1
|
Jia C, Chai J, Zhang S, Sun Y, He L, Sang Z, Chen D, Zheng X. The Advancements of Marine Natural Products in the Treatment of Alzheimer's Disease: A Study Based on Cell and Animal Experiments. Mar Drugs 2025; 23:91. [PMID: 40137277 PMCID: PMC11943648 DOI: 10.3390/md23030091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
As life expectancy rises and the aging population grows, Alzheimer's disease (AD) has become a significant global health concern. AD is a complex neurodegenerative disorder with an unclear etiology. Current hypotheses primarily focus on β-amyloid (Aβ) aggregation, tau protein hyperphosphorylation, and neuroinflammation as key pathological processes. Given the limited efficacy of existing therapeutic strategies, there is an urgent need to explore novel treatment options. Marine natural products have garnered significant attention due to their unique chemical structures and diverse bioactivities, demonstrating potential for multi-target interventions in AD. This review systematically summarizes the roles of marine-derived compounds, including polysaccharides, carotenoids, and polyphenols, in modulating Aβ aggregation, mitigating tau protein pathology, and regulating gut-brain axis dysfunction. Furthermore, the challenges of current research are discussed, with an emphasis on improving blood-brain barrier permeability and optimizing drug delivery systems to facilitate clinical translation.
Collapse
Affiliation(s)
- Chunbo Jia
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
- Department of Comparative Medicine, Dalian Medical University, Dalian 116044, China
| | - Jiaxin Chai
- Department of Comparative Medicine, Dalian Medical University, Dalian 116044, China
| | - Shenyun Zhang
- Department of Comparative Medicine, Dalian Medical University, Dalian 116044, China
| | - Yining Sun
- Department of Comparative Medicine, Dalian Medical University, Dalian 116044, China
| | - Liheng He
- Department of Comparative Medicine, Dalian Medical University, Dalian 116044, China
| | - Zhipei Sang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Dapeng Chen
- Department of Comparative Medicine, Dalian Medical University, Dalian 116044, China
| | - Xu Zheng
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
2
|
Dhapola R, Kumari S, Sharma P, HariKrishnaReddy D. Insight into the emerging and common experimental in-vivo models of Alzheimer's disease. Lab Anim Res 2023; 39:33. [PMID: 38082453 PMCID: PMC10712122 DOI: 10.1186/s42826-023-00184-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 05/30/2024] Open
Abstract
Alzheimer's disease (AD) is a multifactorial, rapidly progressing neurodegenerative disorder. As the exact cause of the disease is still unclear, the drug development is very challenging. This review encompasses the commonly used AD models involving various chemicals, heavy metals and endogenous substances induced models and the transgenic models. It also provides insight into the reliable emerging models of AD that may overcome the shortcomings associated with available models. Chemicals like streptozotocin, scopolamine, colchicine and okadaic acid render the animal susceptible to neuroinflammation and oxidative stress induced neurodegeneration along with amyloid-β deposition and tau hyperphosphorylation. Similarly, endogenous substances like acrolein and amyloid-β 1-42 are efficient in inducing the major pathologies of AD. Heavy metals like aluminum and fluoride and mixture of these have been reported to induce neurotoxicity therefore are used as animal models for AD. Transgenic models developed as a result of knock-in or knock-out of certain genes associated with AD including PDAPP, APP23, Tg2576, APP/PS1, 3 × Tg and 5 × FAD have also been incorporated in this study. Further, emerging and advanced pathomimetic models of AD are provided particular interest here which will add on to the current knowledge of animal models and may aid in the drug development process and deepen our understanding related to AD pathogenesis. These newly discovered models include oAβ25-35 model, transgenic model expressing 82-kDa ChAT, oDGal mouse and APP knock-in rat. This study may aid in the selection of suitable model for development of novel potent therapeutics and for exploring detailed pathogenic mechanism of AD.
Collapse
Affiliation(s)
- Rishika Dhapola
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Sneha Kumari
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Prajjwal Sharma
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Dibbanti HariKrishnaReddy
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India.
| |
Collapse
|
3
|
Rivai B, Umar AK. Neuroprotective compounds from marine invertebrates. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023; 12:71. [DOI: 10.1186/s43088-023-00407-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/22/2023] [Indexed: 09/01/2023] Open
Abstract
Abstract
Background
Neuroinflammation is a key pathological feature of a wide variety of neurological disorders, including Parkinson’s, multiple sclerosis, Alzheimer’s, and Huntington’s disease. While current treatments for these disorders are primarily symptomatic, there is a growing interest in developing new therapeutics that target the underlying neuroinflammatory processes.
Main body
Marine invertebrates, such as coral, sea urchins, starfish, sponges, and sea cucumbers, have been found to contain a wide variety of biologically active compounds that have demonstrated potential therapeutic properties. These compounds are known to target various key proteins and pathways in neuroinflammation, including 6-hydroxydopamine (OHDH), caspase-3 and caspase-9, p-Akt, p-ERK, p-P38, acetylcholinesterase (AChE), amyloid-β (Aβ), HSF-1, α-synuclein, cellular prion protein, advanced glycation end products (AGEs), paraquat (PQ), and mitochondria DJ-1.
Short conclusion
This review focuses on the current state of research on the neuroprotective effects of compounds found in marine invertebrates and the potential therapeutic implications of these findings for treating neuroinflammatory disorders. We also discussed the challenges and limitations of using marine-based compounds as therapeutics, such as sourcing and sustainability concerns, and the need for more preclinical and clinical studies to establish their efficacy and safety.
Graphical abstract
Collapse
|
4
|
Potential Therapeutic Agents That Target ATP Binding Cassette A1 (ABCA1) Gene Expression. Drugs 2022; 82:1055-1075. [PMID: 35861923 DOI: 10.1007/s40265-022-01743-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
The cholesterol efflux protein ATP binding cassette protein A1 (ABCA) and apolipoprotein A1 (apo A1) are key constituents in the process of reverse-cholesterol transport (RCT), whereby excess cholesterol in the periphery is transported to the liver where it can be converted primarily to bile acids for either use in digestion or excreted. Due to their essential roles in RCT, numerous studies have been conducted in cells, mice, and humans to more thoroughly understand the pathways that regulate their expression and activity with the goal of developing therapeutics that enhance RCT to reduce the risk of cardiovascular disease. Many of the drugs and natural compounds examined target several transcription factors critical for ABCA1 expression in both macrophages and the liver. Likewise, several miRNAs target not only ABCA1 but also the same transcription factors that are critical for its high expression. However, after years of research and many preclinical and clinical trials, only a few leads have proven beneficial in this regard. In this review we discuss the various transcription factors that serve as drug targets for ABCA1 and provide an update on some important leads.
Collapse
|
5
|
Matysek A, Kimmantudawage SP, Feng L, Maier AB. Targeting Impaired Nutrient Sensing via the Glycogen Synthase Kinase-3 Pathway With Therapeutic Compounds to Prevent or Treat Dementia: A Systematic Review. FRONTIERS IN AGING 2022; 3:898853. [PMID: 35923682 PMCID: PMC9341294 DOI: 10.3389/fragi.2022.898853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/27/2022] [Indexed: 12/15/2022]
Abstract
Background: Dementia is a global challenge with 10 million individuals being diagnosed every year. Currently, there are no established disease-modifying treatments for dementia. Impaired nutrient sensing has been implicated in the pathogenesis of dementia. Compounds that inhibit the glycogen synthase kinase-3 (GSK3) pathway have been investigated as a possible treatment to attenuate the progression of the disease, particularly the suppression of the hyper-phosphorylation process of the tau protein. Aims: Systematically summarizing compounds which have been tested to inhibit the GSK3 pathway to treat cognitive impairment and dementia. Methods: PubMed, Embase and Web of Science databases were searched from inception until 28 July 2021 for articles published in English. Interventional animal studies inhibiting the GSK3 pathway in Alzheimer’s disease (AD), Parkinson’s dementia, Lewy body dementia, vascular dementia, mild cognitive impairment (MCI) and normal cognitive ageing investigating the change in cognition as the outcome were included. The Systematic Review Centre for Laboratory animal Experimentation’s risk of bias tool for animal studies was applied. Results: Out of 4,154 articles, 29 described compounds inhibiting the GSK3 pathway. All studies were based on animal models of MCI, AD or normal cognitive ageing. Thirteen out of 21 natural compounds and five out of nine synthetic compounds tested in MCI and dementia animal models showed an overall positive effect on cognition. No articles reported human studies. The risk of bias was largely unclear. Conclusion: Novel therapeutics involved in the modulation of the GSK3 nutrient sensing pathway have the potential to improve cognitive function. Overall, there is a clear lack of translation from animal models to humans.
Collapse
Affiliation(s)
- Adrian Matysek
- Department of Human Genetics, University of Amsterdam, Amsterdam UMC, University Medical Centers, Amsterdam, Netherlands
| | - Sumudu Perera Kimmantudawage
- Department of Medicine and Aged Care, Royal Melbourne Hospital, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Lei Feng
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Healthy Longevity, National University Health System, Singapore, Singapore
| | - Andrea B. Maier
- Department of Medicine and Aged Care, Royal Melbourne Hospital, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Healthy Longevity, National University Health System, Singapore, Singapore
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit, Amsterdam, Netherlands
- *Correspondence: Andrea B. Maier,
| |
Collapse
|
6
|
He L, Liu X, Li H, Dong R, Liang R, Wang R. Polyrhachis vicina Roger Alleviates Memory Impairment in a Rat Model of Alzheimer's Disease Through the EGR1/BACE1/APP Axis. ACS Chem Neurosci 2022; 13:1857-1867. [PMID: 35675207 DOI: 10.1021/acschemneuro.1c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Memory deficits and loss are the earliest and most prominent features of Alzheimer's disease (AD). This study was aimed to clarify the mechanistic basis of an active fraction of Polyrhachis vicina Roger (AFPR) on the memory abilities of AD rat models, which involves early growth response 1 (EGR1) expression and β-secretase 1 (BACE1)-mediated deposition of amyloid β peptide (Aβ). An AD rat model was developed by Aβ25-35, which was further treated with AFPR alone or in combination with lentiviral EGR1. The Morris water maze test and HE and Fluoro-Jade C staining were adopted to observe the memory behaviors, hippocampus neuron morphology, and Aβ deposition. Aβ25-35-induced SK-N-SH and HT22 neurons were subjected to AFPR for in vitro experiments on neuronal viability and apoptosis. AFPR improved the impaired memory function, preserved the neuron structure, and suppressed Aβ deposition in AD rat models. Further, the expression of APP pathway-related proteins was downregulated by AFPR in both rat and cellular models. Moreover, AFPR inhibited the Aβ25-35-induced neuronal apoptosis. AFPR suppressed the expression of EGR1, downregulated the BACE1 expression via impeding the binding of EGR1 to the BACE1 promoter, and thus blocked the activation of the APP signaling, ultimately protecting neurons. Notably, the aforementioned effects of AFPR were in a concentration-dependent manner; among three doses, 3.65, 15.6, and 30 mg/(kg·d), high-dose AFPR exhibited the most appreciable effects. In conclusion, AFPR inhibited the BACE1 expression by repressing the binding of EGR1 to the promoter of BACE1, thereby suppressing the Aβ deposition and improving the memory function of AD rats.
Collapse
Affiliation(s)
- Luyan He
- Department of Neurology, Cangzhou Central Hospital, Cangzhou 061000, P.R. China
| | - Xiaoman Liu
- Department of Neurology, Cangzhou Central Hospital, Cangzhou 061000, P.R. China
| | - Hualian Li
- Department of Neurology, Cangzhou Central Hospital, Cangzhou 061000, P.R. China
| | - Ruifang Dong
- Department of Neurology, Cangzhou Central Hospital, Cangzhou 061000, P.R. China
| | - Ruobing Liang
- Department of Neurology, Cangzhou Central Hospital, Cangzhou 061000, P.R. China
| | - Ruoxi Wang
- Department of Neurology, Cangzhou Central Hospital, Cangzhou 061000, P.R. China
| |
Collapse
|
7
|
Ferulic acid improves intestinal barrier function through altering gut microbiota composition in high-fat diet-induced mice. Eur J Nutr 2022; 61:3767-3783. [PMID: 35732902 DOI: 10.1007/s00394-022-02927-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/31/2022] [Indexed: 12/16/2022]
Abstract
PURPOSE A high-fat diet (HFD) induces gut microbiota (GM) disorders, leading to intestinal barrier dysfunction and inflammation. Ferulic acid (FA) has shown anti-obesity effects, e.g., reducing body weight and food intake. However, the mechanism linking the anti-obesity effects of FA and GM modulation remains obscure. The present study aimed to clarify the mechanism underlying the anti-obesity effects of FA and modulation of the GM. METHODS C57BL/6 J mice were fed by a low-fat diet (LFD) and HFD with or without FA at a dose of 100 mg/kg of body weight by oral gavage for 12 weeks. Using high-throughput sequencing, gas chromatography, real-time fluorescence quantitative PCR and immunohistochemical staining, the attenuation of obesity by FA were assessed via intestinal barrier integrity, inflammation, and the GM. RESULTS FA reduced weight gain, improved HFD-induced GM imbalance, significantly enhanced intestinal short-chain fatty acid (SCFA)-producing bacteria (e.g., Olsenella, Eisenbergiella, Dubosiella, Clostridiales_unclassified, and Faecalibaculum) along with SCFA accumulation and its receptors' expression, decreased endotoxin-producing bacteria or obesity-related bacterial genera, and serum endotoxin (lipopolysaccharides), and inhibited the colonic TLR4/NF-κB pathway. Thus, FA can mitigate colonic barrier dysfunction and intestinal inflammation, induce the production of SCFAs and inhibit endotoxins by modulating the GM. CONCLUSION These results indicate that enhancement of intestinal barrier by altering the GM may be an anti-obesity target of FA and that FA can be used as a functional compound with great developmental values.
Collapse
|
8
|
Liu B, Zhang N, Yang J, Sun W, Zhang R, Zheng X, Wang Z, Siebert HC, Han J. Preparation, Characterization, Evaluation of Neuroprotective Effect, and Related Mechanisms of Phosphatidylserine Emulsion in 5- and 12-Week Old Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1852-1864. [PMID: 35107277 DOI: 10.1021/acs.jafc.1c07403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phosphatidylserine (PS) improves learning and memory capacity. In this study, PS formulation was optimized by a response surface methodology. Moreover, we found that PS not only functions as a biologically active component in food preparations but also improves the emulsion's physical stability. Our results showed that the PS emulsions are characterized by a smaller particle size, higher ζ-potential (negative), higher viscosity, and lower surface tension and centrifugal stability constants than the emulsion without PS. Furthermore, we explored the neuroprotective effects of PS emulsion and its underlying mechanisms. Treatment with 2% (w/w) PS emulsion for three months enhanced spatial learning and memory in 5- and 12-week old mice in the Morris water maze test. Western-blotting analysis displayed that the 2% (w/w) PS emulsion treated group upregulated BDNF, TrkB, PSD95, mTOR, MBP, and ErbB4 expression in the hippocampus of 5- and 12-week old mice. Reverse transcription polymerase chain reaction (RT-PCR) analysis revealed elevated Nrg-1 and ErbB4 mRNA expression in the 2% (w/w) PS emulsion treated groups, and high Nrg-1 and ErbB4 expression levels were associated with better myelination. In conclusion, we reported PS emulsions with high stability and high bioavailability. Meanwhile, 2% (w/w) PS emulsion enhances learning, memory, and myelination in mice by activating the BDNF/TrkB and Nrg-1/ErbB4 signaling.
Collapse
Affiliation(s)
- Bingyi Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
- RI-B-NT - Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr.116, 24118 Kiel, Germany
| | - Junrong Yang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Wei Sun
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
- RI-B-NT - Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr.116, 24118 Kiel, Germany
| | - Xuexing Zheng
- Department of Virology, School of Public Health, Shandong University, Jinan 250012, China
| | - Zhengping Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
- Liaocheng High-Tech Biotechnology Co., Ltd., Liaocheng 252059, China
| | - Hans-Christian Siebert
- RI-B-NT - Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr.116, 24118 Kiel, Germany
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
9
|
Yang JY, Zhang TT, Dong Z, Shi HH, Xu J, Mao XZ, Wang YM, Xue CH. Dietary Supplementation with Exogenous Sea-Cucumber-Derived Ceramides and Glucosylceramides Alleviates Insulin Resistance in High-Fructose-Diet-Fed Rats by Upregulating the IRS/PI3K/Akt Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9178-9187. [PMID: 33560835 DOI: 10.1021/acs.jafc.0c06831] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Endogenous ceramide is considered to be associated with the progress of insulin resistance. However, the effects of dietary exogenous glucosylceramides and ceramides on insulin resistance are unclear. A model of fructose-induced male Sprague Dawley rats was used to compare the effects of sea-cucumber-derived glucosylceramides and ceramides on insulin resistance. Both glucosylceramides and ceramides significantly improved glucose tolerance, reduced the concentrations of serum glucose and glycosylated hemoglobin, and alleviated the accompanied hypertension. Ceramides significantly enhanced glycogen levels in skeletal muscle, whereas glucosylceramides significantly increased the hepatic glycogen levels. Moreover, glucosylceramides alleviated insulin resistance by inhibiting gluconeogenesis, promoting glycogen synthesis and insulin signal transduction in the liver; meanwhile, ceramides were mainly due to the promotion of glycogen synthesis and insulin signal transduction in skeletal muscle. Additionally, glucosylceramides and ceramides effectively attenuated inflammation in adipose tissue. These results indicate that glucosylceramides and ceramides have potential value in the prevention and alleviation of insulin resistance.
Collapse
Affiliation(s)
- Jin-Yue Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Zhe Dong
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Hao-Hao Shi
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Xiang-Zhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Laboratory of Marine Drugs & Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong 266237, People's Republic of China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Laboratory of Marine Drugs & Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong 266237, People's Republic of China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Laboratory of Marine Drugs & Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong 266237, People's Republic of China
| |
Collapse
|
10
|
Lian WW, Zhou W, Zhang BY, Jia H, Xu LJ, Liu AL, Du GH. DL0410 ameliorates cognitive disorder in SAMP8 mice by promoting mitochondrial dynamics and the NMDAR-CREB-BDNF pathway. Acta Pharmacol Sin 2021; 42:1055-1068. [PMID: 32868905 DOI: 10.1038/s41401-020-00506-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/06/2020] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is a worldwide problem and there are no effective drugs for AD treatment. Previous studies show that DL0410 is a multi-target, anti-AD agent. In this study, we investigated the therapeutic effect of DL0410 and its action mechanism in SAMP8 mice. DL0410 (1-10 mg·kg-1·d-1) was orally administered to 8-month-old SAMP mice (SAMP8) for 8 weeks. We showed that DL0410 administration effectively ameliorated the cognitive deficits in the Morris water maze test, novel object recognition test, and nest building test. We revealed that DL0410 dose-dependently increased the expression levels of the mitochondrial proteins (PGC-1α, Mitofusin 2, OPA1, and Drp1), and subsequently ameliorated the processes of mitochondrial biosynthesis, fusion, and fission in the cortex and hippocampus of SAMP8 mice. Furthermore, DL0410 administration promoted the expression of synaptic proteins (synaptophysin and PSD95) in the brain of SAMP8 mice, and upregulated the protein phosphorylation in NMDAR-CAMKII/CAMKIV-CREB pathway responsible for the synaptic plasticity. DL0410 administration dose-dependently increased the expression of BDNF and TrkB, and the neurotrophic effect was mediated via the ERK1/2 and PI3K-AKT-GSK-3β pathways. DL0410 administration upregulated Bcl-2, increased the Bcl-2/Bax ratio and the level of caspase 3 and PARP-1, alleviating neuronal apoptosis. We proposed that the NMDAR-CREB-BDNF pathway might establish a positive feedback loop between synaptic plasticity and neurotrophy, with CREB at the center. In summary, DL0410 promotes synaptic function and neuronal survival, thus ameliorating cognitive deficits in SAMP8 mice via improved mitochondrial dynamics and increased activity of the NMDAR-CREB-BDNF pathway. DL0410 is a promising candidate to treat aging-related AD, and deserves more research and development in future.
Collapse
|
11
|
Zhang M, Hu Y, Zhang J, Zhang J. FTY720 Prevents Spatial Memory Impairment in a Rat Model of Chronic Cerebral Hypoperfusion via a SIRT3-Independent Pathway. Front Aging Neurosci 2021; 12:593364. [PMID: 33519419 PMCID: PMC7845736 DOI: 10.3389/fnagi.2020.593364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
Vascular dementia (VD) and Alzheimer's disease (AD) are the most prevalent types of late-life dementia. Chronic cerebral hypoperfusion (CCH) contributes to both AD and VD. Recently, accumulating evidence has indicated that fingolimod (FTY720) is neuroprotective in acute cerebral ischemic stroke animal models, and the drug is now being used in clinical translation studies. However, fewer studies have addressed the role of FTY720 in chronic cerebral hypoperfusion (CCH)-related brain damage. In the present study, to investigate whether FTY720 can improve CCH-induced spatial memory loss and its underlying mechanism, two-vessel occlusion (2VO) rats were administered intraperitoneal FTY720 (1 mg/kg) for 7 consecutive weeks from post-operative day 8. Spatial memory was tested using the Morris Water Maze (MWM), and the rats' brains were harvested to allow molecular, biochemical, and pathological tests. We found that FTY720 treatment significantly reduced the escape latency and increased the target quadrant swimming time of the 2VO rats in the MWM task. The improvement in memory performance paralleled lower levels of pro-inflammatory cytokines and Iba-1 positive cells in the hippocampus of the 2VO rats, indicating that FTY720 had a beneficial effect in mitigating neuroinflammation. Furthermore, we found that FTY720 alleviated mitochondrial dysfunction in 2VO rats, as manifested by lower malondialdehyde levels, higher ATP content, and upregulation of ATP synthase activity in the hippocampus after treatment. FTY720 had no effect on the CCH-induced decrease in the activity of hippocampal Sirtuin-3, a master regulator of mitochondrial function and neuroinflammation. In summary, the results showed that FTY720 can improve CCH-induced spatial memory loss. The mechanism may involve Sirtuin-3-independent regulation of mitochondrial dysfunction and neuroinflammation in the hippocampus. The present study provides new clues to the pathological mechanism of CCH-induced cognitive impairment.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Hu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiahui Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Catanesi M, Caioni G, Castelli V, Benedetti E, d’Angelo M, Cimini A. Benefits under the Sea: The Role of Marine Compounds in Neurodegenerative Disorders. Mar Drugs 2021; 19:24. [PMID: 33430021 PMCID: PMC7827849 DOI: 10.3390/md19010024] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Marine habitats offer a rich reservoir of new bioactive compounds with great pharmaceutical potential; the variety of these molecules is unique, and its production is favored by the chemical and physical conditions of the sea. It is known that marine organisms can synthesize bioactive molecules to survive from atypical environmental conditions, such as oxidative stress, photodynamic damage, and extreme temperature. Recent evidence proposed a beneficial role of these compounds for human health. In particular, xanthines, bryostatin, and 11-dehydrosinulariolide displayed encouraging neuroprotective effects in neurodegenerative disorders. This review will focus on the most promising marine drugs' neuroprotective potential for neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases. We will describe these marine compounds' potential as adjuvant therapies for neurodegenerative diseases, based on their antioxidant, anti-inflammatory, and anti-apoptotic properties.
Collapse
Affiliation(s)
- Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, AQ, Italy; (M.C.); (G.C.); (V.C.); (E.B.)
| | - Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, AQ, Italy; (M.C.); (G.C.); (V.C.); (E.B.)
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, AQ, Italy; (M.C.); (G.C.); (V.C.); (E.B.)
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, AQ, Italy; (M.C.); (G.C.); (V.C.); (E.B.)
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, AQ, Italy; (M.C.); (G.C.); (V.C.); (E.B.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, AQ, Italy; (M.C.); (G.C.); (V.C.); (E.B.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
13
|
Zhang XM, Ouyang YJ, Yu BQ, Li W, Yu MY, Li JY, Jiao ZM, Yang D, Li N, Shi Y, Xu YY, He ZJ, Wang D, Yue H, Fu J. Therapeutic potential of dental pulp stem cell transplantation in a rat model of Alzheimer's disease. Neural Regen Res 2021; 16:893-898. [PMID: 33229725 PMCID: PMC8178760 DOI: 10.4103/1673-5374.297088] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Dental pulp stem cells are dental pulp-derived mesenchymal stem cells that originate from the neural crest. They exhibit greater potential for the treatment of nervous system diseases than other types of stem cells because of their neurogenic differentiation capability and their ability to secrete multiple neurotrophic factors. Few studies have reported Alzheimer’s disease treatment using dental pulp stem cells. Rat models of Alzheimer’s disease were established by injecting amyloid-β1–42 into the hippocampus. Fourteen days later, 5 × 106 dental pulp stem cells were injected into the hippocampus. Immunohistochemistry and western blot assays showed that dental pulp stem cell transplantation increased the expression of neuron-related doublecortin, NeuN, and neurofilament 200 in the hippocampus, while the expression of amyloid-β was decreased. Moreover, cognitive and behavioral abilities were improved. These findings indicate that dental pulp stem cell transplantation in rats can improve cognitive function by regulating the secretion of neuron-related proteins, which indicates a potential therapeutic effect for Alzheimer’s disease. This study was approved by the Animal Ethics Committee of Harbin Medical University, China (approval No. KY2017-132) on February 21, 2017.
Collapse
Affiliation(s)
- Xue-Mei Zhang
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuan-Jiao Ouyang
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Bing-Qian Yu
- Department of Neurology, Ningbo Hangzhou Bay Hospital, Ningbo, Zhejiang Province, China
| | - Wei Li
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Mei-Yu Yu
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jin-Yue Li
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zhuo-Min Jiao
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Dan Yang
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Na Li
- Department of Neurology, the First Hospital of Qiqihar, Qiqihar, Heilongjiang Province, China
| | - Ying Shi
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yun-Yun Xu
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zhi-Jun He
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Duo Wang
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Hui Yue
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jin Fu
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
14
|
Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2021; 38:362-413. [PMID: 33570537 DOI: 10.1039/d0np00089b] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review covers the literature published in 2019 for marine natural products (MNPs), with 719 citations (701 for the period January to December 2019) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 440 papers for 2019), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Methods used to study marine fungi and their chemical diversity have also been discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
15
|
Wang Z, He C, Shi JS. Natural Products for the Treatment of Neurodegenerative Diseases. Curr Med Chem 2020; 27:5790-5828. [PMID: 31131744 DOI: 10.2174/0929867326666190527120614] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders characterized by the progressive degeneration of the structure and function of the central nervous system or peripheral nervous system. Alzheimer's Disease (AD), Parkinson's Disease (PD) and Spinal Cord Injury (SCI) are the common neurodegenerative diseases, which typically occur in people over the age of 60. With the rapid development of an aged society, over 60 million people worldwide are suffering from these uncurable diseases. Therefore, the search for new drugs and therapeutic methods has become an increasingly important research topic. Natural products especially those from the Traditional Chinese Medicines (TCMs), are the most important sources of drugs, and have received extensive interest among pharmacist. In this review, in order to facilitate further chemical modification of those useful natural products by pharmacists, we will bring together recent studies in single natural compound from TCMs with neuroprotective effect.
Collapse
Affiliation(s)
- Ze Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi Guizhou 563003, China.,Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563003, P.R. China
| | - Chunyang He
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi Guizhou 563003, China.,Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563003, P.R. China
| | - Jing-Shan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi Guizhou 563003, China
| |
Collapse
|
16
|
Icaritin Improves Memory and Learning Ability by Decreasing BACE-1 Expression and the Bax/Bcl-2 Ratio in Senescence-Accelerated Mouse Prone 8 (SAMP8) Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8963845. [PMID: 32714426 PMCID: PMC7345953 DOI: 10.1155/2020/8963845] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/03/2020] [Indexed: 12/15/2022]
Abstract
Icaritin (ICT) is the main component in the traditional Chinese herb Epimedium, and it has been shown to have anti-Alzheimer's disease (AD) effects, but its neuroprotective effects and the pharmacological mechanisms are unclear. In the present study, senescence-accelerated mouse prone 8 (SAMP8) mice were randomly divided into a model group and an ICT-treated group. Learning and memory abilities were detected by the Morris water maze assay, and the expression of amyloid beta protein (Aβ) and β-site APP cleavage enzyme 1 (BACE1) was determined by Western blotting and polymerase chain reaction (PCR). Histological changes in CA1 and CA3 were detected by hematoxylin-eosin staining (H&E staining), and the immunohistochemical analysis was used to detect the expression and localization of Bax and Bcl-2. The results showed that compared with the SAMP8 mice, the ICT-treated SAMP8 mice showed improvements in spatial learning and memory retention. In addition, the number of necrotic cells and the morphological changes in CA1 and CA3 areas were significantly alleviated in the group of ICT-treated SAMP8 mice, and the expression of BACE1, Aβ1-42 levels, and the Bax/Bcl-2 ratio in the hippocampus was obviously decreased in the ICT-treated group compared with the control group. The results demonstrated that ICT reduced BACE-1 levels, the contents of Aβ1-42, and the Bax/Bcl-2 ratio, suggesting that ICT might have potential therapeutic benefits by delaying or modifying the progression of AD.
Collapse
|
17
|
Marine Biocompounds for Neuroprotection-A Review. Mar Drugs 2020; 18:md18060290. [PMID: 32486409 PMCID: PMC7344849 DOI: 10.3390/md18060290] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
While terrestrial organisms are the primary source of natural products, recent years have witnessed a considerable shift towards marine-sourced biocompounds. They have achieved a great scientific interest due to the plethora of compounds with structural and chemical properties generally not found in terrestrial products, exhibiting significant bioactivity ten times higher than terrestrial-sourced molecules. In addition to the antioxidant, anti-thrombotic, anti-coagulant, anti-inflammatory, anti-proliferative, anti-hypertensive, anti-diabetic, and cardio-protection properties, marine-sourced biocompounds have been investigated for their neuroprotective potential. Thus, this review aims to describe the recent findings regarding the neuroprotective effects of the significant marine-sourced biocompounds.
Collapse
|
18
|
Abstract
Alzheimer's disease is a chronic neurodegenerative devastating disorder affecting a high percentage of the population over 65 years of age and causing a relevant emotional, social, and economic burden. Clinically, it is characterized by a prominent cognitive deficit associated with language and behavioral impairments. The molecular pathogenesis of Alzheimer's disease is multifaceted and involves changes in neurotransmitter levels together with alterations of inflammatory, oxidative, hormonal, and synaptic pathways, which may represent a drug target for both prevention and treatment; however, an effective treatment for Alzheimer's disease still represents an unmet goal. As neurotrophic factors participate in the modulation of the above-mentioned pathways, they have been highlighted as critical contributors of Alzheimer's disease etiology, whose modulation might be beneficial for Alzheimer's disease. We focused on the neurotrophin brain-derived neurotrophic factor, providing several lines of evidence pointing to brain-derived neurotrophic factor as a plausible endophenotype of cognitive deficits in Alzheimer's disease, illustrating some of the most recent possibilities to modulate the expression of this neurotrophin in the brain in an attempt to ameliorate cognition and delay the progression of Alzheimer's disease. This review shows that otherwise disparate pharmacologic or non-pharmacologic approaches converge on brain-derived neurotrophic factor, providing a means whereby apparently unrelated medical approaches may nevertheless produce similar synaptic and cognitive outcomes in Alzheimer's disease pathogenesis, suggesting that brain-derived neurotrophic factor-based synaptic repair may represent a modifying strategy to ameliorate cognition in Alzheimer's disease.
Collapse
|
19
|
Habtemariam S. Natural Products in Alzheimer's Disease Therapy: Would Old Therapeutic Approaches Fix the Broken Promise of Modern Medicines? Molecules 2019; 24:molecules24081519. [PMID: 30999702 PMCID: PMC6514598 DOI: 10.3390/molecules24081519] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/30/2022] Open
Abstract
Despite extensive progress in understanding the pathology of Alzheimer's disease (AD) over the last 50 years, clinical trials based on the amyloid-beta (Aβ) hypothesis have kept failing in late stage human trials. As a result, just four old drugs of limited clinical outcomes and numerous side effects are currently used for AD therapy. This article assesses the common pharmacological targets and therapeutic principles for current and future drugs. It also underlines the merits of natural products acting through a polytherapeutic approach over a monotherapy option of AD therapy. Multi-targeting approaches through general antioxidant and anti-inflammatory mechanisms coupled with specific receptor and/or enzyme-mediated effects in neuroprotection, neuroregeneration, and other rational perspectives of novel drug discovery are emphasized.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK.
| |
Collapse
|