Chambers J, Roscoe CMP, Chidley C, Wisniewska A, Duggirala A. Molecular Effects of Physical Activity and Body Composition: A Systematic Review and Meta-Analysis.
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025;
22:637. [PMID:
40283858 PMCID:
PMC12026539 DOI:
10.3390/ijerph22040637]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/01/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Physical activity (PA) and body composition are important lifestyle factors that influence public health. Research suggests that DNA regions (CpG site locations) are differentially methylated in a physically active population. This meta-analysis aimed to identify CpG sites associated with various levels of PA and associated metabolic pathways. The meta-analysis followed PRISMA guidelines using PubMed, SportDISCUS, Embase, Scopus, Cochrane and Web of Science. Epigenomic analyses performed on DNA of participants with no underlying health conditions were included. Articles were screened using Rayyan AI and extracted CpG sites, and their location were confirmed using the EWAS catalogue. Six studies comprising 770 subjects were included in this meta-analysis. The meta-analysis was performed on clinical metrics extracted from the six studies and showed that BMI, blood pressure, insulin and glucose testing are significantly improved upon PA intervention. Amongst the included studies, a total of 257 CpG sites were differentially methylated in physically active participants, with 134 CpGs located in 92 genes associated with obesity-related pathways. The identified differentially methylated genes either belonged to the lipid metabolism or insulin signalling pathway. The genes which were differentially regulated in multiple tissue types and studies are JAZF1 (insulin signalling, and lipid and carbohydrate metabolism pathways) and NAV1 (mTOR signalling pathway). In conclusion, the current epigenomic meta-analysis showed that PA levels induce differential DNA methylation signatures on genes that affect metabolism. To understand the positive molecular effects of PA, further research on the above candidate genes needs to be conducted amongst various levels of a physically active population.
Collapse