1
|
Yu X, Xu J, Song B, Zhu R, Liu J, Liu YF, Ma YJ. The role of epigenetics in women's reproductive health: the impact of environmental factors. Front Endocrinol (Lausanne) 2024; 15:1399757. [PMID: 39345884 PMCID: PMC11427273 DOI: 10.3389/fendo.2024.1399757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
This paper explores the significant role of epigenetics in women's reproductive health, focusing on the impact of environmental factors. It highlights the crucial link between epigenetic modifications-such as DNA methylation and histones post-translational modifications-and reproductive health issues, including infertility and pregnancy complications. The paper reviews the influence of pollutants like PM2.5, heavy metals, and endocrine disruptors on gene expression through epigenetic mechanisms, emphasizing the need for understanding how dietary, lifestyle choices, and exposure to chemicals affect gene expression and reproductive health. Future research directions include deeper investigation into epigenetics in female reproductive health and leveraging gene editing to mitigate epigenetic changes for improving IVF success rates and managing reproductive disorders.
Collapse
Affiliation(s)
- Xinru Yu
- College Of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jiawei Xu
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Bihan Song
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Runhe Zhu
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Jiaxin Liu
- College Of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yi Fan Liu
- Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ying Jie Ma
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
2
|
Fernando KK, Craig JM, Dawson SL. Relationships between the maternal prenatal diet and epigenetic state in infants: a systematic review of human studies. J Dev Orig Health Dis 2023; 14:540-555. [PMID: 37496159 DOI: 10.1017/s2040174423000211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Most human studies investigating the relationship between maternal diet in pregnancy and infant epigenetic state have focused on macro- and micro-nutrient intake, rather than the whole diet. This makes it difficult to translate the evidence into practical prenatal dietary recommendations.To review the evidence on how the prenatal diet relates to the epigenetic state of infants measured in the first year of life via candidate gene or genome-wide approaches.Following the PRISMA guidelines, this systematic literature search was completed in August 2020, and updated in August 2021 and April 2022. Studies investigating dietary supplementation were excluded. Risk of bias was assessed, and the certainty of results was analysed with consideration of study quality and validity.Seven studies were included, encompassing 6852 mother-infant dyads. One study was a randomised controlled trial and the remaining six were observational studies. There was heterogeneity in dietary exposure measures. Three studies used an epigenome-wide association study (EWAS) design and four focused on candidate genes from cord blood samples. All studies showed inconsistent associations between maternal dietary measures and DNA methylation in infants. Effect sizes of maternal diet on DNA methylation ranged from very low (< 1%) to high (> 10%). All studies had limitations and were assessed as having moderate to high risk of bias.The evidence presented here provides very low certainty that dietary patterns in pregnancy relate to epigenetic state in infants. We recommend that future studies maximise sample sizes and optimise and harmonise methods of dietary measurement and pipelines of epigenetic analysis.
Collapse
Affiliation(s)
- Kathya K Fernando
- Department of Immunology & Pathology, Alfred Health and Monash University, Melbourne, Australia
| | - Jeffrey M Craig
- Epigenetics, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Australia
| | - Samantha L Dawson
- Epigenetics, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Australia
| |
Collapse
|
3
|
Gorzkiewicz M, Łoś-Rycharska E, Gawryjołek J, Gołębiewski M, Krogulska A, Grzybowski T. The methylation profile of IL4, IL5, IL10, IFNG and FOXP3 associated with environmental exposures differed between Polish infants with the food allergy and/or atopic dermatitis and without the disease. Front Immunol 2023; 14:1209190. [PMID: 37520545 PMCID: PMC10373304 DOI: 10.3389/fimmu.2023.1209190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Objectives Epigenetic dynamics has been indicated to play a role in allergy development. The environmental stimuli have been shown to influence the methylation processes. This study investigated the differences in CpGs methylation rate of immune-attached genes between healthy and allergic infants. The research was aimed at finding evidence for the impact of environmental factors on methylation-based regulation of immunological processes in early childhood. Methods The analysis of methylation level of CpGs in the IL4, IL5, IL10, IFNG and FOXP3 genes was performed using high resolution melt real time PCR technology. DNA was isolated from whole blood of Polish healthy and allergic infants, with food allergy and/or atopic dermatitis, aged under six months. Results The significantly lower methylation level of FOXP3 among allergic infants compared to healthy ones was reported. Additional differences in methylation rates were found, when combining with environmental factors. In different studied groups, negative correlations between age and the IL10 and FOXP3 methylation were detected, and positive - in the case of IL4. Among infants with different allergy symptoms, the decrease in methylation level of IFNG, IL10, IL4 and FOXP3 associated with passive smoke exposure was observed. Complications during pregnancy were linked to different pattern of the IFNG, IL5, IL4 and IL10 methylation depending on allergy status. The IFNG and IL5 methylation rates were higher among exclusively breastfed infants with atopic dermatitis compared to the non-breastfed. A decrease in the IFNG methylation was noted among allergic patients fed exclusively with milk formula. In different study groups, a negative correlation between IFNG, IL5 methylation and maternal BMI or IL5 methylation and weight was noted. Some positive correlations between methylation rate of IL10 and child's weight were found. A higher methylation of IL4 was positively correlated with the number of family members with allergy. Conclusion The FOXP3 methylation in allergic infants was lower than in the healthy ones. The methylation profile of IL4, IL5, IL10, IFNG and FOXP3 associated with environmental exposures differed between the studied groups. The results offer insights into epigenetic regulation of immunological response in early childhood.
Collapse
Affiliation(s)
- Marta Gorzkiewicz
- Department of Forensic Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Ewa Łoś-Rycharska
- Department of Pediatrics, Allergology and Gastroenterology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Julia Gawryjołek
- Department of Pediatrics, Allergology and Gastroenterology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Marcin Gołębiewski
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Aneta Krogulska
- Department of Pediatrics, Allergology and Gastroenterology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Tomasz Grzybowski
- Department of Forensic Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
4
|
Khare SP, Madhok A, Patta I, Sukla KK, Wagh VV, Kunte PS, Raut D, Bhat D, Kumaran K, Fall C, Tatu U, Chandak GR, Yajnik CS, Galande S. Differential expression of genes influencing mitotic processes in cord blood mononuclear cells after a pre-conceptional micronutrient-based randomised controlled trial: Pune Rural Intervention in Young Adolescents (PRIYA). J Dev Orig Health Dis 2023; 14:437-448. [PMID: 36632790 DOI: 10.1017/s204017442200068x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In The Pune Maternal Nutrition Study, vitamin B12 deficiency was seen in 65% of pregnant women, folate deficiency was rare. Maternal total homocysteine concentrations were inversely associated with offspring birthweight, and low vitamin B12 and high folate concentrations predicted higher offspring adiposity and insulin resistance. These findings guided a nested pre-conceptional randomised controlled trial 'Pune Rural Intervention in Young Adolescents'. The interventions included: (1) vitamin B12+multi-micronutrients as per the United Nations International Multiple Micronutrient Antenatal Preparation, and proteins (B12+MMN), (2) vitamin B12 (B12 alone), and (3) placebo. Intervention improved maternal pre-conceptional and in-pregnancy micronutrient nutrition. Gene expression analysis in cord blood mononuclear cells in 88 pregnancies revealed 75 differentially expressed genes between the B12+MMN and placebo groups. The enriched biological processes included G2/M phase transition, chromosome segregation, and nuclear division. Enriched pathways included, mitotic spindle checkpoint and DNA damage response while enriched human phenotypes were sloping forehead and decreased head circumference. Fructose-bisphosphatase 2 (FBP2) and Cell Division Cycle Associated 2 (CDCA2) genes were under-expressed in the B12 alone group. The latter, involved in chromosome segregation was under-expressed in both intervention groups. Based on the role of B-complex vitamins in the synthesis of nucleotides and S-adenosyl methionine, and the roles of vitamins A and D on gene expression, we propose that the multi-micronutrient intervention epigenetically affected cell cycle dynamics. Neonates in the B12+MMN group had the highest ponderal index. Follow-up studies will reveal if the intervention and the altered biological processes influence offspring diabesity.
Collapse
Affiliation(s)
- Satyajeet P Khare
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University), Lavale, Pune, India
| | - Ayush Madhok
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Indumathi Patta
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Krishna K Sukla
- Diabetes Unit, King Edward Memorial Hospital and Research Centre, Pune, India
| | - Vipul V Wagh
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University), Lavale, Pune, India
| | - Pooja S Kunte
- Diabetes Unit, King Edward Memorial Hospital and Research Centre, Pune, India
| | - Deepa Raut
- Diabetes Unit, King Edward Memorial Hospital and Research Centre, Pune, India
| | - Dattatray Bhat
- Diabetes Unit, King Edward Memorial Hospital and Research Centre, Pune, India
| | | | - Caroline Fall
- Medical Research Council Lifecourse Epidemiology Centre, Southampton, UK
| | - Utpal Tatu
- Indian Institute of Science (IISc), Bangalore, India
| | - Giriraj R Chandak
- Genomic Research on Complex Diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | | | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
- Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, India
| |
Collapse
|
5
|
Lugo-Candelas C, Talati A, Glickman C, Hernandez M, Scorza P, Monk C, Kubo A, Wei C, Sourander A, Duarte CS. Maternal Mental Health and Offspring Brain Development: An Umbrella Review of Prenatal Interventions. Biol Psychiatry 2023; 93:934-941. [PMID: 36754341 PMCID: PMC10512172 DOI: 10.1016/j.biopsych.2023.01.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023]
Abstract
The idea that risk for psychiatric disorders may be transmitted intergenerationally via prenatal programming places interest in the prenatal period as a critical moment during which intervention efforts may have a strong impact, yet studies testing whether prenatal interventions also protect offspring are limited. The present umbrella review of systematic reviews and meta-analyses (SRMAs) of randomized controlled trials aimed to synthesize the available evidence and highlight promising avenues for intervention. Overall, the literature provides mixed and limited evidence in support of prenatal interventions. Thirty SRMAs were included. Of the 23 SRMAs that reported on prenatal depression interventions, 16 found a significant effect (average standard mean difference = -0.45, SD = 0.25). Similarly, 13 of the 20 SRMAs that reported on anxiety outcomes documented significant reductions (average standard mean difference = -0.76, SD = 0.95 or -0.53/0.53 excluding one outlier). Only 4 SRMAs reported child outcomes, and only 2 (of 10) analyses showed significant effects of prenatal interventions (massage and telephone support on neonatal resuscitation [relative risk = 0.43] and neonatal intensive care unit admissions [relative risk = 0.91]). Notably missing, perhaps due to our strict inclusion criteria (inclusion of randomized controlled trials only), were interventions focusing on key facets of prenatal health (e.g., whole diet, sleep). Structural interventions (housing, access to health care, economic security) were not included, although initial success has been documented in non-SRMAs. Most notably, none of the SRMAs focused on offspring mental health or neurodevelopmental outcomes. Given the possibility that interventions deployed in this period will positively impact the next generation, randomized trials that focus on offspring outcomes are urgently needed.
Collapse
Affiliation(s)
- Claudia Lugo-Candelas
- New York State Psychiatric Institute, New York, New York; Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Ardesheer Talati
- New York State Psychiatric Institute, New York, New York; Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Caila Glickman
- New York State Psychiatric Institute, New York, New York
| | - Mariely Hernandez
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Pamela Scorza
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Catherine Monk
- New York State Psychiatric Institute, New York, New York; Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Ai Kubo
- Division of Research, Kaiser Permanente, Oakland, California
| | - Chiaying Wei
- New York State Psychiatric Institute, New York, New York; Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Andre Sourander
- Department of Child Psychiatry, Turku University Hospital, Turku University, Turku, Finland
| | - Cristiane S Duarte
- New York State Psychiatric Institute, New York, New York; Department of Psychiatry, Columbia University Irving Medical Center, New York, New York.
| |
Collapse
|
6
|
Dou JF, Middleton LYM, Zhu Y, Benke KS, Feinberg JI, Croen LA, Hertz-Picciotto I, Newschaffer CJ, LaSalle JM, Fallin D, Schmidt RJ, Bakulski KM. Prenatal vitamin intake in first month of pregnancy and DNA methylation in cord blood and placenta in two prospective cohorts. Epigenetics Chromatin 2022; 15:28. [PMID: 35918756 PMCID: PMC9344645 DOI: 10.1186/s13072-022-00460-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Prenatal vitamin use is recommended before and during pregnancies for normal fetal development. Prenatal vitamins do not have a standard formulation, but many contain calcium, folic acid, iodine, iron, omega-3 fatty acids, zinc, and vitamins A, B6, B12, and D, and usually they contain higher concentrations of folic acid and iron than regular multivitamins in the US Nutrient levels can impact epigenetic factors such as DNA methylation, but relationships between maternal prenatal vitamin use and DNA methylation have been relatively understudied. We examined use of prenatal vitamins in the first month of pregnancy in relation to cord blood and placenta DNA methylation in two prospective pregnancy cohorts: the Early Autism Risk Longitudinal Investigation (EARLI) and Markers of Autism Risk Learning Early Signs (MARBLES) studies. RESULTS In placenta, prenatal vitamin intake was marginally associated with -0.52% (95% CI -1.04, 0.01) lower mean array-wide DNA methylation in EARLI, and associated with -0.60% (-1.08, -0.13) lower mean array-wide DNA methylation in MARBLES. There was little consistency in the associations between prenatal vitamin intake and single DNA methylation site effect estimates across cohorts and tissues, with only a few overlapping sites with correlated effect estimates. However, the single DNA methylation sites with p-value < 0.01 (EARLI cord nCpGs = 4068, EARLI placenta nCpGs = 3647, MARBLES cord nCpGs = 4068, MARBLES placenta nCpGs = 9563) were consistently enriched in neuronal developmental pathways. CONCLUSIONS Together, our findings suggest that prenatal vitamin intake in the first month of pregnancy may be related to lower placental global DNA methylation and related to DNA methylation in brain-related pathways in both placenta and cord blood.
Collapse
Affiliation(s)
- John F Dou
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, USA
| | - Lauren Y M Middleton
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, USA
| | - Yihui Zhu
- Department of Public Health Sciences and the M.I.N.D. Institute, School of Medicine, University of California, Davis, CA, USA
| | - Kelly S Benke
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jason I Feinberg
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Lisa A Croen
- Kaiser Permanente Northern California, Oakland, CA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences and the M.I.N.D. Institute, School of Medicine, University of California, Davis, CA, USA
| | - Craig J Newschaffer
- College of Health and Human Development, Penn State University, State College, PA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology and the M.I.N.D. Institute, School of Medicine, University of California, Davis, CA, USA
| | - Daniele Fallin
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences and the M.I.N.D. Institute, School of Medicine, University of California, Davis, CA, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Bakulski KM, Dou JF, Feinberg JI, Brieger KK, Croen LA, Hertz-Picciotto I, Newschaffer CJ, Schmidt RJ, Fallin MD. Prenatal Multivitamin Use and MTHFR Genotype Are Associated with Newborn Cord Blood DNA Methylation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249190. [PMID: 33317014 PMCID: PMC7764679 DOI: 10.3390/ijerph17249190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/20/2020] [Accepted: 11/28/2020] [Indexed: 12/20/2022]
Abstract
Background: Fetal development involves cellular differentiation and epigenetic changes—complex processes that are sensitive to environmental factors. Maternal nutrient levels during pregnancy affect development, and methylene tetrahydrofolate reductase (MTHFR) is important for processing the nutrient folate. Hypothesis: We hypothesize that supplement intake before pregnancy and maternal genotype are associated with DNA methylation in newborns. Methods: In the pregnancy cohort, Early Autism Risk Longitudinal Investigation (EARLI), health history, and genotype information was obtained (n = 249 families). Cord blood DNA methylation (n = 130) was measured using the Illumina HumanMethylation450k array and global DNA methylation levels were computed over 455,698 sites. Supplement use preconception and during pregnancy were surveyed at visits during pregnancy. We evaluated associations between maternal preconception supplement intake and global DNA methylation or DNA methylation density distributions of newborn cord blood, stratified by the presence of a variant maternal MTHFR C677T allele. Results: Maternal preconceptional multivitamin intake was associated with cord blood methylation, dependent on maternal MTHFR genotype (interaction term p = 0.013). For mothers without the MTHFR variant allele, multivitamin intake was associated with 0.96% (95% CI: 0.09, 1.83) higher global cord blood methylation (p = 0.04) and was also associated with the cumulative density distribution of methylation (p = 0.03). For mothers with at least one variant allele, multivitamin intake had a null −0.06% (95% CI: −0.45, 0.33) association with global cord blood DNA methylation, and was not associated with the cumulative density distribution (p = 0.37). Conclusions: We observed that cord blood DNA methylation was associated with maternal supplement exposure preconception and maternal genotype. Genetic context should be considered when assessing DNA methylation effects of modifiable risk factors around the time of pregnancy.
Collapse
Affiliation(s)
- Kelly M. Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (K.M.B.); (J.F.D.); (K.K.B.)
| | - John F. Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (K.M.B.); (J.F.D.); (K.K.B.)
| | - Jason I. Feinberg
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Katharine K. Brieger
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (K.M.B.); (J.F.D.); (K.K.B.)
| | - Lisa A. Croen
- Division of Research, Kaiser Permanente, Oakland, CA 94612, USA;
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences and the M.I.N.D. Institute, School of Medicine, University of California, Davis, CA 95616, USA; (I.H.-P.); (R.J.S.)
| | - Craig J. Newschaffer
- College of Health and Human Development, Penn State University, State College, PA 16802, USA;
| | - Rebecca J. Schmidt
- Department of Public Health Sciences and the M.I.N.D. Institute, School of Medicine, University of California, Davis, CA 95616, USA; (I.H.-P.); (R.J.S.)
| | - M. Daniele Fallin
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA;
- Correspondence: ; Tel.: +1-(410)-955-3463
| |
Collapse
|
8
|
Thayer ZM, Rutherford J, Kuzawa CW. The Maternal Nutritional Buffering Model: an evolutionary framework for pregnancy nutritional intervention. EVOLUTION MEDICINE AND PUBLIC HEALTH 2020; 2020:14-27. [PMID: 32015877 PMCID: PMC6990448 DOI: 10.1093/emph/eoz037] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/17/2020] [Indexed: 02/07/2023]
Abstract
Evidence that fetal nutrition influences adult health has heightened interest in nutritional interventions targeting pregnancy. However, as is true for other placental mammals, human females have evolved mechanisms that help buffer the fetus against short-term fluctuations in maternal diet and energy status. In this review, we first discuss the evolution of increasingly elaborate vertebrate strategies of buffering offspring from environmental fluctuations during development, including the important innovation of the eutherian placenta. We then present the Maternal Nutritional Buffering Model, which argues that, in contrast to many micronutrients that must be derived from dietary sources, the effects of short-term changes in maternal macronutrient intake during pregnancy, whether due to a deficit or supplementation, will be minimized by internal buffering mechanisms that work to ensure a stable supply of essential resources. In contrast to the minimal effects of brief macronutrient supplementation, there is growing evidence that sustained improvements in early life and adult pre-pregnancy nutrition could improve birth outcomes in offspring. Building on these and other observations, we propose that strategies to improve fetal macronutrient delivery will be most effective if they modify the pregnancy metabolism of mothers by targeting nutrition prior to conception and even during early development, as a complement to the conventional focus on bolstering macronutrient intake during pregnancy itself. Our model leads to the prediction that birth weight will be more strongly influenced by the mother’s chronic pre-pregnancy nutrition than by pregnancy diet, and highlights the need for policy solutions aimed at optimizing future, intergenerational health outcomes. Lay summary: We propose that strategies to improve fetal macronutrient delivery will be most effective if they modify the pregnancy metabolism of mothers by targeting nutrition prior to conception and even during early development, as a complement to the conventional focus on bolstering macronutrient intake during pregnancy itself.
Collapse
Affiliation(s)
- Zaneta M Thayer
- Department of Anthropology, Dartmouth College, Hinman Box 6047, Hanover, NH 03755, USA
| | - Julienne Rutherford
- Department of Women, Children and Family Health Science, University of Illinois Chicago, 845 S. Damen Ave., MC 802, Chicago, IL 60612, USA
| | - Christopher W Kuzawa
- Department of Anthropology and Institute for Policy Research, Northwestern University, 1810 Hinman Ave, Evanston, IL 60208, USA
| |
Collapse
|
9
|
Andraos S, Wake M, Saffery R, Burgner D, Kussmann M, O'Sullivan J. Perspective: Advancing Understanding of Population Nutrient-Health Relations via Metabolomics and Precision Phenotypes. Adv Nutr 2019; 10:944-952. [PMID: 31098626 PMCID: PMC6855971 DOI: 10.1093/advances/nmz045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023] Open
Abstract
Diet and lifestyle are vital to population health, but their true contribution is difficult to quantify using traditional methods. Nutrient-health relations are typically based on epidemiological associations that are assessed at the population level, traditionally using self-reported dietary and lifestyle data. Unfortunately, such measures are inherently inaccurate. New technologies such as metabolomics can measure nutritional and micronutrient profiles in body fluids, providing objective evaluation of nutritional status. A critical step toward accurate health prediction models would be the building of integrated repositories of nutritional measures combining subjective methods of reporting with objective metabolomics profiles and precise phenotypic data. Here we outline a roadmap to achieve this goal and discuss both the advantages and risks of this approach. We also highlight the uncertain associations between the complexity of high-dimensional data generated in 'omics research (along with the public confusion this may engender) and the rapid adoption of 'omics approaches by nutrition and health companies to develop nutritional products and services.
Collapse
Affiliation(s)
| | - Melissa Wake
- The Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Richard Saffery
- The Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - David Burgner
- The Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Martin Kussmann
- Liggins Institute, Auckland, New Zealand,New Zealand National Science Challenge, High-Value Nutrition, The University of Auckland, Auckland, New Zealand,Frontiers Media SA, Lausanne, Switzerland
| | - Justin O'Sullivan
- Liggins Institute, Auckland, New Zealand,New Zealand National Science Challenge, High-Value Nutrition, The University of Auckland, Auckland, New Zealand,Address correspondence to JO (e-mail: )
| |
Collapse
|