1
|
Mohanan A, Harilal SL, Plakkot B, Pottakkat B, Kanakkaparambil R. Nutritional Epigenetics and Gut Microbiome. EPIGENETICS AND HUMAN HEALTH 2024:121-159. [DOI: 10.1007/978-3-031-54215-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Dessì A, Bosco A, Pintus R, Picari G, Mazza S, Fanos V. Epigenetics and Modulations of Early Flavor Experiences: Can Metabolomics Contribute to Prevention during Weaning? Nutrients 2021; 13:nu13103351. [PMID: 34684350 PMCID: PMC8539480 DOI: 10.3390/nu13103351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
Abstract
The significant increase in chronic non-communicable diseases has changed the global epidemiological landscape. Among these, obesity is the most relevant in the pediatric field. This has pushed the world of research towards a new paradigm: preventive and predictive medicine. Therefore, the window of extreme plasticity that characterizes the first stage of development cannot be underestimated. In this context, nutrition certainly plays a primary role, being one of the most important epigenetic modulators known to date. Weaning, therefore, has a crucial role that must be analyzed far beyond the simple achievement of nutritional needs. Furthermore, the taste experience and the family context are fundamental for future food choices and can no longer be underestimated. The use of metabolomics allows, through the recognition of early disease markers and food-specific metabolites, the planning of an individualized and precise diet. In addition, the possibility of identifying particular groups of subjects at risk and the careful monitoring of adherence to dietary therapy may represent the basis for this change.
Collapse
|
3
|
Liu J, Zhang Z, Xu J, Song X, Yuan W, Miao M, Liang H, Du J. Genome-wide DNA methylation changes in placenta tissues associated with small for gestational age newborns; cohort study in the Chinese population. Epigenomics 2019; 11:1399-1412. [PMID: 31596135 DOI: 10.2217/epi-2019-0004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: To investigate DNA methylation changes in placenta tissues associated with small for gestational age (SGA). Materials & methods: A prospective cohort study consisting of 1292 pregnant women from China (including 39 SGA with placenta tissues) was performed, microarray and pyrosequencing were conducted. Results: Total 2012 methylation variable positions stood out from all probes (p < 0.05; Δβ > 0.2). In SGA cases, a CpG site within ANKRD20B showed lower methylation level (p = 0.032) than appropriate for gestational age in validation cohort. Five sites within FAM198A (p = 0.047, 0.050, 0.039, 0.026 and 0.043, respectively) had a reduced methylation in male newborns whose mother had preconception folic acid supplementation. Conclusion: DNA methylation changes in placenta tissues may be associated with SGA, maternal preconception folic acid supplementation status and also be fetal sex-specific.
Collapse
Affiliation(s)
- Junwei Liu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Zhaofeng Zhang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Jianhua Xu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Xiuxia Song
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Wei Yuan
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Maohua Miao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Hong Liang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Jing Du
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Maternal folic acid depletion during early pregnancy increases sensitivity to squamous tumor formation in the offspring in mice. J Dev Orig Health Dis 2019; 10:683-691. [PMID: 31131784 DOI: 10.1017/s2040174419000217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gestational nutrition is widely recognized to affect an offspring's future risk of lifestyle-related diseases, suggesting the involvement of epigenetic mechanisms. As folic acid (FA) is a nutrient essential for modulating DNA methylation, we sought to determine how maternal FA intake during early pregnancy might influence tumor sensitivity in an offspring. Dams were maintained on a FA-depleted (FA(-)) or normal (2 mg FA/kg; FA(+)) diet from 2 to 3 days before mating to 7 days post-conception, and their offspring were challenged with chemical tumorigenesis using 7,12-dimethylbenz[a)anthracene and phorbol 12-myristate 13-acetate for skin and 4-nitroquinoline N-oxide for tongue. In both squamous tissues, tumorigenesis was more progressive in the offspring from FA(-) than FA(+) dams. Notably, in the skin of FA(-) offspring, the expression and activity of cylindromatosis (Cyld) were decreased due to the altered DNA methylation status in its promoter region, which contributed to increased tumorigenesis coupled with inflammation in the FA(-) offspring. Thus, we conclude that maternal FA insufficiency during early pregnancy is able to promote neoplasm progression in the offspring through modulating DNA methylation, such as Cyld. Moreover, we propose, for the first time, "innate" utero nutrition as the third cause of tumorigenesis besides the known causes-hereditary predisposition and acquired environmental factors.
Collapse
|
5
|
Potter C, Moorman AV, Relton CL, Ford D, Mathers JC, Strathdee G, McKay JA. Maternal Red Blood Cell Folate and Infant Vitamin B 12 Status Influence Methylation of Genes Associated with Childhood Acute Lymphoblastic Leukemia. Mol Nutr Food Res 2018; 62:e1800411. [PMID: 30192066 DOI: 10.1002/mnfr.201800411] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/12/2018] [Indexed: 12/19/2022]
Abstract
SCOPE Inadequate maternal folate intake is associated with increased childhood acute lymphoblastic leukemia (ALL) risk. Folate provides methyl groups for DNA methylation, which is dramatically disrupted in ALL. Whether or not maternal folate (and related B-vitamin) intake during pregnancy may affect ALL risk via influencing DNA methylation is investigated. METHODS AND RESULTS Genes in which methylation changes are reported both in response to folate status and in ALL are investigated. Folate-responsive genes (n = 526) are identified from mouse models of maternal folate depletion during pregnancy. Using published data, 2621 genes with persistently altered methylation in ALL are identified. Overall 25 overlapping genes are found, with the same directional methylation change in response to folate depletion and in ALL. Hypermethylation of a subset of genes (ASCL2, KCNA1, SH3GL3, SRD5A2) in ALL is confirmed by measuring 20 patient samples using pyrosequencing. In a nested cohort of cord blood samples (n = 148), SH3GL3 methylation is inversely related to maternal RBC folate concentrations (p = 0.008). Furthermore, ASCL2 methylation is inversely related to infant vitamin B12 levels. (p = 0.016). CONCLUSION Findings demonstrate proof of concept for a plausible mechanism, i.e., variation in DNA methylation, by which low intake of folate, and related B-vitamins during pregnancy may influence ALL risk.
Collapse
Affiliation(s)
- Catherine Potter
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Anthony Vincent Moorman
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | | | - Dianne Ford
- Faculty of Health and Life Sciences, Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8SG, UK
| | - John Cummings Mathers
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Gordon Strathdee
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Jill Ann McKay
- Faculty of Health and Life Sciences, Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8SG, UK.,Human Nutrition Research Centre, Institute for Health & Society, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
6
|
Won SB, Kwon YH. Maternal Consumption of Low-Isoflavone Soy Protein Isolate Confers the Increased Predisposition to Alcoholic Liver Injury in Adult Rat Offspring. Nutrients 2018. [PMID: 29534433 PMCID: PMC5872750 DOI: 10.3390/nu10030332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Offspring of female rats fed either a casein (CAS) diet or a low-isoflavone soy protein isolate (SPI) diet were compared in an animal model of chronic ethanol consumption to investigate whether maternal diet regulates the adaptive responses of offspring to postnatal ethanol exposure and potentially affects the development of liver disease in later life. Female rats were fed either a CAS or an SPI diet before mating, and during pregnancy and lactation. Male offspring from the same litter were pair-fed either a control or ethanol diet for six weeks (CAS/CON, CAS/EtOH, SPI/CON, and SPI/EtOH groups). Serum aminotransferase activities and hepatic inflammatory indicators were higher in the SPI/EtOH group than in the CAS/EtOH group. Ethanol consumption increased serum homocysteine levels, hepatic S-adenosylmethionine:S-adenosylhomocysteine ratio, and hepatic endoplasmic reticulum stress only in offspring of SPI-fed female rats. Total and high-density lipoprotein (HDL) cholesterol levels and mRNA levels of hepatic genes involved in HDL cholesterol assembly were reduced in the SPI group in response to ethanol consumption. In conclusion, offspring of SPI-fed female rats were more susceptible to the later development of alcoholic liver disease than offspring of CAS-fed female rats. Furthermore, maternal SPI consumption altered one-carbon metabolism and cholesterol metabolism of offspring fed an ethanol diet.
Collapse
Affiliation(s)
- Sae Bom Won
- Department of Food and Nutrition, Seoul National University, Seoul 08826, Korea.
- Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea.
| | - Young Hye Kwon
- Department of Food and Nutrition, Seoul National University, Seoul 08826, Korea.
- Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
7
|
Maternal Prenatal Folic Acid Supplementation Programs Offspring Lipid Metabolism by Aberrant DNA Methylation in Hepatic ATGL and Adipose LPL in Rats. Nutrients 2017; 9:nu9090935. [PMID: 28846595 PMCID: PMC5622695 DOI: 10.3390/nu9090935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/09/2017] [Accepted: 08/23/2017] [Indexed: 12/27/2022] Open
Abstract
The effects of maternal prenatal folic acid supplementation (FAS) on offspring lipid metabolism in adulthood remains unclear, although prenatal FAS is compulsively suggested in many countries. Female Sprague-Dawley rats were fed with control (CON) or FAS diets before and during pregnancy. Male offspring of CON and FAS dams were further divided into two groups at seven weeks for CON and high-fat (HF) diet interventions for eight weeks in adulthood (n = 10). The interactive effects of maternal prenatal FAS and offspring HF in adulthood on lipid metabolism and DNA methylation of genes involved in lipids metabolism were assessed. The male offspring of FAS dams had elevated serum and liver triglyceride level when fed with HF compared to the male offspring of CON dams. The mRNA and protein expression levels of hepatic ATGL and adipose LPL were significantly decreased in offspring of FAS dams than in offspring of CON dams. Furthermore, maternal prenatal FAS resulted in elevated DNA methylation levels in the promoter and first exon region of hepatic ATGL and adipose LPL in offspring. Maternal FAS exacerbated the adverse effects of HF on lipid metabolism in offspring through inducing aberrant DNA methylation levels of hepatic ATGL and adipose LPL.
Collapse
|
8
|
Forster VJ, McDonnell A, Theobald R, McKay JA. Effect of methotrexate/vitamin B 12 on DNA methylation as a potential factor in leukemia treatment-related neurotoxicity. Epigenomics 2017; 9:1205-1218. [PMID: 28809129 PMCID: PMC5638018 DOI: 10.2217/epi-2016-0165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Methotrexate (MTX) is administered to treat childhood acute lymphoblastic leukemia (ALL). It acts by inhibiting dihydrofolate reductase which reduces methyltetrahydrofolate, a key component in one carbon metabolism, thus reducing cell proliferation. Further perturbations to one carbon metabolism, such as reduced vitamin B12 levels via the use of nitrous oxide for sedation during childhood ALL treatment, may increase neurotoxicity risk. With B12 as an enzymatic cofactor, methyltetrahydrofolate is essential to produce methionine, which is critical for DNA methylation. We investigated global and gene specific DNA methylation in neuronal cell lines in response to MTX treatment and vitamin B12 concentration individually, and in combination. Results: MTX treatment alone significantly increased LINE-1 methylation in SH-SY5Y (p = 0.040) and DAOY (p < 0.001), and increased FKBP5 methylation in MO3.13 cells (p = 0.009). Conclusion: We conclude that altered DNA methylation of brain/central nervous system cells could be one mechanism involved in MTX treatment-related neurotoxicities and neurocognitive late effects in ALL survivors.
Collapse
Affiliation(s)
- Victoria J Forster
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - Alex McDonnell
- Institute of Health & Society, Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Rachel Theobald
- Institute of Health & Society, Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Jill A McKay
- Institute of Health & Society, Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|