reviews and recent advances of novel non-thermal processing techniques on the modification of food allergens. Crit Rev Food Sci Nutr 2020; 61:196-210. [PMID: 32048519 DOI: 10.1080/10408398.2020.1722942] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nowadays, the increasing prevalence of food allergy has become a public concern related to human health worldwide. Thus, it is imperative and necessary to provide some efficient methods for the management of food allergy. Some conventional processing methods (e.g., boiling and steaming) have been applied in the reduction of food immunoreactivity, while these treatments significantly destroy nutritional components present in food sources. Several studies have shown that novel processing techniques generally have better performance in retaining original characteristics of food and improving the efficiency of eliminating allergens. This review has focused on the recent advances of novel non-thermal processing techniques including high-pressure processing, ultrasound, pulsed light, cold plasma, fermentation, pulsed electric field, enzymatic hydrolysis, and the combination processing of them. Meanwhile, general information on global food allergy prevalence and food allergy pathology are also described. Hopefully, these findings regarding the modifications on the food allergens through various novel food processing techniques can provide an in-depth understanding in the mechanism of food allergy, which in turn possibly provides a strategy to adapt in the reduction of food immunoreactivity for the food industries.
Collapse
Affiliation(s)
- Xin Dong
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Jin Wang
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
30
|
Pathak R, Leong TSH, Martin GJO, Ashokkumar M. Amino Acid and Secondary Structure Integrity of Sonicated Milk Proteins. Aust J Chem 2020. [DOI: 10.1071/ch19372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study investigated the effect of low-frequency (20kHz) and high-frequency (414kHz) ultrasound treatment on the amino acid and secondary structural integrity of dairy proteins. Sonicated skim milk proteins were hydrolysed and analysed with reverse-phase high-performance liquid chromatography to investigate the amino acid content of the processed samples. It was successfully demonstrated that both low-frequency and high-frequency ultrasound did not adversely affect the amino acid content, even after prolonged extreme processing conditions (6h, 355kHz). This finding was supplemented with protein secondary structure data (Fourier-transform (FT)-IR secondary derivatives of the amide I band, 1700–1600cm−1) that showed that ultrasound was capable of causing structural modifications to the dairy proteins. This study shows that ultrasound can be used to influence protein–protein interactions in skim milk via alterations to the secondary structure without degrading the amino acids in the proteins.
Collapse
|
31
|
Liu J, Ye YH, Shao YH, Tu ZC. Observation of the structural changes of α-lactalbumin induced by ultrasonic prior to glycated modification. J Food Biochem 2019; 43:e13017. [PMID: 31495937 DOI: 10.1111/jfbc.13017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/12/2019] [Accepted: 07/31/2019] [Indexed: 11/29/2022]
Abstract
Bovine α-lactalbumin (BLA) was treated by ultrasonic at 150 W/cm2 for different times and subsequently glycated with mannose by dry-heating. Molecular weight, intrinsic fluorescence spectra, glycation sites and degree of modified BLA were observed. The proteinaceous high molecular weight components were formed after ultrasonic prior to glycated modification, while the conformational changes were obvious. Prior to ultrasonic pretreatment, K62, K114, and K122 of BLA were identified. After treated by ultrasound at 150 W/cm2 for 5, 10, 15, and 20 min, the sites were increased to four, four, five, and five, respectively. All glycated sites of modified BLA exhibited a higher degree of substitution per peptide (DSP) values compared to native BLA. Ultrasonic at 150 W/cm2 for 20 min revealed the most significant change in the BLA structure. Therefore, conformational changes, the intensified glycation site, and DSP value were responsible for the structural changes of BLA. Practical applications BLA is suitable as an ingredient for infant nutrition in food, and has immune-modulating, antioxidant, antibacterial, and antitumor activity etc. This study revealed that the structural changes of BLA induced by ultrasonic prior to glycated modification. It will be beneficial to understand the mechanism of the functional changes of modified BLA. Ultrasonic prior to glycated modification will be more likely to develop a practical technology to modify protein in the food industry, and improve the functional characteristics of food, such as produce hypo-allergenic cow's milk in future.
Collapse
Affiliation(s)
- Jun Liu
- National Research and Development center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China.,Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Nanchang, China
| | - Yun-Hua Ye
- National Research and Development center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China.,Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Nanchang, China
| | - Yan-Hong Shao
- National Research and Development center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China.,Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Nanchang, China
| | - Zong-Cai Tu
- National Research and Development center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China.,Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Nanchang, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
32
|
Nunes L, Tavares GM. Thermal treatments and emerging technologies: Impacts on the structure and techno-functional properties of milk proteins. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.06.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
33
|
Esteghlal S, Gahruie HH, Niakousari M, Barba FJ, Bekhit AED, Mallikarjunan K, Roohinejad S. Bridging the Knowledge Gap for the Impact of Non-Thermal Processing on Proteins and Amino Acids. Foods 2019; 8:E262. [PMID: 31319521 PMCID: PMC6678513 DOI: 10.3390/foods8070262] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/02/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023] Open
Abstract
Proteins represent one of the major food components that contribute to a wide range of biophysical functions and dictate the nutritional, sensorial, and shelf-life of food products. Different non-thermal processing technologies (e.g., irradiation, ultrasound, cold plasma, pulsed electric field, and high-pressure treatments) can affect the structure of proteins, and thus their solubility as well as their functional properties. The exposure of hydrophobic groups, unfolding followed by aggregation at high non-thermal treatment intensities, and the formation of new bonds have been reported to promote the modification of structural and functional properties of proteins. Several studies reported the reduction of allergenicity of some proteins after the application of non-thermal treatments. The composition and concentration of free amino acids could be changed after non-thermal processing, depending on the processing time and intensity. The present review discusses the effects of different non-thermal treatments on protein properties in detail, and highlights the opportunities and disadvantages of these technologies in relation to protein functionality.
Collapse
Affiliation(s)
- Sara Esteghlal
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
- Biomolecular Engineering Laboratory, Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Hadi Hashemi Gahruie
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
- Biomolecular Engineering Laboratory, Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mehrdad Niakousari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda.Vicent Andrés Estellés, s/n 46100 Burjassot, València, Spain.
| | - Alaa El-Din Bekhit
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
| | - Kumar Mallikarjunan
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | - Shahin Roohinejad
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
- Burn and Wound Healing Research Center, Division of Food and Nutrition, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
34
|
Shah F, Shi A, Ashley J, Kronfel C, Wang Q, Maleki SJ, Adhikari B, Zhang J. Peanut Allergy: Characteristics and Approaches for Mitigation. Compr Rev Food Sci Food Saf 2019; 18:1361-1387. [DOI: 10.1111/1541-4337.12472] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Faisal Shah
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key research Laboratory of Agro‐Products ProcessingMinistry of Agriculture Beijing 100193 P. R. China
| | - Aimin Shi
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key research Laboratory of Agro‐Products ProcessingMinistry of Agriculture Beijing 100193 P. R. China
| | - Jon Ashley
- International Iberian Nanotechnology LaboratoryFood Quality and Safety Research group Berga 4715‐330 Portugal
| | - Christina Kronfel
- Food Processing and Sensory Quality ResearchUnited States Dept. of Agriculture New Orleans LA 70124 USA
| | - Qiang Wang
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key research Laboratory of Agro‐Products ProcessingMinistry of Agriculture Beijing 100193 P. R. China
| | - Soheila J. Maleki
- Food Processing and Sensory Quality ResearchUnited States Dept. of Agriculture New Orleans LA 70124 USA
| | - Benu Adhikari
- School of ScienceRMIT Univ. Melbourne VIC 3083 Australia
| | - Jinchuang Zhang
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key research Laboratory of Agro‐Products ProcessingMinistry of Agriculture Beijing 100193 P. R. China
| |
Collapse
|
35
|
Fu L, Wang C, Zhu Y, Wang Y. Seafood allergy: Occurrence, mechanisms and measures. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
36
|
Wen C, Zhang J, Yao H, Zhou J, Duan Y, Zhang H, Ma H. Advances in renewable plant-derived protein source: The structure, physicochemical properties affected by ultrasonication. ULTRASONICS SONOCHEMISTRY 2019; 53:83-98. [PMID: 30600214 DOI: 10.1016/j.ultsonch.2018.12.036] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/05/2018] [Accepted: 12/24/2018] [Indexed: 05/27/2023]
Abstract
In recent years, there has been increasing interest in renewable and sustainable protein resource of plant origin. The reasons for this are summarized as follows: (1) green, low-cost, environmental friendly and sustainable concepts are deeply rooted in people's minds; (2) long-term use of animal protein can lead to high blood pressure, obesity, negative environmental impacts; (3) more and more vegetarians are emerged; (4) many consumers still do not accept food grade insect. Based on this situation, this paper links eco-innovative ultrasound technology to plant-derived sustainable proteins resource, and magnifies the advantages of both at the same time. Ultrasound is a novel, green and rapid developing environmental friendly technology, which is suitable for up scaling and improving the physicochemical properties of protein. This review summarizes the mechanisms, cavitation properties of ultrasonic field, consumption of energy, applications of spectroscopic techniques for evaluating plant-derived proteins conformation changes, effects of ultrasound on the structure and physicochemical properties of plant-derived renewable proteins, and application of ultrasound treatment proteins in food industry. Furthermore, future research to better utilize this green technology is suggested. In this way, it not only conforms to the concept of sustainable, high-efficiency, and environmental protection of the food protein industry, but also clarifies the relationship between protein structure and properties, which are conducive to the application of ultrasound in protein industrialization.
Collapse
Affiliation(s)
- Chaoting Wen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jixian Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hui Yao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jie Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
37
|
Yuan F, Ahmed I, Lv L, Li Z, Li Z, Lin H, Lin H, Zhao J, Tian S, Ma J. Impacts of glycation and transglutaminase-catalyzed glycosylation with glucosamine on the conformational structure and allergenicity of bovine β-lactoglobulin. Food Funct 2018; 9:3944-3955. [PMID: 29974110 DOI: 10.1039/c8fo00909k] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
β-Lactoglobulin (β-LG) is recognized as the major milk allergen. In this study, the effects of transglutaminase (TGase) and glucosamine (GlcN)-catalyzed glycosylation and glycation on the conformational structure and allergenicity of β-LG were investigated. The formations of cross-linked peptides were demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and GlcN-conjugated modification was identified using matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS). Structural analysis revealed that glycosylation and glycation of β-LG induced unfolding of the primary protein structure followed by a loss of the secondary structure. As revealed by circular dichroism (CD) spectroscopy, glycosylated β-LG exhibited the highest increase in the β-sheets from 32.6% to 40.4% (25 °C) and 44.2% (37 °C), and the percentage of α-helices decreased from 17.7% to 14.4% (25 °C) and 12.3% (37 °C), respectively. The tertiary and quaternary structures of β-LG also changed significantly during glycosylation and glycation, along with reduced free amino groups and variation in surface hydrophobicity. Immunoblotting and indirect enzyme-linked immuno sorbent assay (ELISA) analyses demonstrated that the lowest IgG- and IgE-binding capacities of β-LG were obtained following glycosylation at 37 °C, which were 52.7% and 56.3% lower than that of the native protein, respectively. The reduction in the antigenicity and potential allergenicity of glycosylated β-LG was more pronounced compared to TGase treated- and glycated β-LG, which correlated well with the structural changes. These results suggest that TGase-catalyzed glycosylation has more potential compared to glycation for mitigating the allergenic potential of milk products.
Collapse
Affiliation(s)
- Fangzhou Yuan
- State Key laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co. Ltd., Shanghai 200436, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Effects of Ultrasonic and Microwave Processing on Avidin Assay and Secondary Structures of Egg White Protein. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2158-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
39
|
Yang W, Tu Z, Wang H, Zhang L, Kaltashov IA, Zhao Y, Niu C, Yao H, Ye W. The mechanism of reduced IgG/IgE-binding of β-lactoglobulin by pulsed electric field pretreatment combined with glycation revealed by ECD/FTICR-MS. Food Funct 2018; 9:417-425. [PMID: 29220053 DOI: 10.1039/c7fo01082f] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Bovine β-lactoglobulin (β-Lg) is a major allergen existing in milk and causes about 90% of IgE-mediated cow's milk allergies. Previous studies showed that pulsed electric field (PEF) treatment could partially unfold the protein, which may contribute to the improvement of protein glycation. In this study, the effect of PEF pretreatment combined with glycation on the IgG/IgE-binding ability and the structure of β-Lg was investigated. The result showed that PEF pretreatment combined with glycation significantly reduced the IgG and IgE binding abilities, which was attributed to the changes of secondary and tertiary structure and the increase in glycation sites and degree of substitution per peptide (DSP) value determined by electron capture dissociation Fourier transform ion cyclotron resonance mass spectrometry (ECD/FTICR-MS). Unexpectedly, glycation sites (K47, K91 and K135) added by two mannose molecules were identified in glycated β-Lg with PEF pretreatment. Moreover, the results indicated that PEF pretreatment at 25 kV cm-1 for 60 μs promoted the reduction of IgG/IgE-binding capacity by increasing the glycation degree of β-Lg, whereas single PEF treatment under the same conditions markedly enhanced the IgG/IgE-binding ability by partially unfolding the structure of β-Lg. The results suggested that ECD/FTICR-MS could help us to understand the mechanism of reduction in the IgG/IgE-binding of β-Lg by structural characterization at the molecular level. Therefore, PEF pretreatment combined with glycation may provide an alternative method for β-Lg desensitization.
Collapse
Affiliation(s)
- Wenhua Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhao D, Li L, Xu D, Sheng B, Qin D, Chen J, Li B, Zhang X. Application of ultrasound pretreatment and glycation in regulating the heat-induced amyloid-like aggregation of β-lactoglobulin. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
41
|
Ma S, Yang X, Zhao C, Guo M. Ultrasound-induced changes in structural and physicochemical properties of β-lactoglobulin. Food Sci Nutr 2018. [PMID: 29983970 DOI: 10.1002/fsn3.2018.6.issue-410.1002/fsn3.646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
Effect of ultrasound treatment on the physicochemical properties and structure of β-lactoglobulin were investigated. β-Lactoglobulin was treated with ultrasound at different amplitudes, temperatures, and durations. The surface hydrophobicity and free sulfhydryl group of β-lactoglobulin were significantly increased after ultrasound treatment (p < .05). The maximal surface hydrophobicity and free sulfhydryl group were 5,812.08 and 5.97 μmol/g, respectively. Ultrasound treatment changed the physicochemical properties of β-lactoglobulin including particle size (from 1.21 ± 0.05 nm to 1.66 ± 0.03 nm), absolute zeta potential (from 15.47 ± 1.60 mV to 27.63 ± 3.30 mV), and solubility (from 84.66% to 95.17%). Ultrasound treatment increased α-helix and β-sheet structures of β-lactoglobulin. Intrinsic fluorescence intensity of ultrasound-treated β-lactoglobulin was increased with shift of λmax from 334 to 329 nm. UV absorption of β-lactoglobulin was decreased with shift of λmax from 288 to 285 nm after ultrasound treatment. There were no significant changes in high-performance liquid chromatography and protein electrophoretic patterns. These findings indicated that ultrasound treatment had high potential in modifying the physiochemical and structural properties of β-lactoglobulin for industrial applications.
Collapse
Affiliation(s)
- Shuang Ma
- Department of Food Science College of Food Science and Engineering Jilin University Changchun China
| | - Xu Yang
- Department of Radiotherapy First Hospital of Jilin University Changchun China
| | - Changhui Zhao
- Department of Food Science College of Food Science and Engineering Jilin University Changchun China
| | - Mingruo Guo
- Department of Food Science Northeast Agriculture University Harbin China
- Department of Nutrition and Food Sciences College of Agriculture and Life Sciences University of Vermont Burlington VT USA
| |
Collapse
|
42
|
Liu GX, Tu ZC, Yang W, Wang H, Zhang L, Ma D, Huang T, Liu J, Li X. Investigation into allergenicity reduction and glycation sites of glycated β-lactoglobulin with ultrasound pretreatment by high-resolution mass spectrometry. Food Chem 2018; 252:99-107. [DOI: 10.1016/j.foodchem.2018.01.086] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/06/2018] [Accepted: 01/11/2018] [Indexed: 12/20/2022]
|
43
|
Ma S, Yang X, Zhao C, Guo M. Ultrasound-induced changes in structural and physicochemical properties of β-lactoglobulin. Food Sci Nutr 2018; 6:1053-1064. [PMID: 29983970 PMCID: PMC6021715 DOI: 10.1002/fsn3.646] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/23/2018] [Accepted: 03/15/2018] [Indexed: 11/08/2022] Open
Abstract
Effect of ultrasound treatment on the physicochemical properties and structure of β-lactoglobulin were investigated. β-Lactoglobulin was treated with ultrasound at different amplitudes, temperatures, and durations. The surface hydrophobicity and free sulfhydryl group of β-lactoglobulin were significantly increased after ultrasound treatment (p < .05). The maximal surface hydrophobicity and free sulfhydryl group were 5,812.08 and 5.97 μmol/g, respectively. Ultrasound treatment changed the physicochemical properties of β-lactoglobulin including particle size (from 1.21 ± 0.05 nm to 1.66 ± 0.03 nm), absolute zeta potential (from 15.47 ± 1.60 mV to 27.63 ± 3.30 mV), and solubility (from 84.66% to 95.17%). Ultrasound treatment increased α-helix and β-sheet structures of β-lactoglobulin. Intrinsic fluorescence intensity of ultrasound-treated β-lactoglobulin was increased with shift of λmax from 334 to 329 nm. UV absorption of β-lactoglobulin was decreased with shift of λmax from 288 to 285 nm after ultrasound treatment. There were no significant changes in high-performance liquid chromatography and protein electrophoretic patterns. These findings indicated that ultrasound treatment had high potential in modifying the physiochemical and structural properties of β-lactoglobulin for industrial applications.
Collapse
Affiliation(s)
- Shuang Ma
- Department of Food ScienceCollege of Food Science and EngineeringJilin UniversityChangchunChina
| | - Xu Yang
- Department of RadiotherapyFirst Hospital of Jilin UniversityChangchunChina
| | - Changhui Zhao
- Department of Food ScienceCollege of Food Science and EngineeringJilin UniversityChangchunChina
| | - Mingruo Guo
- Department of Food ScienceNortheast Agriculture UniversityHarbinChina
- Department of Nutrition and Food SciencesCollege of Agriculture and Life SciencesUniversity of VermontBurlingtonVTUSA
| |
Collapse
|
44
|
Ma S, Wang C, Guo M. Changes in structure and antioxidant activity of β-lactoglobulin by ultrasound and enzymatic treatment. ULTRASONICS SONOCHEMISTRY 2018; 43:227-236. [PMID: 29555279 DOI: 10.1016/j.ultsonch.2018.01.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/09/2018] [Accepted: 01/20/2018] [Indexed: 05/23/2023]
Abstract
Effects of ultrasound (20-40% amplitudes at 45-55 °C) and enzymatic (pepsin and trypsin) treatment on structure and antioxidant activity of β-lactoglobulin were studied. Changes in structure of β-lactoglobulin were investigated using spectroscopy techniques and changes in antioxidant activity were measured by chemical and cellular-based assays. Ultrasound treatment had considerable impact on the structure of β-lactoglobulin and increased the susceptibility of β-lactoglobulin to both pepsin and trypsin proteolysis. Intrinsic fluorescence intensity of β-lactoglobulin was increased by ultrasound and then decreased after following enzymatic treatment. Compared with control, the β-lactoglobulin after ultrasound and enzymatic treatments showed significantly higher oxygen scavenging activities in Caco-2 cells models, ABTS (2, 2'-Azinobis-3-ethylbenzthiazoline-6-sulphonate) radical scavenging activity and oxygen radical absorbance capacity (p < 0.05). Results indicated that ultrasound treatment increased the proteolysis of β-lactoglobulin by both pepsin and trypsin and improved the antioxidant activity of the protein and its proteolytic products.
Collapse
Affiliation(s)
- Shuang Ma
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Mingruo Guo
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China; Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA; Department of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
45
|
Chizoba Ekezie FG, Cheng JH, Sun DW. Effects of nonthermal food processing technologies on food allergens: A review of recent research advances. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.01.007] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
Ma S, Yang X, Wang C, Guo M. Effect of ultrasound treatment on antioxidant activity and structure of β-Lactoglobulin using the Box–Behnken design. CYTA - JOURNAL OF FOOD 2018. [DOI: 10.1080/19476337.2018.1441909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Shuang Ma
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, PR China
| | - Xu Yang
- Department of Radiotherapy, First Hospital of Jilin University, Changchun, PR China
| | - Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, PR China
| | - Mingruo Guo
- Department of Nutrition and Food Sciences, College of Agriculture and Life Science, University of Vermont, Burlington, VT, USA
| |
Collapse
|
47
|
Liu C, Cao Z, He S, Sun Z, Chen W. The effects and mechanism of phycocyanin removal from water by high-frequency ultrasound treatment. ULTRASONICS SONOCHEMISTRY 2018; 41:303-309. [PMID: 29137756 DOI: 10.1016/j.ultsonch.2017.09.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 06/07/2023]
Abstract
The effects and mechanism of phycocyanin removal from water by high-frequency ultrasound treatment were studied. The efficiency of sonication treatment in removing proteins derived from algal cells was investigated, and the factors influencing the process, including the effects of coagulation, were also studied. In addition, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), the three-dimensional fluorescence spectrum, and mass spectrum were used to illustrate the removal mechanism. The results indicated that phycocyanin can be degraded to the point where it is barely detectable in water samples after 180min of high-frequency sonication. While the total nitrogen (TN) concentration remained consistent during the entire sonication process (240min), about 78.9% of the dissolved organic nitrogen (DON) was oxidized into inorganic nitrogen. The sonication effect was greatly influenced by the ultrasound frequency, with 200kHz having the highest removal performance due to the large production of hydroxyl (HO) radicals. Coagulation was adversely influenced by sonication in the first 60min due to the cross-linking reaction between protein molecules caused by the sonication. The influence of sonication weakened with sonication time due to the further degradation of the proteins by ultrasound. The variation of the TN, DON, and inorganic nitrogen indicated that the main mechanism occurring during the high-frequency sonication of the phycocyanin was the direct oxidation of the radicals, which was totally different from of the mechanism occurring during ultrasound with low frequency.
Collapse
Affiliation(s)
- Cheng Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Zhen Cao
- College of Environment, Hohai University, Nanjing 210098, China
| | - Siyuan He
- College of Environment, Hohai University, Nanjing 210098, China
| | - Zhehao Sun
- College of Environment, Hohai University, Nanjing 210098, China
| | - Wei Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
48
|
Zhang N, Tu Z, Wang H, Liu G, Wang Z, Huang T, Qin X, Xie X, Wang A. Liquid Chromatography High-Resolution Mass Spectrometry Identifies the Glycation Sites of Bovine Serum Albumin Induced by d-Ribose with Ultrasonic Treatment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:563-570. [PMID: 29280631 DOI: 10.1021/acs.jafc.7b04578] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ultrasonication is an emerging technology applied in food processing and biological experimental pretreatments. Cavitation phenomena induced during ultrasonic treatment can generate localized high temperature and pressure, which can result in glycation reaction between protein and reducing sugars. In this study, the mixture of bovine serum albumin (BSA) and d-ribose was treated under 600 W for different times. Interestingly, a large amount of carbonized black materials appeared after ultrasonication, while the UV absorbance and intrinsic fluorescence spectra reflecting conformational changes were not obvious. Only 12 sites (11 lysines and 1 arginine) of the BSA with ribose under ultrasonic treatment for 35 min were identified through liquid chromatography high-resolution mass spectrometry (LCHR-MS). K547, K548, R359/R360, and K587 were the most reactive glycated sites, with the average degree of substitution per peptide molecule (DSP) value ranging from 15 to 35%. The glycated modification was distributed not only in domain III, but also in domains I and II. The glycated modification could occur during ultrasonic treatment, thereby influencing the properties of biomacromolecule after extraction.
Collapse
Affiliation(s)
- Nanhai Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang, Jiangxi 330047, China
| | - Zongcai Tu
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang, Jiangxi 330047, China
- College of Life Sciences, Jiangxi Normal University , Nanchang, Jiangxi 330022, China
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang, Jiangxi 330047, China
| | - Guangxian Liu
- College of Life Sciences, Jiangxi Normal University , Nanchang, Jiangxi 330022, China
- Jiangxi Academy of Agricultural Sciences , Nanchang, Jiangxi 330200, China
| | - Zhenxing Wang
- College of Life Sciences, Jiangxi Normal University , Nanchang, Jiangxi 330022, China
| | - Tao Huang
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang, Jiangxi 330047, China
| | - Xu Qin
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang, Jiangxi 330047, China
| | - Xing Xie
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang, Jiangxi 330047, China
| | - A'mei Wang
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang, Jiangxi 330047, China
| |
Collapse
|
49
|
Mazzucchelli G, Holzhauser T, Cirkovic Velickovic T, Diaz‐Perales A, Molina E, Roncada P, Rodrigues P, Verhoeckx K, Hoffmann‐Sommergruber K. Current (Food) Allergenic Risk Assessment: Is It Fit for Novel Foods? Status Quo and Identification of Gaps. Mol Nutr Food Res 2018; 62:1700278. [PMID: 28925060 PMCID: PMC5814866 DOI: 10.1002/mnfr.201700278] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/28/2017] [Indexed: 01/08/2023]
Abstract
Food allergies are recognized as a global health concern. In order to protect allergic consumers from severe symptoms, allergenic risk assessment for well-known foods and foods containing genetically modified ingredients is installed. However, population is steadily growing and there is a rising need to provide adequate protein-based foods, including novel sources, not yet used for human consumption. In this context safety issues such as a potential increased allergenic risk need to be assessed before marketing novel food sources. Therefore, the established allergenic risk assessment for genetically modified organisms needs to be re-evaluated for its applicability for risk assessment of novel food proteins. Two different scenarios of allergic sensitization have to be assessed. The first scenario is the presence of already known allergenic structures in novel foods. For this, a comparative assessment can be performed and the range of cross-reactivity can be explored, while in the second scenario allergic reactions are observed toward so far novel allergenic structures and no reference material is available. This review summarizes the current analytical methods for allergenic risk assessment, highlighting the strengths and limitations of each method and discussing the gaps in this assessment that need to be addressed in the near future.
Collapse
Affiliation(s)
- Gabriel Mazzucchelli
- Laboratory of Mass Spectrometry – MolSysDepartment of ChemistryUniversity of LiegeLiegeBelgium
| | | | - Tanja Cirkovic Velickovic
- Center of Excellence for Molecular Food SciencesUniversity of Belgrade – Faculty of ChemistryBelgradeSerbia
- Ghent University Global CampusYeonsu‐guIncheonSouth Korea
| | | | | | - Paola Roncada
- Istituto Sperimentale Italiano Lazzaro SpallanzaniMilanoItaly
| | - Pedro Rodrigues
- CCMARCenter of Marine ScienceUniversity of AlgarveFaroPortugal
| | | | | |
Collapse
|
50
|
Villa C, Costa J, Oliveira MBP, Mafra I. Bovine Milk Allergens: A Comprehensive Review. Compr Rev Food Sci Food Saf 2017; 17:137-164. [DOI: 10.1111/1541-4337.12318] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Caterina Villa
- REQUIMTE-LAQV, Faculdade de Farmácia; Univ. do Porto; Porto Portugal
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia; Univ. do Porto; Porto Portugal
| | | | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia; Univ. do Porto; Porto Portugal
| |
Collapse
|