1
|
Liu Z, Solano-Aguilar G, Lakshman S, Urban JF, Zhang M, Chen P, Yu LL, Sun J. Metabolic pathway and network analysis integration for discovering the biomarkers in pig feces after a controlled fruit-vegetable dietary intervention. Food Chem 2024; 461:140836. [PMID: 39154458 DOI: 10.1016/j.foodchem.2024.140836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/24/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
This study aimed to establish a strategy for identifying dietary intake biomarkers using a non-targeted metabolomic approach, including metabolic pathway and network analysis. The strategy was successfully applied to identify dietary intake biomarkers in fecal samples from pigs fed two doses of a polyphenol-rich fruit and vegetable (FV) diet following the Dietary Guidelines for Americans (DGA) recommendations. Potential biomarkers were identified among dietary treatment groups using liquid chromatography-high resolution mass spectrometry (LC-HRMS) based on a non-targeted metabolomic approach with metabolic pathway and network analysis. Principal component analysis (PCA) results showed significant differences in fecal metabolite profiles between the control and two FV intervention groups, indicating a diet-induced differential fecal metabolite profile after FV intervention. Metabolites from common flavonoids, e.g., (epi)catechin and protocatechuic acid, or unique flavonoids, e.g., 5,3',4'-trihydroxy-3-methoxy-6,7-methylenedioxyflavone and 3,5,3',4'-tetrahydroxy-6,7-methylenedioxyflavone, were identified as highly discriminating factors, confirming their potential as fecal markers for the FV dietary intervention. Microbiota pathway prediction using targeted flavonoids provided valuable and reliable biomarker exploration with high confidence. A correlation network analysis between these discriminatory ion features was applied to find connections to possible dietary biomarkers, further validating these biomarkers with biochemical insights. This study demonstrates that integrating metabolic pathways and network analysis with a non-targeted metabolomic approach is highly effective for rapid and accurate identification and prediction of fecal biomarkers under controlled dietary conditions in animal studies. This approach can also be utilized to study microbial metabolisms in human clinical research.
Collapse
Affiliation(s)
- Zhihao Liu
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Gloria Solano-Aguilar
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Sukla Lakshman
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Joseph F Urban
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Mengliang Zhang
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Pei Chen
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Jianghao Sun
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA.
| |
Collapse
|
2
|
Patel DK, Singh GK, Husain GM, Prasad SK. Ethnomedicinal Importance of Patuletin in Medicine: Pharmacological Activities and Analytical Aspects. Endocr Metab Immune Disord Drug Targets 2024; 24:519-530. [PMID: 37584350 DOI: 10.2174/1871530323666230816141740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/05/2023] [Accepted: 07/06/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND Plant-derived bioactive molecules have been a major source of therapeutic agents for human and veterinarian purposes. Different traditional medicine system across the globe had relied on natural resources to meet their demand of healthcare. Still in modern world, pharmaceutical industries look for phytochemicals to develop new drugs. The current review explores patuletin, a flavonoid for its diverse reported pharmacological activities along with its analytical techniques. METHODS Scientific data published on patuletin was collected from Scopus, Science Direct, Pubmed, Google, and Google Scholar. The collected data were analyzed and arranged as per specific pharmacological activities performed using in-vitro or in-vivo methods. Analytical methods of patuletin have been presented next to pharmacological activities Results: Available scientific literature indicates patuletin has anti-inflammatory, cytotoxic, genotoxic, hepatoprotective, antiproliferative, antiplatelet, antinociceptive, and antioxidant activity. In addition to these activities, its biological potential on breast cancer, rheumatoid arthritis, aldose reductase, and different types of microorganisms has been also presented in this work. Analytical data on patuletin signified the importance of patuletin for the standardization of herbal products and derived medicine. CONCLUSION It may be concluded that patuletin with its diverse biological activities and readily available analytical methods, holds the potential to be translated into a new drug entity.
Collapse
Affiliation(s)
- Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, Uttar Pradesh, India
| | - Gireesh Kumar Singh
- Department of Pharmacy, School of Health Science, Central University of South Bihar Gaya, 824236, India
| | - Gulam Mohammed Husain
- National Research Institute of Unani Medicine for Skin Disorders (Under CCRUM, Ministry of Ayush, Govt. of India), Opp. ESI Hospital, AG Colony Road, Erragadda, Hyderabad, 500 038, Telangana State, India
| | - Satyendra K Prasad
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, 440033, India
| |
Collapse
|
3
|
Yin Z, Yuan B, Lyu W, Huang Q, Simon JE, Wu Q. Method development and validation for analysis of phenolic compounds in fatty complex matrices using enhanced matrix removal (EMR) lipid cleanup and UHPLC-QqQ-MS/MS. Food Chem 2022; 373:131096. [PMID: 34710678 DOI: 10.1016/j.foodchem.2021.131096] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/15/2021] [Accepted: 09/06/2021] [Indexed: 12/01/2022]
Abstract
Reliable analysis of phenolic compounds in fatty matrices is a challenging task. In this work, a robust analytical method was developed and validated for 55 phenolic compounds employing QuEChERS (quick, efficient, cheap, easy, rugged and safe) and Enhanced Matrix Removal (EMR)-lipid cleanup in 96-well plates for sample preparation, coupled with ultra-high performance liquid chromatography with triple quadrupole mass spectrometry (UHPLC-QqQ-MS/MS). Seven high-fat matrices of pork brain, belly and liver; horse serum, beef, salmon and avocado were explored for method validation and led to promising stepwise recoveries of extraction, clean-up, drying-reconstitution of most analytes ranging from 75% to 113%, and with an accuracy of 78%∼117%, except for six catechin-analogues. The matrix removal efficiency of EMR was determined using UHPLC-quadruple time of flight (QTOF)-MS, and results indicated that 56%∼77% of co-extractives were removed. This method would be readily extended to wide range of applications demanding high-throughput and sensitive analysis of phenolic compounds in fatty samples.
Collapse
Affiliation(s)
- Zhiya Yin
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA; Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Bo Yuan
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA; Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Weiting Lyu
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA; Department of Medicinal Chemistry, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Qingrong Huang
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - James E Simon
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA; Department of Medicinal Chemistry, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA; Center for Agricultureal Food Ecosystens, The New Jersey Institute for Food, Nutrition and Health, Rutgers University, 61 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Qingli Wu
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA; Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901, USA; Department of Medicinal Chemistry, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA; Center for Agricultureal Food Ecosystens, The New Jersey Institute for Food, Nutrition and Health, Rutgers University, 61 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
4
|
Xi M, La Barbera G, Eriksen JN, Prahm AP, Jeppesen PB, Dragsted LO. Discovery of urinary biomarkers of spinach consumption using untargeted LC-MS metabolomics in a human intervention trial. Mol Nutr Food Res 2022; 66:e2100260. [PMID: 35072987 DOI: 10.1002/mnfr.202100260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/21/2021] [Indexed: 11/06/2022]
Abstract
SCOPE Biomarkers for intake of green leafy vegetables such as spinach could help investigate their health effects. However, only few potential intake markers have been reported in the literature so far. METHODS AND RESULTS Based on a cross-over study on whole leaf and minced spinach, we investigated changes in metabolites before and after spinach intake and differences between the two treatments and health status. Nineteen volunteers (12 healthy subjects and 7 short bowel patients) completed the study within 48 d. Urine samples (24 hr intervals before and after spinach intake) and serum samples (baseline, post 8 d, and post 15 d) were collected and analyzed by UHPLC-QTOF-MS. The acquired data was analyzed by multivariate and univariate analyses. Three candidate biomarkers were observed in urine only after the spinach intake, including des-amino arginine pentenol ester, D/L-malic acid ester of cis-p-coumarate, D/L-malic acid ester of trans-p-coumarate, and 69 metabolites were present before spinach intake but showing an altered level after treatment. These metabolites were related to dietary habits or meal structure, and some changes were possibly affected by spinach intake. The candidate biomarkers were independent of spinach pre-processing and healthy status. No markers were discovered in serum samples. CONCLUSION We propose structures for three candidate spinach intake biomarkers; these markers will need further validation in independent studies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Muyao Xi
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Giorgia La Barbera
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jane Nygaard Eriksen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - August Pilegaard Prahm
- Department of Gastroenterology and Hepatology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Palle Bekker Jeppesen
- Department of Gastroenterology and Hepatology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Phenol Biological Metabolites as Food Intake Biomarkers, a Pending Signature for a Complete Understanding of the Beneficial Effects of the Mediterranean Diet. Nutrients 2021; 13:nu13093051. [PMID: 34578929 PMCID: PMC8471182 DOI: 10.3390/nu13093051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 01/14/2023] Open
Abstract
The Mediterranean diet (MD) has become a dietary pattern of reference due to its preventive effects against chronic diseases, especially relevant in cardiovascular diseases (CVD). Establishing an objective tool to determine the degree of adherence to the MD is a pending task and deserves consideration. The central axis that distinguishes the MD from other dietary patterns is the choice and modality of food consumption. Identification of intake biomarkers of commonly consumed foods is a key strategy for estimating the degree of adherence to the MD and understanding the protective mechanisms that lead to a positive impact on health. Throughout this review we propose potential candidates to be validated as MD adherence biomarkers, with particular focus on the metabolites derived from the phenolic compounds that are associated with the consumption of typical Mediterranean plant foods. Certain phenolic metabolites are good indicators of the intake of specific foods, but others denote the intake of a wide-range of foods. For this, it is important to emphasise the need to increase the number of dietary interventions with specific foods in order to validate the biomarkers of MD adherence. Moreover, the identification and quantification of food phenolic intake biomarkers encouraging scientific research focuses on the study of the biological mechanisms in which polyphenols are involved.
Collapse
|
6
|
Brouwer-Brolsma EM, Brandl B, Buso MEC, Skurk T, Manach C. Food intake biomarkers for green leafy vegetables, bulb vegetables, and stem vegetables: a review. GENES AND NUTRITION 2020; 15:7. [PMID: 32272877 PMCID: PMC7144047 DOI: 10.1186/s12263-020-00667-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/27/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Numerous studies acknowledged the importance of an adequate vegetable consumption for human health. However, current methods to estimate vegetable intake are often prone to measurement errors due to self-reporting and/or insufficient detail. More objective intake biomarkers for vegetables, using biological specimens, are preferred. The only concentration biomarkers currently available are blood carotenoids and vitamin C, covering total fruit and vegetable intake. Identification of biomarkers for specific vegetables is needed for a better understanding of their relative importance for human health. Within the FoodBAll Project under the Joint Programming Initiative "A Healthy Diet for a Healthy Life", an ambitious action was undertaken to identify candidate intake biomarkers for all major food groups consumed in Europe by systematically reviewing the existent literature. This study describes the review on candidate biomarkers of food intake (BFIs) for leafy, bulb, and stem vegetables, which was conducted within PubMed, Scopus and Web of Science for studies published through March 2019. RESULTS In total, 65 full-text articles were assessed for eligibility for leafy vegetables, and 6 full-text articles were screened for bulb and stem vegetables. Putative BFIs were identified for spinach, lettuce, endive, asparagus, artichoke, and celery, but not for rocket salad. However, after critical evaluation through a validation scheme developed by the FoodBAll consortium, none of the putative biomarkers appeared to be a promising BFI. The food chemistry data indicate that some candidate BFIs may be revealed by further studies. CONCLUSION Future randomized controlled feeding studies combined with observational studies, applying a non-targeted metabolomics approach, are needed in order to identify valuable BFIs for the intake of leafy, bulb, and stem vegetables.
Collapse
Affiliation(s)
- Elske M Brouwer-Brolsma
- Division of Human Nutrition and Health, Wageningen University, PO Box 17, 6700 AA, Wageningen, The Netherlands.
| | - Beate Brandl
- ZIEL Institute for Food and Health, Core Facility Human Studies, Technical University of Munich, Freising, Germany
| | - Marion E C Buso
- Division of Human Nutrition and Health, Wageningen University, PO Box 17, 6700 AA, Wageningen, The Netherlands
| | - Thomas Skurk
- ZIEL Institute for Food and Health, Core Facility Human Studies, Technical University of Munich, Freising, Germany.,Else Kroener-Fresenius Center of Nutritional Medicine, Technical University of Munich, Freising, Germany
| | - Claudine Manach
- Université Clermont Auvergne, INRA, UMR1019, Human Nutrition Unit, F63000, Clermont-Ferrand, France
| |
Collapse
|
7
|
Schmitt S, Tratzka S, Schieber A, Passon M. Hemisynthesis of Anthocyanin Phase II Metabolites by Porcine Liver Enzymes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6177-6189. [PMID: 31083903 DOI: 10.1021/acs.jafc.9b01315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The aim of this work was to obtain phase II metabolites of cyanidin-3- O-glucoside and its aglycone using porcine liver enzymes. For this purpose, anthocyanins extracted from blackberry concentrate and containing mostly cyanidin-3- O-glucoside were incubated with the S9, microsomal, and cytosolic fractions of porcine liver. The reactions were targeted to the direction of the respective phase II transformation by the addition of activated cofactors. LC-MS n and LC-IMS-QTOF-MS analyses showed that one methylated, three glucuronidated and three sulfated metabolites of cyanidin-3- O-glucoside were generated. The aglycone, cyanidin, was sulfated and glucuronidated by the liver enzymes. In addition, both were glucuronidated and methylated simultaneously. The detected compounds and the generated data like exact masses, mass spectra, and CCS values may serve as a basis in the search for metabolites formed in vivo. As their effects are largely unexplored, the described synthesis may contribute to a better understanding of the metabolism of anthocyanins.
Collapse
Affiliation(s)
- Sarah Schmitt
- Department of Nutritional and Food Sciences, Molecular Food Technology , University of Bonn , Endenicher Allee 19b , 53115 Bonn , Germany
| | - Sebastian Tratzka
- Department of Nutritional and Food Sciences, Molecular Food Technology , University of Bonn , Endenicher Allee 19b , 53115 Bonn , Germany
| | - Andreas Schieber
- Department of Nutritional and Food Sciences, Molecular Food Technology , University of Bonn , Endenicher Allee 19b , 53115 Bonn , Germany
| | - Maike Passon
- Department of Nutritional and Food Sciences, Molecular Food Technology , University of Bonn , Endenicher Allee 19b , 53115 Bonn , Germany
| |
Collapse
|