1
|
Díaz-Fuster L, Sáez-Espinosa P, Moya I, Peinado I, Gómez-Torres MJ. Updating the Role of JUNO and Factors Involved in Its Function during Fertilization. Cells Tissues Organs 2025:1-16. [PMID: 40168958 DOI: 10.1159/000545000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 02/26/2025] [Indexed: 04/03/2025] Open
Abstract
INTRODUCTION The final step of the fertilization process involves gametes adhesion and fusion. JUNO is an essential folate receptor 4 protein present in the ooplasm of oocytes, which binds to IZUMO1, its receptor on the sperm surface. Both proteins are indispensable for the sperm-oocyte interaction, and their absence results in infertility. Despite the importance of JUNO in reproduction, there is still controversy about how different factors affect the functionality of JUNO. Therefore, the goal of this study was to provide a comprehensive overview of what we know so far about the presence and functionality of JUNO. METHODS In order to accomplish this, a total of 198 articles were identified. Based on both inclusion and exclusion criteria, 40 articles were finally included in this study. RESULTS The results showed that during oocyte maturation, the expression levels of JUNO undergo alterations and, in some instances, cross-species gamete fusion is possible. Additionally, it has been observed that exposure of oocytes to factors such as bisphenol A, 17α-ethynylestradiol, diazinon, benzo(a)pyrene, butylparaben, bis(2-ethylhexyl) phthalate, hydroxyurea, dichlorophenol, isoniazid, and para-phenylenediamine disrupt JUNO and decrease the fertilization process rates. Moreover, exposure to ionic radiation, vitrification, and synthetic materials as microplastics has the same effect. Nonetheless, other compounds such as melatonin, mogroside V, cholesterol-loaded methyl-β-cyclodextrin, methyl-β-cyclodextrin, protocatechuic acid, coenzyme Q10, resveratrol, and Shoutai pills have been shown to enhance female fertility in terms of JUNO functionality. CONCLUSION In summary, this update highlights the crucial role of JUNO during fertilization and reveals how different factors and experimental procedures affect its activity.
Collapse
Affiliation(s)
- Lucía Díaz-Fuster
- Departamento de Biotecnología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Paula Sáez-Espinosa
- Departamento de Biotecnología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain,
| | - Isabel Moya
- Unidad de Reproducción Asistida Humana, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Irene Peinado
- Unidad de Reproducción Asistida Humana, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - María José Gómez-Torres
- Departamento de Biotecnología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
- Cátedra Human Fertility, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| |
Collapse
|
2
|
Zeng Z, Li P, Lu J, Li X, Li M, Wu Y, Zheng M, Cao Y, Liao Q, Ge Z, Zhang L. A non-antibiotic antimicrobial drug, a biological bacteriostatic agent, is useful for treating aerobic vaginitis, bacterial vaginosis, and vulvovaginal candidiasis. Front Microbiol 2024; 15:1341878. [PMID: 38860217 PMCID: PMC11163058 DOI: 10.3389/fmicb.2024.1341878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/30/2024] [Indexed: 06/12/2024] Open
Abstract
Background Vaginitis is a common infection in women, with approximately 75% of women experiencing at least one episode during their lifetime. Although antimicrobial agents are widely used to treat vaginitis, recurrent vaginitis occurs in some patients. Resistance to these agents is the major cause of recurrent vaginitis. Therefore, there is an urgent need to develop novel drugs. Methods We investigated the efficacy of a new biological bacteriostatic agent (BBA), composed of lysozyme, phytoalexin, chitosan oligosaccharide, sinensetin, 18β/20α-glycyrrhizin, and betaine, against vaginitis using in vitro and in vivo studies. First, we evaluated the antibacterial effects of BBA against 13 microbial strains commonly present in aerobic vaginitis, bacterial vaginosis, vulvovaginal candidiasis, and healthy vaginas. Second, we assessed the safety of various doses of BBA administered orally for 4 weeks in female mice. Third, we examined the in vivo anti-proliferative and anti-inflammatory effects of BBA in Candida albicans-, Candida glabrata-, and Gardnerella-induced vaginitis models. Finally, we evaluated the anti-vaginitis effect of a BBA gel prepared with 0.5% (w/v) ammonium acryloyldimethyltaurate/Vp copolymer. Results BBA effectively suppressed the growth of the main causative pathogens of vaginitis in vitro. BBA, either undiluted or diluted two-fold, inhibited all microorganisms cultured for 8 h. No obvious organ damage was detected when BBA was administered to mice. Both BBA alone and 70% BBA in a gel formulation effectively inhibited the proliferation of C. albicans, C. glabrata, and Gardnerella in vaginal lavage samples and alleviated tissue inflammation in mice with vaginitis. The 70% BBA gel performed better than BBA alone at treating vaginitis in mice infected with Gardnerella vaginalis. Conclusion BBA alone and a 70% BBA gel inhibited the growth of pathogens and effectively alleviated inflammation caused by C. albicans, C. glabrata, and G. vaginalis.
Collapse
Affiliation(s)
- Zhen Zeng
- Department of Obstetrics and Gynecology, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Pei Li
- College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Jiayi Lu
- College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Xiaoqi Li
- College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Meng Li
- Department of Obstetrics and Gynecology, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Yifan Wu
- Department of Obstetrics and Gynecology, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Minzi Zheng
- Department of Obstetrics and Gynecology, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Yang Cao
- Department of Obstetrics and Gynecology, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Qinping Liao
- Department of Obstetrics and Gynecology, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Zhaojia Ge
- College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Lei Zhang
- Department of Obstetrics and Gynecology, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
- Institute for Precision Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Zou X, Xu T, Zhao T, Xia J, Zhu F, Hou Y, Lu B, Zhang Y, Yang X. Phytosterol organic acid esters: Characterization, anti-inflammatory properties and a delivery strategy to improve mitochondrial function. Curr Res Food Sci 2024; 8:100702. [PMID: 38487178 PMCID: PMC10937313 DOI: 10.1016/j.crfs.2024.100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/16/2024] [Accepted: 02/15/2024] [Indexed: 03/17/2024] Open
Abstract
Phytosterol organic acid esters are important food resources and the components of biomembrane structure. Due to the lack of extraction and synthesis techniques, more research has been focused on phytosterols, and the research on phytosterol acid esters have encountered a bottleneck, but phytosterol acid esters confer substantial benefits to human health. In this study, stigmasteryl vanillate (VAN), stigmasteryl protocatechuate (PRO) and stigmasteryl sinapate (SIN) were prepared through the Steglich reaction. The processes are promotable and the products reach up to 95% purity. In addition, their stability was evaluated by differential scanning calorimetry and thermogravimetric analysis. HPLC analysis revealed an enhancement in water solubility after esterification with phenolic acid. In an in vitro digestion model, the bioaccessibility of stigmasteryl phenolates was significantly higher than that of stigmasterols (STIs). Regarding the anti-inflammatory properties, VAN, PRO, and SIN exhibit superior effects against TNF-α induced pro-inflammatory responses compared to STI. All stigmasteryl phenolates supplementation increased the ATP production, the basal, and maximal oxygen consumption rate in mitochondrial stress test. Overall, we present a synthesis method for stigmasteryl phenolates. It will contribute to the development and research of phytosterol acid ester analysis, functions and utilization in food. Moreover, the nutrient-stigmasterol hybrids tactic we have constructed is practical and can become a targeted mitochondrial delivery strategy with enhanced anti-inflammatory effects.
Collapse
Affiliation(s)
- Xinyue Zou
- Department of Chemistry, China Agricultural University, Beijing, 100193, China
| | - Ting Xu
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products, Ministry of Agriculture and Rural Affair, Interdisciplinary Research Center on Optical Agricultural and Food Engineering, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| | - Tian Zhao
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products, Ministry of Agriculture and Rural Affair, Interdisciplinary Research Center on Optical Agricultural and Food Engineering, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| | - Jing Xia
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products, Ministry of Agriculture and Rural Affair, Interdisciplinary Research Center on Optical Agricultural and Food Engineering, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| | - Feifan Zhu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Yu Hou
- Liangzhu Laboratory, Zhejiang University, No. 1369 West Wenyi Road, Hangzhou, 311121, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products, Ministry of Agriculture and Rural Affair, Interdisciplinary Research Center on Optical Agricultural and Food Engineering, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| | - Yunfei Zhang
- Department of Chemistry, China Agricultural University, Beijing, 100193, China
| | - Xuan Yang
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products, Ministry of Agriculture and Rural Affair, Interdisciplinary Research Center on Optical Agricultural and Food Engineering, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
4
|
Xing X, Liang Y, Li Y, Zhao Y, Zhang Y, Li Z, Li Z, Wu Z. Fisetin Delays Postovulatory Oocyte Aging by Regulating Oxidative Stress and Mitochondrial Function through Sirt1 Pathway. Molecules 2023; 28:5533. [PMID: 37513404 PMCID: PMC10384696 DOI: 10.3390/molecules28145533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The quality of oocytes determines the development potential of an embryo and is dependent on their timely fertilization after ovulation. Postovulatory oocyte aging is an inevitable factor during some assisted reproduction technology procedures, which results in poor fertilization rates and impairs embryo development. We found that fisetin, a bioactive flavonol contained in fruits and vegetables, delayed postovulatory oocyte aging in mice. Fisetin improved the development of aged oocytes after fertilization and inhibited the Sirt1 reduction in aged oocytes. Fisetin increased the GSH level and Sod2 transcription level to inhibit ROS accumulation in aged oocytes. Meanwhile, fisetin attenuated aging-induced spindle abnormalities, mitochondrial dysfunction, and apoptosis. At the molecular level, fisetin decreased aging-induced aberrant expression of H3K9me3. In addition, fisetin increased the expression levels of the mitochondrial transcription factor Tfam and the mitochondrial genes Co2 and Atp8 by upregulating Sirt1 in aged oocytes. Finally, inhibition of Sirt1 reversed the anti-aging effects of fisetin. Taken together, fisetin delayed postovulatory oocyte aging by upregulating Sirt1.
Collapse
Affiliation(s)
- Xupeng Xing
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of GuangDong Local Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yalin Liang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of GuangDong Local Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yanan Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of GuangDong Local Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yaolu Zhao
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of GuangDong Local Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yuxing Zhang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of GuangDong Local Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zheng Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of GuangDong Local Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of GuangDong Local Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of GuangDong Local Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|