1
|
Molina D, Angamarca E, Marinescu GC, Popescu RG, Tenea GN. Integrating Metabolomics and Genomics to Uncover Antimicrobial Compounds in Lactiplantibacillus plantarum UTNGt2, a Cacao-Originating Probiotic from Ecuador. Antibiotics (Basel) 2025; 14:123. [PMID: 40001367 PMCID: PMC11851819 DOI: 10.3390/antibiotics14020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Lactic acid bacteria (LAB) produce several diverse metabolites during fermentation that play key roles in enhancing health and food quality. These metabolites include peptides, organic acids, exopolysaccharides, and antimicrobial compounds, which contribute to gut health, immune system modulation, and pathogen inhibition. This study analyzed the intracellular (Met-Int) and extracellular metabolites (Met-Ext-CFS; cell-free supernatant) of Lactiplantibacillus plantarum UTNGt2, a probiotic strain isolated from Theobroma grandiflorum. Methods: The assessment was performed using capillary LC-MS/MS metabolomics with a SWATH-based data-independent acquisition approach to identify molecules associated with antimicrobial activity. Results: The integration of metabolomic data with whole-genome annotation enabled the identification of several key metabolites, including amino acids, nucleotides, organic acids, oligopeptides, terpenes, and flavonoids, many of which were associated with the antimicrobial activity of UTNGt2. Pathway analysis reveals critical processes such as secondary metabolite biosynthesis, nucleotide and galactose metabolism, and cofactor biosynthesis. By integrating RiPP (ribosomally synthesized and post-translationally modified peptide) cluster gene predictions with LC-MS data, this study validates the production of specific RiPPs and uncovers novel bioactive compounds encoded within the UTNGt2 genome. The oligopeptide val-leu-pro-val-pro-gln found in both Met-Int (ESI+) and Met-Ext-CFS (ESI+) may contribute to the strain's antimicrobial strength. It could also enhance probiotic and fermentation-related functions. Conclusions: While genome-based predictions highlight the strain's biosynthetic potential, the actual metabolite profile is influenced by factors like transcriptional regulation, post-transcriptional and post-translational modifications, and environmental conditions. These findings emphasize the value of multi-omics approaches in providing a holistic understanding of metabolite production and its role in antimicrobial activity.
Collapse
Affiliation(s)
- Diana Molina
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Universidad Técnica del Norte, Ibarra 100150, Ecuador; (D.M.); (E.A.)
| | - Evelyn Angamarca
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Universidad Técnica del Norte, Ibarra 100150, Ecuador; (D.M.); (E.A.)
| | - George Cătălin Marinescu
- Asociația Independent Research, 58 Timișului, Sector 1, 012416 Bucharest, Romania; (G.C.M.); (R.G.P.)
- Blue Screen SRL, 58 Timișului, Sector 1, 012416 Bucharest, Romania
| | - Roua Gabriela Popescu
- Asociația Independent Research, 58 Timișului, Sector 1, 012416 Bucharest, Romania; (G.C.M.); (R.G.P.)
- Blue Screen SRL, 58 Timișului, Sector 1, 012416 Bucharest, Romania
| | - Gabriela N. Tenea
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Universidad Técnica del Norte, Ibarra 100150, Ecuador; (D.M.); (E.A.)
| |
Collapse
|
2
|
Chen L, Hua Q, Ten MZM, Li Z, Xue C, Li D. Lactiplantibacillus plantarum 299V-fermented soy whey improved the safety and shelf life of Pacific oysters (Magallana gigas). NPJ Sci Food 2024; 8:77. [PMID: 39369016 PMCID: PMC11457525 DOI: 10.1038/s41538-024-00317-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024] Open
Abstract
This study developed a postbiotic fermentation solution for fresh oyster preservation with the use of food waste soy whey. Lactiplantibacillus plantarum 299V was able to proliferate in soy whey within 24 h without any supplementation. Pacific oysters (Magallana gigas) were immersed in the postbiotic fermentation solution and stored at 4 °C for 12 days. Pathogenic bacteria Vibrio parahaemolyticus and Salmonella enterica introduced by bioaccumulation were suppressed to levels below the detection limit (<2 log CFU/g) within 4 days. The spoilage-related microbial parameters and chemical parameters were maintained at low levels across the 12 days. Sensory evaluation revealed that the product had a positive effect on most of the participants (>60%). Overall, the postbiotic fermentation solution reported in this study enhanced the shelf life and safety of oysters in a sustainable way and could also be recognized as an innovative probiotic vehicle with potential implications for human health promotion.
Collapse
Affiliation(s)
- Lipin Chen
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
- School of Food Science and Technology, Hainan University, Haikou, Hainan, 570228, China
| | - Qian Hua
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Mei Zhen Michelle Ten
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Dan Li
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
Lu S, Cheng D, Yao H, Wen Y, Yu Y, Li H, Wang J, Sun B. Cascade Microbial Metabolism of Ferulic Acid In Vitro Fermented by the Human Fecal Inoculum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9807-9817. [PMID: 38602350 DOI: 10.1021/acs.jafc.3c09782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Ferulic acid (FA), predominantly existing in most cereals, can modulate the gut microbiome, but the influences of its metabolites on the microbial population and FA-transforming microorganisms are still unclear. In this study, FA and its potential phenolic metabolites were fermented in vitro for 24 h with the human fecal inoculum. A comparable short chain fatty acid (SCFA) production trend was observed in the presence and absence of substrates, suggesting limited contribution of FA mechanism to SCFA formation. Dihydroferulic acid, 3-(3,4-dihydroxyphenyl)propionic acid, and 3-(3-hydroxyphenyl)propionic acid were ascertained to be successive metabolites of FA, by tracking the intermediate variation. FA remarkably promoted the absolute abundances of total bacteria, while different metabolites affected bacterial growth of selective genera. Specific genera were identified as quantitatively correlating to the content of FA and its metabolites. Ultimately, FA-mediated gut microbiota modulation involves both the action of metabolizing microbes and the regulation effects of metabolites on bacterial growth.
Collapse
Affiliation(s)
- Shiyi Lu
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Danyang Cheng
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Hong Yao
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yangyang Wen
- College of Chemistry and Materials Engineering, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Yonghui Yu
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Hongyan Li
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Jing Wang
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| |
Collapse
|
4
|
Tataru C, Peras M, Rutherford E, Dunlap K, Yin X, Chrisman BS, DeSantis TZ, Wall DP, Iwai S, David MM. Topic modeling for multi-omic integration in the human gut microbiome and implications for Autism. Sci Rep 2023; 13:11353. [PMID: 37443184 PMCID: PMC10345091 DOI: 10.1038/s41598-023-38228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
While healthy gut microbiomes are critical to human health, pertinent microbial processes remain largely undefined, partially due to differential bias among profiling techniques. By simultaneously integrating multiple profiling methods, multi-omic analysis can define generalizable microbial processes, and is especially useful in understanding complex conditions such as Autism. Challenges with integrating heterogeneous data produced by multiple profiling methods can be overcome using Latent Dirichlet Allocation (LDA), a promising natural language processing technique that identifies topics in heterogeneous documents. In this study, we apply LDA to multi-omic microbial data (16S rRNA amplicon, shotgun metagenomic, shotgun metatranscriptomic, and untargeted metabolomic profiling) from the stool of 81 children with and without Autism. We identify topics, or microbial processes, that summarize complex phenomena occurring within gut microbial communities. We then subset stool samples by topic distribution, and identify metabolites, specifically neurotransmitter precursors and fatty acid derivatives, that differ significantly between children with and without Autism. We identify clusters of topics, deemed "cross-omic topics", which we hypothesize are representative of generalizable microbial processes observable regardless of profiling method. Interpreting topics, we find each represents a particular diet, and we heuristically label each cross-omic topic as: healthy/general function, age-associated function, transcriptional regulation, and opportunistic pathogenesis.
Collapse
Affiliation(s)
- Christine Tataru
- Department of Microbiology, Oregon State University, SW Campus Way, Corvallis, USA.
| | - Marie Peras
- Second Genome Inc, 1000 Marina Blvd, Suite 500, Brisbane, CA, 94005, USA
| | - Erica Rutherford
- Second Genome Inc, 1000 Marina Blvd, Suite 500, Brisbane, CA, 94005, USA
| | - Kaiti Dunlap
- Department of Bioengineering, Serra Mall, Stanford, USA
| | - Xiaochen Yin
- Second Genome Inc, 1000 Marina Blvd, Suite 500, Brisbane, CA, 94005, USA
| | | | - Todd Z DeSantis
- Second Genome Inc, 1000 Marina Blvd, Suite 500, Brisbane, CA, 94005, USA
| | - Dennis P Wall
- Department of Biomedical Data Science, Serra Mall, Stanford, USA
- Department of Pediatrics (Systems Medicine), Stanford, 1265 Welch Road, Stanford, USA
| | - Shoko Iwai
- Second Genome Inc, 1000 Marina Blvd, Suite 500, Brisbane, CA, 94005, USA
| | - Maude M David
- Department of Microbiology, Oregon State University, SW Campus Way, Corvallis, USA.
- School of Pharmacy, Oregon State University, SW Campus Way, Corvallis, USA.
| |
Collapse
|
5
|
Tran C, Horyanto D, Stanley D, Cock IE, Chen X, Feng Y. Antimicrobial Properties of Bacillus Probiotics as Animal Growth Promoters. Antibiotics (Basel) 2023; 12:407. [PMID: 36830317 PMCID: PMC9952206 DOI: 10.3390/antibiotics12020407] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Antibiotic growth promoters (AGPs) suppress the growth of infectious pathogens. These pathogens negatively impact agricultural production worldwide and often cause health problems if left untreated. Here, we evaluate six Bacillus strains (BPR-11, BPR-12, BPR-13, BPR-14, BPR-16 and BPR-17), which are known for their ability to survive harsh environmental conditions, as AGP replacements in animal feed. Four of these Bacillus strains (BPR-11, BPR-14, BPR-16 and BPR-17) showed antimicrobial activity against the pathogenic strains Clostridium perfringens, Escherichia coli and Staphylococcus aureus at 25 μg/mL, with BPR-16 and BPR-17 also able to inhibit Pseudomonas aeruginosa and Salmonella enterica at 100 μg/mL. Further chemical investigation of BPR-17 led to the identification of eight metabolites, namely C16, C15, C14 and C13 surfactin C (1-4), maculosin (5), maculosine 2 (6), genistein (7) and daidzein (8). Purified compounds (1-4) were able to inhibit all the tested pathogens with MIC values ranging from 6.25 to 50 μg/mL. Maculosin (5) and maculosine 2 (6) inhibited C. perfringens, E. coli and S. aureus with an MIC of 25 μg/mL while genistein (7) and daidzein (8) showed no activity. An animal trial involving feeding BPR-11, BPR-16 and BPR-17 to a laboratory poultry model led to an increase in animal growth, and a decrease in feed conversion ratio and mortality. The presence of surfactin C analogues (3-4) in the gut following feeding with probiotics was confirmed using an LC-MS analysis. The investigation of these Bacillus probiotics, their metabolites, their impacts on animal performance indicators and their presence in the gastrointestinal system illustrates that these probiotics are effective alternatives to AGPs.
Collapse
Affiliation(s)
- Charlie Tran
- Griffith Institute for Drug Discovery (GRIDD), Griffith University, Brisbane, QLD 4111, Australia;
| | - Darwin Horyanto
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD 4702, Australia; (D.H.); (D.S.)
- Bioproton Pty Ltd., Brisbane, QLD 4110, Australia;
| | - Dragana Stanley
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD 4702, Australia; (D.H.); (D.S.)
| | - Ian E. Cock
- School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia;
| | | | - Yunjiang Feng
- Griffith Institute for Drug Discovery (GRIDD), Griffith University, Brisbane, QLD 4111, Australia;
| |
Collapse
|
6
|
Probiotics in the Sourdough Bread Fermentation: Current Status. FERMENTATION 2023. [DOI: 10.3390/fermentation9020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Sourdough fermentation is an ancient technique to ferment cereal flour that improves bread quality, bringing nutritional and health benefits. The fermented dough has a complex microbiome composed mainly of lactic acid bacteria and yeasts. During fermentation, the production of metabolites and chemical reactions occur, giving the product unique characteristics and a high sensory quality. Mastery of fermentation allows adjustment of gluten levels, delaying starch digestibility, and increasing the bio-accessibility of vitamins and minerals. This review focuses on the main steps of sourdough fermentation, the microorganisms involved, and advances in bread production with functional properties. The impact of probiotics on human health, the metabolites produced, and the main microbial enzymes used in the bakery industry are also discussed.
Collapse
|
7
|
Mena P, Crozier A. Do (Poly)phenols Matter for Nutrition Research? News from the Front. Mol Nutr Food Res 2022; 66:e2200617. [DOI: 10.1002/mnfr.202200617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pedro Mena
- Human Nutrition Unit Department of Food and Drug University of Parma Parma 43124 Italy
- Microbiome Research Hub University of Parma Parma 43124 Italy
| | - Alan Crozier
- Department of Chemistry King Saud University Riyadh 12372 Saudi Arabia
- School of Medicine, Dentistry and Nursing University of Glasgow Glasgow G12 8QQ UK
| |
Collapse
|