1
|
Bakr AF, Farag MA. Soluble Dietary Fibers as Antihyperlipidemic Agents: A Comprehensive Review to Maximize Their Health Benefits. ACS OMEGA 2023; 8:24680-24694. [PMID: 37483202 PMCID: PMC10357562 DOI: 10.1021/acsomega.3c01121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023]
Abstract
The number of hypercholesterolemic people is increasing rapidly worldwide, with elevated lipid profiles representing a major risk factor of coronary heart diseases. Dietary intervention was shown to improve the lipid profile, thus enhancing the quality of life. Dietary fiber is a nondigestible form of carbohydrates, due to the lack of the digestive enzyme in humans required to digest fiber, and is classified according to its water solubility properties as either soluble (SDF) or insoluble dietary fiber (IDF). Consumption of SDF is associated with several health benefits such as reduced lipid levels, lower blood pressure, improved blood glucose control, improved immune function, and reduced inflammation. SDF has been shown to lower blood cholesterol by several action mechanisms including directly due to the gelling, mucilaginous, and viscous fiber nature, and indirectly due to its fermented products and modulation of the gut microbiome. This review aims to provide a holistic overview on how SDF impacts the lipid profile. We start by providing an overview of the chemical structure of the major SDFs including mucilage, gums (gum arabic and guar gum), pectin, and inulin.
Collapse
Affiliation(s)
- Alaa F. Bakr
- Pathology
Department, Faculty of Veterinary Medicine, Cairo University, Gamaa Street, 12211 Giza, Egypt
| | - Mohamed A. Farag
- Pharmacognosy
Department, College of Pharmacy, Cairo University, Kasr el Aini Street, P.O. Box 11562, 12613 Cairo, Egypt
| |
Collapse
|
2
|
Xie C, Gao W, Li X, Luo S, Chye FY. Study on the hypolipidemic properties of garlic polysaccharide in vitro and in normal mice as well as its dyslipidemia amelioration in type2 diabetes mice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
3
|
Nie Y, Luo F. Dietary Fiber: An Opportunity for a Global Control of Hyperlipidemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5542342. [PMID: 33897940 PMCID: PMC8052145 DOI: 10.1155/2021/5542342] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/06/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
Dietary fiber has a long history in the intervention study of hyperlipidemia. In this review, current understandings of structures, sources, and natures of various kinds of dietary fibers (DFs) were analyzed first. Available evidences for the use of different varieties of DFs in the lipid-lowering action both in vitro and in vivo were subsequently classified, including both soluble ones, such as glucans, pectins, and gums, and insoluble ones, including arabinooxylans and chitosans, in order to draw a primary conclusion of their dose and molecular weight relationship with lipid-lowering effect. Their potential mechanisms, especially the related molecular mechanism of protective action in the treatment and prevention of hyperlipidemia, were summarized at last. Five major mechanisms are believed to be responsible for the antihyperlipidemic benefits of DFs, including low levels of energy, bulking effect, viscosity, binding capacity, and fermentation thus ameliorating the symptoms of hyperlipidemia. From the molecular level, DFs could possibly affect the activities of HMG-CoA reductase, LDL receptors, CYP7A1, and MAPK signaling pathway as well as other lipid metabolism-related target genes. In summary, dietary fibers could be used as alternative supplements to exert certain lipid-lowering effects on humans. However, more clinical evidence is needed to strengthen this proposal and its fully underlying mechanism still requires more investigation.
Collapse
Affiliation(s)
- Ying Nie
- School of Food Technology and Biological Science, Hanshan Normal University, Chaozhou 521041, China
- Laboratory of Molecular Nutrition, College of Food science and Engineering, National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
| | - Feijun Luo
- Laboratory of Molecular Nutrition, College of Food science and Engineering, National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
4
|
Yang G, Qiu H, Yu R, Xiong L, Yan Q, Wen C, Peng M. Dietary supplementation of β-glucan, inulin and emodin modulates antioxidant response and suppresses intestinal inflammation of grass carp (Ctenopharyngodon idellus). Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2020.114789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Zhu X, Zhang X, Gao X, Yi Y, Hou Y, Meng X, Jia C, Chao B, Fan W, Li X, Zhang H. Effects of Inulin Propionate Ester on Obesity-Related Metabolic Syndrome and Intestinal Microbial Homeostasis in Diet-Induced Obese Mice. ACS OMEGA 2020; 5:12865-12876. [PMID: 32548470 PMCID: PMC7288568 DOI: 10.1021/acsomega.0c00649] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/15/2020] [Indexed: 05/10/2023]
Abstract
Short-chain fatty acid (SCFA) plays an important role in improving obesity and related metabolic syndrome induced by high-fat diet. We used the prepared inulin propionate ester (IPE) as a system for the targeted release of propionate to the colon to elucidate the role of IPE in regulating obesity and metabolic syndrome, and intestinal microbial homeostasis, in diet-induced obese mice. With this strategy, IPE significantly increased the SCFA contents in the colon and resulted in significant body weight reduction, insulin resistance amelioration, and gastrointestinal hormone (glucagon-like peptide and peptide YY) secretion (P < 0.05). The IPE intervention reduced liver fatty accumulation, which improved obesity-related fatty liver disease (P < 0.05). IPE supplementation increased the richness and diversity of the microbial community and altered bacterial population at both the phylum and family level. Intestinal microbial results showed that the relative abundance of Desulfovibrionaceae and Erysipelotrichaceae, which promote the production of inflammatory factors, was reduced. Our results demonstrate that IPE can be used as an effective strategy for delivering propionate to obese mice colon, which can ameliorate obesity and associated metabolic syndrome and modify intestinal microbial homeostasis.
Collapse
Affiliation(s)
- Xiaozhen Zhu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuelu Gao
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yuetao Yi
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Yang Hou
- Beijing Dongcheng District Food and Drug Safety Monitoring Center, Beijing 100050, China
| | - Xianyao Meng
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenchen Jia
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Chao
- School of Clinical Medicine at Binzhou Medical University, Yantai 264003, China
| | - Wenyong Fan
- School of Clinical Medicine at Binzhou Medical University, Yantai 264003, China
| | - Xinrui Li
- School of Clinical Medicine at Binzhou Medical University, Yantai 264003, China
| | - Hanhan Zhang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Binzhou Medical University, Yantai, Shandong 264003, China
| |
Collapse
|
6
|
Zhang W, Tang Y, Huang J, Yang Y, Yang Q, Hu H. Efficacy of inulin supplementation in improving insulin control, HbA1c and HOMA-IR in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. J Clin Biochem Nutr 2020; 66:176-183. [PMID: 32523243 DOI: 10.3164/jcbn.19-103] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus is a chronic disease that occurs among the general population. The insulin-lowering and homeostasis model assessment of insulin resistance-improving effects of inulin are unconfirmed. We conducted this meta-analysis to examine the efficiency and safety of inulin for improving insulin control, homeostasis model assessment of insulin resistance and HbA1c in patients with type 2 diabetes mellitus. We searched the Web of Science, PubMed, Embase and Cochrane Library databases for relevant articles published before June 1, 2019. In total, 225 randomized controlled trials regarding the efficiency of inulin for the treatment of type 2 diabetes mellitus compared to the efficacy of placebo or other treatments were examined. According to the inclusion and exclusion criteria, 9 trials with a total of 661 participants were included. We concluded that inulin supplementation can significantly improve fasting plasma glucose (SMD = -0.55, 95% CI -0.73 to -0.36, p = 0), HOMA-IR (SMD = -0.81, 95% CI -1.59 to -0.03, p = 0.042) and HbA1c (SMD = -0.69, 95% CI -0.92 to -0.46, p = 0). Further subgroup analyses revealed a significant role of inulin supplementation for treatment durations ≥8 weeks (p = 0.038 for insulin, p = 0.002 for HOMA-IR, p = 0.032 for FPG, p = 0 for HbA1c).
Collapse
Affiliation(s)
- Wenyue Zhang
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Chongqing, China.,Department of Clinical Nutrition, The Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Chongqing, China
| | - Yao Tang
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Chongqing, China
| | - Juan Huang
- Department of Clinical Nutrition, The Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Chongqing, China
| | - Yixuan Yang
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Chongqing, China
| | - Qinbing Yang
- Department of Clinical Nutrition, Beijing Tsinghua Changgung Hospital Medical Center, Tsinghua University, Beijing, China
| | - Huaidong Hu
- Department of Clinical Nutrition, The Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Chongqing, China
| |
Collapse
|
7
|
Dietary adzuki bean paste dose-dependently reduces visceral fat accumulation in rats fed a normal diet. Food Res Int 2019; 130:108890. [PMID: 32156348 DOI: 10.1016/j.foodres.2019.108890] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/29/2019] [Accepted: 12/12/2019] [Indexed: 01/15/2023]
Abstract
The aim of this study was to evaluate the dose-dependent effect of adzuki bean (Vigna angularis) paste (ABP) on visceral fat accumulation in rats. ABP is a rich source of indigestible carbohydrates (18.5%) with fiber and resistant starch (RS) contents of 14.5% and 4.0%, respectively. Animals were fed one of the following diets, control (CON), 30% ABP or 58.9% ABP for 28 days. The daily dietary energy intake was lowered (p < 0.05) and reduced visceral fat accumulation and lower serum lipid levels were observed in ABP fed groups. ABP consumption dose-dependently increased (p < 0.05) the daily fecal lipid and fecal acidic sterol excretions. On the other hand, cecal content and fecal moisture content in the 58.9% ABP group were greater (p < 0.05) than the CON group, while there was no significant difference between the two ABP fed groups. Both 30% and 58.9% ABP diets had significantly (p < 0.05) higher contents of cecal acetic, propionic and n-butyric acids, and lowered cecal pH, independently of the ABP dose. Microbial community data of rats fed ABP diets exhibited higher alpha-diversities than the rats fed CON diet, based on the Shannon Index and the number of observed species index, where the two ABP groups exhibited a similar alpha diversity. The weighted UniFrac-based principal coordinate analysis plot of cecal microbial community data showed that the ABP had a substantial effect on the cecal microbial composition. Furthermore, cecal bacterial 16S rRNA gene sequencing revealed that the ABP supplemented diets decreased the ratio of Firmicutes to Bacteroidetes. These findings suggested that the cecal fermentation of fiber and RS in ABP, might have decreased the energy intake, altered the gut microbiota composition, increased fecal lipid output, and thereby reduced fat accumulation in rats.
Collapse
|
8
|
Wang X, Shi L, Wang X, Feng Y, Wang Y. MDG-1, an Ophiopogon polysaccharide, restrains process of non-alcoholic fatty liver disease via modulating the gut-liver axis. Int J Biol Macromol 2019; 141:1013-1021. [DOI: 10.1016/j.ijbiomac.2019.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 02/07/2023]
|
9
|
Li X, Chen P, Zhang P, Chang Y, Cui M, Duan J. Protein‐Bound β‐glucan from Coriolus Versicolor has Potential for Use Against Obesity. Mol Nutr Food Res 2019; 63:e1801231. [DOI: 10.1002/mnfr.201801231] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/13/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaojun Li
- College of Chemistry & PharmacyNorthwest A&F University Yangling 712100 Shaanxi China
| | - Peng Chen
- College of Chemistry & PharmacyNorthwest A&F University Yangling 712100 Shaanxi China
| | - Peng Zhang
- College of Chemistry & PharmacyNorthwest A&F University Yangling 712100 Shaanxi China
| | - Yifan Chang
- College of Chemistry & PharmacyNorthwest A&F University Yangling 712100 Shaanxi China
| | - Mingxu Cui
- College of Chemistry & PharmacyNorthwest A&F University Yangling 712100 Shaanxi China
| | - Jinyou Duan
- College of Chemistry & PharmacyNorthwest A&F University Yangling 712100 Shaanxi China
| |
Collapse
|
10
|
Niibo M, Shirouchi B, Umegatani M, Morita Y, Ogawa A, Sakai F, Kadooka Y, Sato M. Probiotic Lactobacillus gasseri SBT2055 improves insulin secretion in a diabetic rat model. J Dairy Sci 2018; 102:997-1006. [PMID: 30471910 DOI: 10.3168/jds.2018-15203] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/18/2018] [Indexed: 01/16/2023]
Abstract
The probiotic Lactobacillus gasseri SBT2055 (LG2055) has a protective effect against metabolic syndrome in rats and humans. Metabolic syndrome increases the risk of type 2 diabetes mellitus. In this study, Goto-Kakizaki rats were used as a diabetic model and fed diets containing LG2055-fermented or nonfermented skim milk for 4 wk. Indices of diabetes such as blood glucose levels, serum glucagon levels, plasma levels of insulin, C-peptide, and glucagon-like peptide-1, tissue glycogen contents, and pancreatic mRNA levels were measured. The plasma C-peptide levels and pancreatic mRNA levels of insulin genes (Ins1 and Ins2) and Pdx1 (a transcriptional factor of insulin genes) were increased in LG2055 diet-fed rats. The increase in insulin secretion corresponded to an improvement in serum and pancreatic inflammatory status, associated with decreases in serum levels of serum amyloid P and pancreatic levels of granulocyte colony-stimulating factor. Insulin resistance in Goto-Kakizaki rats was ameliorated by increased glycogen storage in the liver and quadriceps femoris muscles and decreased serum free fatty acid levels. This improvement may be related to the increased cecal production of short-chain fatty acids. In conclusion, dietary LG2055 improved insulin secretion in diabetic rats by improving the inflammatory status in the pancreas and serum.
Collapse
Affiliation(s)
- M Niibo
- Laboratory of Nutrition Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - B Shirouchi
- Laboratory of Nutrition Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - M Umegatani
- Laboratory of Nutrition Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Y Morita
- Laboratory of Nutrition Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - A Ogawa
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., 1-1-2 Minamidai, Kawagoe, Saitama 350-1165, Japan
| | - F Sakai
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., 1-1-2 Minamidai, Kawagoe, Saitama 350-1165, Japan
| | - Y Kadooka
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., 1-1-2 Minamidai, Kawagoe, Saitama 350-1165, Japan
| | - M Sato
- Laboratory of Nutrition Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
11
|
Effects of prebiotic inulin addition to low- or high-fat diet on maternal metabolic status and neonatal traits of offspring in a pregnant sow model. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
12
|
Zhu X, Jia C, Meng X, Xing M, Yi Y, Gao X. Synthesis, Characterization of Inulin Propionate Ester, and Evaluation of its in Vitro Effect on SCFA Production. STARCH-STARKE 2018. [DOI: 10.1002/star.201800037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaozhen Zhu
- Key Laboratory of Coastal Biology and Bioresource UtilizationYantai Institute of Coastal Zone ResearchChinese Academy of SciencesYantai264003China
- University of Chinese Academy of SciencesBeijing100049China
| | - Chenchen Jia
- Key Laboratory of Coastal Biology and Bioresource UtilizationYantai Institute of Coastal Zone ResearchChinese Academy of SciencesYantai264003China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xianyao Meng
- Key Laboratory of Coastal Biology and Bioresource UtilizationYantai Institute of Coastal Zone ResearchChinese Academy of SciencesYantai264003China
- University of Chinese Academy of SciencesBeijing100049China
| | - Mengjing Xing
- School of Materials Science and EngineeringHarbin Institute of TechnologyWeihai264209China
| | - Yuetao Yi
- Key Laboratory of Coastal Biology and Bioresource UtilizationYantai Institute of Coastal Zone ResearchChinese Academy of SciencesYantai264003China
| | - Xuelu Gao
- University of Chinese Academy of SciencesBeijing100049China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological RemediationYantai Institute of Coastal Zone ResearchChinese Academy of SciencesYantai264003China
| |
Collapse
|