1
|
Wang H, Li Y, Zhang L, Lu M, Li C, Li Y. Anti-Inflammatory Lipid Mediators from Polyunsaturated Fatty Acids: Insights into their Role in Atherosclerosis Microenvironments. Curr Atheroscler Rep 2025; 27:48. [PMID: 40198469 DOI: 10.1007/s11883-025-01285-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2025] [Indexed: 04/10/2025]
Abstract
PURPOSE OF REVIEW Inflammation has become a major residual risk factor for atherosclerotic cardiovascular disease (ASCVD). Certain lipid mediators, known as specialized proresolving mediators (SPMs), are mainly derived from polyunsaturated fatty acids (PUFAs) and can promote inflammation resolution while maintaining host autoimmunity. This review investigates the synthesis and ligand action pathways of these lipid mediators, as well as their regulatory mechanisms in the microenvironment of atherosclerotic plaques. Furthermore, it explores their clinical therapeutic potential, aiming to offer new insights into novel anti-inflammatory drug targets for the treatment of ASCVD. RECENT FINDINGS Reduced levels of SPMs are associated with the progression of atherosclerosis. SPMs inhibit inflammatory responses in the plaque microenvironment by limiting immune cell infiltration, reducing oxidative stress, and promoting the clearance of apoptotic cells, all of which contribute to plaque stabilization. Tyrosine-protein kinase Mer (MerTK), TRIF-related adaptor molecule (TRAM), and high mobility group box 1 (HMGB1) play crucial roles in the modulation of SPM production. Clinical use of ω-3 PUFAs has been shown to reduce the incidence of fatal cardiovascular events. Furthermore, aspirin not only initiates the synthesis of specific SPMs but also extends their activity within the body. The enhanced production of SPMs promotes inflammation resolution in the plaque microenvironment without inducing immunosuppression. This characteristic highlights MerTK, TRAM, and HMGB1 as potential targets for the development of anti-inflammatory drugs. Investigating targets and compounds that enhance the production of SPMs presents a promising strategy for developing future anti-inflammatory agents.
Collapse
Affiliation(s)
- Hongqin Wang
- Post-doctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- , Daxue Road No. 4655, Changqing District, Jinan, Shandong Province, People's Republic of China
| | - Yuan Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- , Daxue Road No. 4655, Changqing District, Jinan, Shandong Province, People's Republic of China
| | - Lei Zhang
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Mengkai Lu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- , Daxue Road No. 4655, Changqing District, Jinan, Shandong Province, People's Republic of China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- , Daxue Road No. 4655, Changqing District, Jinan, Shandong Province, People's Republic of China.
| | - Yunlun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
2
|
CHENG X, ZHAO C, JIN Z, HU J, ZHANG Z, ZHANG C. Natural products: potential therapeutic agents for atherosclerosis. Chin J Nat Med 2022; 20:830-845. [DOI: 10.1016/s1875-5364(22)60219-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Indexed: 11/24/2022]
|
3
|
Potential Therapeutic Agents That Target ATP Binding Cassette A1 (ABCA1) Gene Expression. Drugs 2022; 82:1055-1075. [PMID: 35861923 DOI: 10.1007/s40265-022-01743-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
The cholesterol efflux protein ATP binding cassette protein A1 (ABCA) and apolipoprotein A1 (apo A1) are key constituents in the process of reverse-cholesterol transport (RCT), whereby excess cholesterol in the periphery is transported to the liver where it can be converted primarily to bile acids for either use in digestion or excreted. Due to their essential roles in RCT, numerous studies have been conducted in cells, mice, and humans to more thoroughly understand the pathways that regulate their expression and activity with the goal of developing therapeutics that enhance RCT to reduce the risk of cardiovascular disease. Many of the drugs and natural compounds examined target several transcription factors critical for ABCA1 expression in both macrophages and the liver. Likewise, several miRNAs target not only ABCA1 but also the same transcription factors that are critical for its high expression. However, after years of research and many preclinical and clinical trials, only a few leads have proven beneficial in this regard. In this review we discuss the various transcription factors that serve as drug targets for ABCA1 and provide an update on some important leads.
Collapse
|
4
|
Gencturk E, Kasim M, Morova B, Kiraz A, Ulgen KO. Understanding the Link between Inflammasome and Apoptosis through the Response of THP-1 Cells against Drugs Using Droplet-Based Microfluidics. ACS OMEGA 2022; 7:16323-16332. [PMID: 35601322 PMCID: PMC9118214 DOI: 10.1021/acsomega.1c06569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/20/2022] [Indexed: 05/09/2023]
Abstract
Droplet-based microfluidic devices are used to investigate monocytic THP-1 cells in response to drug administration. Consistent and reproducible droplets are created, each of which acts as a bioreactor to carry out single cell experiments with minimized contamination and live cell tracking under an inverted fluorescence microscope for more than 2 days. Here, the effects of three different drugs (temsirolimus, rifabutin, and BAY 11-7082) on THP-1 are examined and the results are analyzed in the context of the inflammasome and apoptosis relationship. The ASC adaptor gene tagged with GFP is monitored as the inflammasome reporter. Thus, a systematic way is presented for deciphering cell-to-cell heterogeneity, which is an important issue in cancer treatment. The drug temsirolimus, which has effects of disrupting the mTOR pathway and triggering apoptosis in tumor cells, causes THP-1 cells to express ASC and to be involved in apoptosis. Treatment with rifabutin, which inhibits proliferation and initiates apoptosis in cells, affects ASC expression by first increasing and then decreasing it. CASP-3, which has a role in apoptosis and is directly related to ASC, has an increasing level in inflammasome conditioning. Thus, the cell under the effect of rifabutin might be faced with programmed cell death faster. The drug BAY 11-7082, which is responsible for NFκB inhibition, shows similar results to temsirolimus with more than 60% of cells having high fluorescence intensity (ASC expression). The microfluidic platform presented here offers strong potential for studying newly developed small-molecule inhibitors for personalized/precision medicine.
Collapse
Affiliation(s)
- Elif Gencturk
- Department
of Chemical Engineering, Boǧaziçi
University, Biosystems Engineering Laboratory, Istanbul 34342, Turkey
| | - Muge Kasim
- Department
of Chemical Engineering, Boǧaziçi
University, Biosystems Engineering Laboratory, Istanbul 34342, Turkey
| | - Berna Morova
- Department
of Physics, Koç University, Sariyer, 34450 Istanbul, Turkey
| | - Alper Kiraz
- Department
of Physics, Koç University, Sariyer, 34450 Istanbul, Turkey
- Department
of Electrical and Electronics Engineering, Koç University, Sariyer, 34450 Istanbul, Turkey
| | - Kutlu O. Ulgen
- Department
of Chemical Engineering, Boǧaziçi
University, Biosystems Engineering Laboratory, Istanbul 34342, Turkey
| |
Collapse
|
5
|
Singh S, Changkija S, Mudgal R, Ravichandiran V. Bioactive components to inhibit foam cell formation in atherosclerosis. Mol Biol Rep 2022; 49:2487-2501. [PMID: 35013861 DOI: 10.1007/s11033-021-07039-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/30/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND The production of lipid-laden cells in macrophages after significant ingestion of oxidized low-density lipoprotein is considered the most critical phase in the creation of atherosclerotic lesions, which is known as foam cell formation. Targeting foam cell development to find a potential therapeutic strategy for the management of atherosclerosis has yielded numerous promising outcomes. Multiple variables influence foam cell growth, including scavenger receptor expression, cholesterol transporter expression acyl CoA: cholesterol acyltransferase activity, and neutral cholesteryl ester hydrolase activity. Plants used during herbal therapy have been shown to assist with a variety of ailments. RESULT In this study, we found medicinal plants and their bioactive components suppress foam cell formation in a variety of ways; some inhibit cholesterol transporter and lectin-like oxidized low-density lipoprotein receptor-1 upregulation, while others inhibit the function of acyl CoA: cholesterol acyltransferase activity, and neutral cholesteryl ester hydrolase activity. CONCLUSION Recent study findings related to the synthesis of the new active component from plant sources by focusing on the typical process involved in the generation of foam cells. We're also looking at using a cellular target-based therapeutic approach to generate novel plant-based medications for the cure of atherosclerosis.
Collapse
Affiliation(s)
- Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area, Vaishali District, Hajipur, Bihar, 844102, India.
| | - Senti Changkija
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area, Vaishali District, Hajipur, Bihar, 844102, India
| | - Rajat Mudgal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area, Vaishali District, Hajipur, Bihar, 844102, India
| | - V Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area, Vaishali District, Hajipur, Bihar, 844102, India
| |
Collapse
|
6
|
Cardiovascular protective effect of black pepper (Piper nigrum L.) and its major bioactive constituent piperine. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.11.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Tan C, Zhou L, Wen W, Xiao N. Curcumin promotes cholesterol efflux by regulating ABCA1 expression through miR-125a-5p/SIRT6 axis in THP-1 macrophage to prevent atherosclerosis. J Toxicol Sci 2021; 46:209-222. [PMID: 33952798 DOI: 10.2131/jts.46.209] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
OBJECTIVE To seek out the effect of curcumin on cholesterol efflux in THP-1 macrophages and clarify its specific mechanism. METHODS THP-1 macrophages were cultured with curcumin at different concentrations, followed by detection of the toxicity of curcumin to cells utilizing CCK-8 assay. Following culturing with serum-free ox-LDL, THP-1 macrophages were transfected with mi-miR-125a-5p, or in-miR-125a-5p, or pcDNA3.1-SIRT6, or si-SIRT6 for 24 hr, prior to treatment with curcumin at different concentrations. Oil red O staining was applied to examine the formation rate of foam cells, the kits were used for measuring intracellular lipid content of THP-1 macrophages, and the fluorescence detection kit for observing the cholesterol efflux rate. The expressions of miR-125a-5p, SIRT6, and ABCA1 were assayed by qRT-PCR and Western blot. ELISA was adopted to assess the contents of TNF-α, IL-6, and MCP-1. The interaction between miR-125a-5p and SIRT6 was evaluated by dual-luciferase reporter gene assay. RESULTS The optimal dosage of curcumin could reduce foam cell formation and intracellular lipid content, and promote cholesterol efflux in THP-1 macrophages. Meanwhile, curcumin markedly suppressed the expression of miR-125a-5p and upregulated the expression of SIRT6. MiR-125a-5p negatively targeted SIRT6. Overexpression of SIRT6 partially reversed the inhibition role of miR-125a-5p mimic in the biological function of curcumin. Silencing of SIRT6 could partially reverse the effect of the miR-125a-5p inhibitor on the biological function of curcumin. CONCLUSION urcumin could promote cholesterol efflux of THP-1 macrophages through miR-125a-5p/SIRT6 axis and regulate the expression of ABCA1.
Collapse
Affiliation(s)
- Chao Tan
- Department of Internal Medicine, the First Affiliated Hospital of Hunan University of Chinese Medicine, China.,The Domestic First-class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, China.,Inherit Workroom of Medical Master Professor Jibo Xiong's Experiences, China
| | - Lan Zhou
- Graduate School of Hunan University of Chinese Medicine, China
| | - Weinong Wen
- Inherit Workroom of Medical Master Professor Jibo Xiong's Experiences, China
| | - Nan Xiao
- Graduate School of Hunan University of Chinese Medicine, China
| |
Collapse
|
8
|
Zhang Q, Zhang L, Liu Y, Tian X, Li X, Han B, Zhang Y, Wu Z, Yu H, Zhao H, Wang S, Ma K, Wang Y. Research progress on the pharmacological effect and clinical application of Tongqiao Huoxue Decoction in the treatment of ischaemic stroke. Biomed Pharmacother 2021; 138:111460. [PMID: 33711554 DOI: 10.1016/j.biopha.2021.111460] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 12/27/2022] Open
Abstract
Ischaemic stroke (IS) is a common type of stroke characterised by sudden fainting and communication disorders, alongside a number of other symptoms. It is characterised by high morbidity, disability, and mortality rates. Tongqiao Huoxue Decoction (THD) is effective in the treatment of stroke. As a representative prescription for promoting blood circulation and removing blood stasis, THD has been widely used clinically. This paper systematically introduces clinical and experimental studies of THD in the treatment of IS, summarising its clinical application, pharmacological mechanisms, and active components in the treatment of IS. It also explores its key pathways in the treatment of IS through network pharmacology analyses, thereby speculating on its underlying mechanisms. It is of great significance for the secondary development of this classic prescription as well as for the research and development of new drugs.
Collapse
Affiliation(s)
- Qiang Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Lijuan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yu Liu
- Medical College of China, Three Gorges University, Yichang 443200, PR China
| | - Xu Tian
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Xiuyang Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Bingbing Han
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yanan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Zhichun Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Huayun Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Haijun Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Shijun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Ke Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Yuan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| |
Collapse
|
9
|
Li C, Li J, Jiang F, Tzvetkov NT, Horbanczuk JO, Li Y, Atanasov AG, Wang D. Vasculoprotective effects of ginger ( Zingiber officinale Roscoe) and underlying molecular mechanisms. Food Funct 2021; 12:1897-1913. [PMID: 33592084 DOI: 10.1039/d0fo02210a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ginger (Zingiber officinale Roscoe) is a common and widely used spice. It is rich in various chemical constituents, including phenolic compounds, terpenes, polysaccharides, lipids, organic acids, and raw fibers. Herein, we reviewed its effects on the vascular system. Studies utilizing cell cultures or animal models showed that ginger constituents alleviate oxidative stress and inflammation, increase nitric oxide synthesis, suppress vascular smooth muscle cell proliferation, promote cholesterol efflux from macrophages, inhibit angiogenesis, block voltage-dependent Ca2+ channels, and induce autophagy. In clinical trials, ginger was shown to have a favorable effect on serum lipids, inflammatory cytokines, blood pressure, and platelet aggregation. Taken together, these studies point to the potential benefits of ginger and its constituents in the treatment of hypertension, coronary artery disease, peripheral arterial diseases, and other vascular diseases.
Collapse
Affiliation(s)
- Chao Li
- Experimental center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Jie Li
- Experimental center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Feng Jiang
- Department of Cardiology, Affiliated Hospital of Shandong University of traditional Chinese medicine, Jinan, 250000, China
| | - Nikolay T Tzvetkov
- Institute of Molecular Biology "Roumen Tsanev", Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Jaroslaw O Horbanczuk
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, 05-552 Jastrzębiec, Poland
| | - Yunlun Li
- Experimental center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China. and Department of Cardiology, Affiliated Hospital of Shandong University of traditional Chinese medicine, Jinan, 250000, China
| | - Atanas G Atanasov
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, 05-552 Jastrzębiec, Poland and Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria and Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchevstr., 1113 Sofia, Bulgaria and Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Dongdong Wang
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Main Street West 1280, L8S4L8 Hamilton, Ontario, Canada.
| |
Collapse
|
10
|
Cao X, Lintelmann J, Padoan S, Bauer S, Huber A, Mudan A, Oeder S, Adam T, Di Bucchianico S, Zimmermann R. Adenine derivatization for LC-MS/MS epigenetic DNA modifications studies on monocytic THP-1 cells exposed to reference particulate matter. Anal Biochem 2021; 618:114127. [PMID: 33571488 DOI: 10.1016/j.ab.2021.114127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 11/18/2022]
Abstract
The aim of this study was to explore the impact of three different standard reference particulate matter (ERM-CZ100, SRM-1649, and SRM-2975) on epigenetic DNA modifications including cytosine methylation, cytosine hydroxymethylation, and adenine methylation. For the determination of low levels of adenine methylation, we developed and applied a novel DNA nucleobase chemical derivatization and combined it with liquid chromatography tandem mass spectrometry. The developed method was applied for the analysis of epigenetic modifications in monocytic THP-1 cells exposed to the three different reference particulate matter for 24 h and 48 h. The mass fraction of epigenetic active elements As, Cd, and Cr was analyzed by inductively coupled plasma mass spectrometry. The exposure to fine dust ERM-CZ100 and urban dust SRM-1649 decreased cytosine methylation after 24 h exposure, whereas all 3 p.m. increased cytosine hydoxymethylation following 24 h exposure, and the epigenetic effects induced by SRM-1649 and diesel SRM-2975 were persistent up to 48 h exposure. The road tunnel dust ERM-CZ100 significantly increased adenine methylation following the shorter exposure time. Two-dimensional scatters analysis between different epigenetic DNA modifications were used to depict a significantly negative correlation between cytosine methylation and cytosine hydroxymethylation supporting their possible functional relationship. Metals and polycyclic aromatic hydrocarbons differently shapes epigenetic DNA modifications.
Collapse
Affiliation(s)
- Xin Cao
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Jutta Lintelmann
- Research Unit of Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Sara Padoan
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany; University of the Bundeswehr Munich, Institute for Chemistry and Environmental Engineering, Neubiberg, Germany
| | - Stefanie Bauer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany
| | - Anja Huber
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany
| | - Ajit Mudan
- University of the Bundeswehr Munich, Institute for Chemistry and Environmental Engineering, Neubiberg, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany
| | - Thomas Adam
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany; University of the Bundeswehr Munich, Institute for Chemistry and Environmental Engineering, Neubiberg, Germany
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany.
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| |
Collapse
|
11
|
Wang D, Hiebl V, Schachner D, Ladurner A, Heiss EH, Atanasov AG, Dirsch VM. Soraphen A enhances macrophage cholesterol efflux via indirect LXR activation and ABCA1 upregulation. Biochem Pharmacol 2020; 177:114022. [DOI: 10.1016/j.bcp.2020.114022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/07/2020] [Indexed: 12/31/2022]
|
12
|
Wang D, Hiebl V, Xu T, Ladurner A, Atanasov AG, Heiss EH, Dirsch VM. Impact of natural products on the cholesterol transporter ABCA1. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112444. [PMID: 31805338 DOI: 10.1016/j.jep.2019.112444] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/13/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In different countries and areas of the world, traditional medicine has been and is still used for the treatment of various disorders, including chest pain or liver complaints, of which we now know that they can be linked with altered lipid and cholesterol homeostasis. As ATP-binding cassette transporter A1 (ABCA1) plays an essential role in cholesterol metabolism, its modulation may be one of the molecular mechanisms responsible for the experienced benefit of traditional recipes. Intense research activity has been dedicated to the identification of natural products from traditional medicine that regulate ABCA1 expression. AIMS OF THE REVIEW This review surveys natural products, originating from ethnopharmacologically used plants, fungi or marine sources, which influence ABCA1 expression, providing a reference for future study. MATERIALS AND METHODS Information on regulation of ABCA1 expression by natural compounds from traditional medicine was extracted from ancient and modern books, materia medica, and electronic databases (PubMed, Google Scholar, Science Direct, and ResearchGate). RESULTS More than 60 natural compounds from traditional medicine, especially traditional Chinese medicine (TCM), are reported to regulate ABCA1 expression in different in vitro and in vivo models (such as cholesterol efflux and atherosclerotic animal models). These active compounds belong to the classes of polyketides, terpenoids, phenylpropanoids, tannins, alkaloids, steroids, amino acids and others. Several compounds appear very promising in vivo, which need to be further investigated in animal models of diseases related to ABCA1 or in clinical studies. CONCLUSION Natural products from traditional medicine constitute a large promising pool for compounds that regulate ABCA1 expression, and thus may prevent/treat diseases related to cholesterol metabolism, like atherosclerosis or Alzheimer's disease. In many cases, the molecular mechanisms of these natural products remain to be investigated.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria; The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Fei Shan Jie 32, 550003, Guiyang, China
| | - Verena Hiebl
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Tao Xu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Fei Shan Jie 32, 550003, Guiyang, China
| | - Angela Ladurner
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Atanas G Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria; Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, 05-552, Jastrzębiec, Poland; Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchevstr., 1113, Sofia, Bulgaria
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Verena M Dirsch
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| |
Collapse
|
13
|
Horbańczuk OK, Kurek MA, Atanasov AG, Brnčić M, Rimac Brnčić S. The Effect of Natural Antioxidants on Quality and Shelf Life of Beef and Beef Products. Food Technol Biotechnol 2019; 57:439-447. [PMID: 32123506 PMCID: PMC7029390 DOI: 10.17113/ftb.57.04.19.6267] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 10/22/2019] [Indexed: 12/21/2022] Open
Abstract
Oxidation processes are the major cause of deterioration of meat quality and shelf life of meat products, leading to negative changes in nutritive value and in sensory and physicochemical properties of meat. Until now, the synthetic antioxidants like butylated hydroxyl anisole have been commonly used to prevent oxidation, which however may cause potential human health risks and increase toxicity of the product. However, natural antioxidants can be the alternative solution for this problem since plants and plant materials are rich in bioactive compounds (as natural antioxidants) with potential health beneficial effects. Moreover, the interest of consumers in using natural products is still increasing. There is an expectation of replacing synthetic antioxidants and preservatives by natural ones. Therefore, the aim of the present review is to provide information on the effect of natural antioxidants from vegetables and fruits like olives, pomegranate or grapes, and herbs and spices like rosemary, oregano, sage, black cumin or turmeric, rich in bioactive compounds on quality and shelf life of beef and beef products.
Collapse
Affiliation(s)
- Olaf K. Horbańczuk
- Department of Technique and Food Development, Warsaw University of Life Sciences
(WULS-SGGW), Nowoursynowska Street 159 c, 02-776 Warsaw, Poland
| | - Marcin A. Kurek
- Department of Technique and Food Development, Warsaw University of Life Sciences
(WULS-SGGW), Nowoursynowska Street 159 c, 02-776 Warsaw, Poland
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Breeding Polish Academy of Sciences, Jastrzębiec Postępu 36A Street, 05-552 Magdalenka, Poland
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Mladen Brnčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Suzana Rimac Brnčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
14
|
Wang D, Yang Y, Lei Y, Tzvetkov NT, Liu X, Yeung AWK, Xu S, Atanasov AG. Targeting Foam Cell Formation in Atherosclerosis: Therapeutic Potential of Natural Products. Pharmacol Rev 2019; 71:596-670. [PMID: 31554644 DOI: 10.1124/pr.118.017178] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Foam cell formation and further accumulation in the subendothelial space of the vascular wall is a hallmark of atherosclerotic lesions. Targeting foam cell formation in the atherosclerotic lesions can be a promising approach to treat and prevent atherosclerosis. The formation of foam cells is determined by the balanced effects of three major interrelated biologic processes, including lipid uptake, cholesterol esterification, and cholesterol efflux. Natural products are a promising source for new lead structures. Multiple natural products and pharmaceutical agents can inhibit foam cell formation and thus exhibit antiatherosclerotic capacity by suppressing lipid uptake, cholesterol esterification, and/or promoting cholesterol ester hydrolysis and cholesterol efflux. This review summarizes recent findings on these three biologic processes and natural products with demonstrated potential to target such processes. Discussed also are potential future directions for studying the mechanisms of foam cell formation and the development of foam cell-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Dongdong Wang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yang Yang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yingnan Lei
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Nikolay T Tzvetkov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Xingde Liu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Andy Wai Kan Yeung
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Suowen Xu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Atanas G Atanasov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| |
Collapse
|
15
|
Farràs M, Arranz S, Carrión S, Subirana I, Muñoz-Aguayo D, Blanchart G, Kool M, Solà R, Motilva MJ, Escolà-Gil JC, Rubió L, Fernández-Castillejo S, Pedret A, Estruch R, Covas MI, Fitó M, Hernáez Á, Castañer O. A Functional Virgin Olive Oil Enriched with Olive Oil and Thyme Phenolic Compounds Improves the Expression of Cholesterol Efflux-Related Genes: A Randomized, Crossover, Controlled Trial. Nutrients 2019; 11:nu11081732. [PMID: 31357534 PMCID: PMC6723782 DOI: 10.3390/nu11081732] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022] Open
Abstract
The consumption of antioxidant-rich foods such as virgin olive oil (VOO) promotes high-density lipoprotein (HDL) anti-atherogenic capacities. Intake of functional VOOs (enriched with olive/thyme phenolic compounds (PCs)) also improves HDL functions, but the gene expression changes behind these benefits are not fully understood. Our aim was to determine whether these functional VOOs could enhance the expression of cholesterol efflux-related genes. In a randomized, double-blind, crossover, controlled trial, 22 hypercholesterolemic subjects ingested for three weeks 25 mL/day of: (1) a functional VOO enriched with olive oil PCs (500 mg/kg); (2) a functional VOO enriched with olive oil (250 mg/kg) and thyme PCs (250 mg/kg; FVOOT), and; (3) a natural VOO (olive oil PCs: 80 mg/kg, control intervention). We assessed whether these interventions improved the expression of cholesterol efflux-related genes in peripheral blood mononuclear cells by quantitative reverse-transcription polymerase chain reactions. The FVOOT intervention upregulated the expression of CYP27A1 (p = 0.041 and p = 0.053, versus baseline and the control intervention, respectively), CAV1 (p = 0.070, versus the control intervention), and LXRβ, RXRα, and PPARβ/δ (p = 0.005, p = 0.005, and p = 0.038, respectively, relative to the baseline). The consumption of a functional VOO enriched with olive oil and thyme PCs enhanced the expression of key cholesterol efflux regulators, such as CYP27A1 and nuclear receptor-related genes.
Collapse
Affiliation(s)
- Marta Farràs
- Molecular Bases of Cardiovascular Risk Group, IIB-Sant Pau, 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029 Madrid, Spain
| | - Sara Arranz
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Sílvia Carrión
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Isaac Subirana
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Cardiovascular Genetics and Epidemiology Research Group, IMIM, 08003 Barcelona, Spain
| | - Daniel Muñoz-Aguayo
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029 Madrid, Spain
| | - Gemma Blanchart
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Marjon Kool
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Rosa Solà
- Functional Nutrition, Oxidation, and Cardiovascular Diseases Group, Universitat Rovira i Virgili, 43201 Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili, 43204 Reus, Spain
- Hospital Universitari Sant Joan de Reus, 43204 Reus, Spain
| | - María José Motilva
- Instituto de Ciencias de la Vid y el Vino, CSIC-Universidad de la Rioja, 26007 Logroño, Spain
| | - Joan Carles Escolà-Gil
- Molecular Bases of Cardiovascular Risk Group, IIB-Sant Pau, 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029 Madrid, Spain
| | - Laura Rubió
- Food Technology Department, Agrotecnio Center, University of Lleida, 25198 Lleida, Spain
| | - Sara Fernández-Castillejo
- Functional Nutrition, Oxidation, and Cardiovascular Diseases Group, Universitat Rovira i Virgili, 43201 Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili, 43204 Reus, Spain
| | - Anna Pedret
- Functional Nutrition, Oxidation, and Cardiovascular Diseases Group, Universitat Rovira i Virgili, 43201 Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili, 43204 Reus, Spain
| | - Ramón Estruch
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029 Madrid, Spain
- Internal Medicine Service, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Cardiovascular Risk, Nutrition and Aging Research Unit, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - María Isabel Covas
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029 Madrid, Spain
- NUPROAS Handelsbolag, Nackă, Sweden
| | - Montserrat Fitó
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029 Madrid, Spain
| | - Álvaro Hernáez
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029 Madrid, Spain.
- Cardiovascular Risk, Nutrition and Aging Research Unit, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.
| | - Olga Castañer
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029 Madrid, Spain.
| |
Collapse
|
16
|
|
17
|
Chen J, Sun J, Prinz RA, Li Y, Xu X. Gingerenone A Sensitizes the Insulin Receptor and Increases Glucose Uptake by Inhibiting the Activity of p70 S6 Kinase. Mol Nutr Food Res 2018; 62:e1800709. [PMID: 30296358 DOI: 10.1002/mnfr.201800709] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/04/2018] [Indexed: 12/26/2022]
Abstract
SCOPE The bioactive constituents in ginger extract are responsible for anti-hyperglycemic effects and the underlying mechanisms are incompletely understood. Gingerenone A (Gin A) has been identified as an inhibitor of p70 S6 (S6K1), a kinase that plays a critical role in the pathogenesis of insulin resistance. This study aims to evaluate if Gin A can sensitize the insulin receptor by inhibiting S6K1 activity. METHODS AND RESULTS Western blot analysis reveals that Gin A induces phosphatidylinositide-3 kinase (PI3K) feedback activation in murine 3T3-L1 adipocytes and rat L6 myotubes, as evidenced by increased AKTS473 and S6K1T389 but decreases S6S235/236 and insulin receptor substrate 1 (IRS-1)S1101 phosphorylation. Western blot and immunoprecipitation analysis reveal that Gin A increases insulin receptor tyrosine phosphorylation in L6 myotubes and IRS-1 binding to the PI3K in 3T3-L1 adipocytes. Confocal microscopy reveals that Gin A enhances insulin-induced translocation of glucose transporter 4 (GLUT4) into the cell membrane in L6 cells. 2-NBDG (2-N-(Nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose) Fluorescent assay reveals that Gin A enhances insulin-stimulated glucose uptake in 3T3-L1 adipocytes and L6 myotubes. CONCLUSIONS Gin A overcomes insulin resistance and increases glucose uptake by inhibiting S6K1 activity. Gin A or other plant-derived S6K1 inhibitors could be developed as novel antidiabetic agents.
Collapse
Affiliation(s)
- Junhong Chen
- Institute of Comparative Medicine, Yangzhou, 225009, Jiangsu Province, China.,College of Veterinary Medicine, Yangzhou, 225009, Jiangsu Province, China
| | - Jing Sun
- Institute of Comparative Medicine, Yangzhou, 225009, Jiangsu Province, China.,College of Veterinary Medicine, Yangzhou, 225009, Jiangsu Province, China
| | - Richard A Prinz
- Department of Surgery, NorthShore University Health System, Evanston, IL, USA
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiulong Xu
- Institute of Comparative Medicine, Yangzhou, 225009, Jiangsu Province, China.,College of Veterinary Medicine, Yangzhou, 225009, Jiangsu Province, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China.,Department of Cell and Molecular Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| |
Collapse
|
18
|
Wang D, Hiebl V, Ladurner A, Latkolik SL, Bucar F, Heiß EH, Dirsch VM, Atanasov AG. 6-Dihydroparadol, a Ginger Constituent, Enhances Cholesterol Efflux from THP-1-Derived Macrophages. Mol Nutr Food Res 2018; 62:e1800011. [PMID: 29802792 PMCID: PMC6099374 DOI: 10.1002/mnfr.201800011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/24/2018] [Indexed: 01/24/2023]
Abstract
SCOPE Ginger is reported to be used for the prevention and treatment of cardiovascular diseases (CVD). Cholesterol efflux from macrophage foam cells is an important process in reverse cholesterol transport, whose increase may help to prevent or treat CVD. In this study, we investigated the effects of 6-dihydroparadol from ginger on macrophage cholesterol efflux. METHODS AND RESULTS We show that 6-dihydroparadol concentration-dependently enhances both apolipoprotein A1- and human plasma-mediated cholesterol efflux from cholesterol-loaded THP-1-derived macrophages using macrophage cholesterol efflux assay. 6-Dihydroparadol increases protein levels of both ATP-binding cassette transporters A1 and G1 (ATP-binding cassette transporter A1 [ABCA1] and ATP-binding cassette transporter G1 [ABCG1]) according to Western blot analysis. The ABCA1 inhibitor probucol completely abolishes 6-dihydroparadol-enhanced cholesterol efflux. Furthermore, increased ABCA1 protein levels in the presence of 6-dihydroparadol were associated with both increased ABCA1 mRNA levels and increased ABCA1 protein stability. Enhanced ABCG1 protein levels were only associated with increased protein stability. Increased ABCA1 protein stability appeared to be the result of a reduced proteasomal degradation of the transporter in the presence of 6-dihydroparadol. CONCLUSION We identified 6-dihydroparadol from ginger as a novel promoter of cholesterol efflux from macrophages that increases both ABCA1 and ABCG1 protein abundance. This newly identified bioactivity might contribute to the antiatherogenic effects of ginger.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of PharmacognosyUniversity of ViennaAlthanstrasse 141090ViennaAustria
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciencesul. Postepu 36A05–552JastrzebiecPoland
- Institute of Clinical ChemistryUniversity Hospital ZurichUniversity of ZurichWagistrasse 148952SchlierenSwitzerland
| | - Verena Hiebl
- Department of PharmacognosyUniversity of ViennaAlthanstrasse 141090ViennaAustria
| | - Angela Ladurner
- Department of PharmacognosyUniversity of ViennaAlthanstrasse 141090ViennaAustria
| | - Simone L. Latkolik
- Department of PharmacognosyUniversity of ViennaAlthanstrasse 141090ViennaAustria
| | - Franz Bucar
- Department of Pharmacognosy, Institute of Pharmaceutical SciencesUniversity of Graz8010GrazAustria
| | - Elke H. Heiß
- Department of PharmacognosyUniversity of ViennaAlthanstrasse 141090ViennaAustria
| | - Verena M. Dirsch
- Department of PharmacognosyUniversity of ViennaAlthanstrasse 141090ViennaAustria
| | - Atanas G. Atanasov
- Department of PharmacognosyUniversity of ViennaAlthanstrasse 141090ViennaAustria
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciencesul. Postepu 36A05–552JastrzebiecPoland
| |
Collapse
|