1
|
Fogliata A, Bresolin A, Gallo P, La Fauci F, Pelizzoli M, Reggiori G, Cozzi L. Evaluation of ion recombination and polarity effect on photon depth dose measurements using mini- and micro-ion chamber. J Appl Clin Med Phys 2025; 26:e14495. [PMID: 39487690 PMCID: PMC11712343 DOI: 10.1002/acm2.14495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/06/2024] [Accepted: 07/25/2024] [Indexed: 11/04/2024] Open
Abstract
PURPOSE To investigate the effect of ion recombination (k s ${k}_s$ ) and polarity (k p o l ${k}_{pol}$ ) correction factors on percentage depth dose (PDD) curves for three ion chambers, using flat and flattening filter free (FFF) beams, across different broad field sizes. A method to assess these effects and their corresponding corrections is proposed. METHODS k s ${k}_s$ andk p o l ${k}_{pol}$ were evaluated following the IAEA TRS-398 protocol for three ion chambers: PTW Semiflex-3D-31021, PinPoint-3D-31022, and Semiflex-31010. PDD measurements were acquired from dmax to 32 cm depth at four voltages (± 400 V or ± 300 V, and ± 100 V) for field sizes 4 × 4, 10 × 10, 20 × 20, and 40 × 40 cm2. Thek s ${k}_s$ values were computed after thek p o l ${k}_{pol}$ correction at each applied voltage. This study aimed to assess the variation of the factors along scanning depths for different field sizes, to evaluate the need for correcting the scanning data. RESULTS k p o l ${k}_{pol}$ was independent of depth and field size for Semiflex-3D, while it presented an increasing value with depth for the PinPoint-3D.k s ${k}_s$ increased with dose rate, i.e., decreased with depth. The variation of this perturbation effect over the PDD range was about 0.1% for flat beams with all three ion chambers. With FFF beams, it was around 0.3% with PinPoint-3D, and 0.8% for 10FFF with Semiflex-3D. A second-order polynomial fit can be determined to directly correct the raw data scanned along the beam axis for bothk s ${k}_s$ andk p o l ${k}_{pol}$ . CONCLUSION k s ${k}_s$ can significantly affect the PDD scanning measurements in FFF beams acquired with Semiflex-3D. An error close to 1% at large depths could be present, meaning an error of less than 0.3% relative to the dose at the depth of dmax.
Collapse
Affiliation(s)
- Antonella Fogliata
- Radiotherapy and Radiosurgery DeptHumanitas IRCCS Research Hospital and Cancer CenterMilan‐RozzanoItaly
| | - Andrea Bresolin
- Radiotherapy and Radiosurgery DeptHumanitas IRCCS Research Hospital and Cancer CenterMilan‐RozzanoItaly
| | - Pasqualina Gallo
- Radiotherapy and Radiosurgery DeptHumanitas IRCCS Research Hospital and Cancer CenterMilan‐RozzanoItaly
| | - Francesco La Fauci
- Radiotherapy and Radiosurgery DeptHumanitas IRCCS Research Hospital and Cancer CenterMilan‐RozzanoItaly
| | - Marco Pelizzoli
- Radiotherapy and Radiosurgery DeptHumanitas IRCCS Research Hospital and Cancer CenterMilan‐RozzanoItaly
| | - Giacomo Reggiori
- Radiotherapy and Radiosurgery DeptHumanitas IRCCS Research Hospital and Cancer CenterMilan‐RozzanoItaly
| | - Luca Cozzi
- Radiotherapy and Radiosurgery DeptHumanitas IRCCS Research Hospital and Cancer CenterMilan‐RozzanoItaly
| |
Collapse
|
2
|
Liu K, Holmes S, Khan AU, Hooten B, DeWerd L, Schüler E, Beddar S. Development of novel ionization chambers for reference dosimetry in electron flash radiotherapy. Med Phys 2024; 51:9275-9289. [PMID: 39311014 DOI: 10.1002/mp.17425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/10/2024] [Accepted: 09/10/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Reference dosimetry in ultra-high dose rate (UHDR) beamlines is significantly hindered by limitations in conventional ionization chamber design. In particular, conventional chambers suffer from severe charge collection efficiency (CCE) degradation in high dose per pulse (DPP) beams. PURPOSE The aim of this study was to optimize the design and performance of parallel plate ion chambers for use in UHDR dosimetry applications, and evaluate their potential as reference class chambers for calibration purposes. Three chamber designs were produced to determine the influence of the ion chamber response on electrode separation, field strength, and collection volume on the ion chamber response under UHDR and ultra-high dose per pulse (UHDPP) conditions. METHODS Three chambers were designed and produced: the A11-VAR (0.2-1.0 mm electrode gap, 20 mm diameter collector), the A11-TPP (0.3 mm electrode gap, 20 mm diameter collector), and the A30 (0.3 mm electrode gap, 5.4 mm diameter collector). The chambers underwent full characterization using an UHDR 9 MeV electron beam with individually varied beam parameters of pulse repetition frequency (PRF, 10-120 Hz), pulse width (PW, 0.5-4 µs), and pulse amplitude (0.01-9 Gy/pulse). The response of the ion chambers was evaluated as a function of the DPP, PRF, PW, dose rate, electric field strength, and electrode gap. RESULTS The chamber response was found to be dependent on DPP and PW, and these dependencies were mitigated with larger electric field strengths and smaller electrode spacing. At a constant electric field strength, we measured a larger CCE as a function of DPP for ion chambers with a smaller electrode gap in the A11-VAR. For ion chambers with identical electrode gap (A11-TPP and A30), higher electric field strengths were found to yield better CCE at higher DPP. A PW dependence was observed at low electric field strengths (500 V/mm) for DPP values ranging from 1 to 5 Gy at PWs ranging from 0.5 to 4 µs, but at electric field strengths of 1000 V/mm and higher, these effects become negligible. CONCLUSION This study confirmed that the CCE of ion chambers depends strongly on the electrode spacing and the electric field strength, and also on the DPP and the PW of the UHDR beam. A significant finding of this study is that although chamber performance does depend on PW, the effect on the CCE becomes negligible with reduced electrode spacing and increased electric field. A CCE of ≥95% was achieved for DPPs of up to 5 Gy with no observable dependence on PW using the A30 chamber, while still achieving an acceptable performance in conventional dose rate beams, opening up the possibility for this type of chamber to be used as a reference class chamber for calibration purposes of electron FLASH beamlines.
Collapse
Affiliation(s)
- Kevin Liu
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | | | - Ahtesham Ullah Khan
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brian Hooten
- Standard Imaging Inc., Middleton, Wisconsin, USA
| | - Larry DeWerd
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Emil Schüler
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Sam Beddar
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
3
|
Yousif YAM, Daniel J, Healy B, Hill R. A study of polarity effect for various ionization chambers in kilovoltage x-ray beams. Med Phys 2024; 51:4513-4523. [PMID: 38669346 DOI: 10.1002/mp.17096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/01/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Ionization chambers play an essential role in dosimetry measurements for kilovoltage (kV) x-ray beams. Despite their widespread use, there is limited data on the absolute values for the polarity correction factors across a range of commonly employed ionization chambers. PURPOSE This study aimed to investigate the polarity effects for five different ionization chambers in kV x-ray beams. METHODS Two plane-parallel chambers being the Advanced Markus and Roos and three cylindrical chambers; 3D PinPoint, Semiflex and Farmer chamber (PTW, Freiburg, Germany), were employed to measure the polarity correction factors. The kV x-ray beams were produced from an Xstrahl 300 unit (Xstrahl Ltd., UK). All measurements were acquired at 2 cm depth in a PTW-MP1 water tank for beams between 60 kVp (HVL 1.29 mm Al) and 300 kVp (HVL 3.08 mm Cu), and field sizes of 2-10 cm diameter for 30 cm focus-source distance (FSD) and 4 × 4 cm2 - 20 × 20 cm2 for 50 cm FSD. The ionization chambers were connected to a PTW-UNIDOS electrometer, and the polarity effect was determined using the AAPM TG-61 code of practice methodology. RESULTS The study revealed significant polarity effects in ionization chambers, especially in those with smaller volumes. For the plane-parallel chambers, the Advanced Markus chamber exhibited a maximum polarity effect of 2.5%, whereas the Roos chamber showed 0.3% at 150 KVp with the 10 cm circular diameter open-ended applicator. Among the cylindrical chambers at the same beam energy and applicator, the Pinpoint chamber exhibited a 3% polarity effect, followed by Semiflex with 1.7%, and Farmer with 0.4%. However, as the beam energy increased to 300 kVp, the polarity effect significantly increased reaching 8.5% for the Advanced Markus chamber and 13.5% for the PinPoint chamber at a 20 × 20 cm2 field size. Notably, the magnitude of the polarity effect increased with both the field size and beam energy, and was significantly influenced by the size of the chamber's sensitive volume. CONCLUSIONS The findings demonstrate that ionization chambers can exhibit substantial polarity effects in kV x-ray beams, particularly for those chambers with smaller volumes. Therefore, it is important to account for polarity corrections when conducting relative dose measurements in kV x-ray beams to enhance the dosimetry accuracy and improve patient dose calculations.
Collapse
Affiliation(s)
- Yousif A M Yousif
- Crown Princess Mary Cancer Centre, Westmead Hospital, Wentworthville, New South Wales, Australia
- North West Cancer Centre, Tamworth Hospital, Tamworth, New South Wales, Australia
| | - John Daniel
- North West Cancer Centre, Tamworth Hospital, Tamworth, New South Wales, Australia
- Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, New South Wales, Australia
| | - Brendan Healy
- Australian Clinical Dosimetry Service (ACDS), Yallambie, Victoria, Australia
| | - Robin Hill
- Department of Radiation Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
- Institute of Medical Physics, School of Physics, University of Sydney, Camperdown, New South Wales, Australia
- Arto Hardy Family Biomedical Innovation Hub, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
| |
Collapse
|
4
|
Kannan M, Saminathan S, Shwetha B, Chandraraj V, Raj DG, Ganesh KM. Validation of Microionization Chambers in Small-field Dosimetry. J Med Phys 2024; 49:285-293. [PMID: 39131427 PMCID: PMC11309149 DOI: 10.4103/jmp.jmp_9_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/21/2024] [Accepted: 03/03/2024] [Indexed: 08/13/2024] Open
Abstract
Aim This study aims to validate the Razor Nano Chamber (RNC) and Razor Chamber (RC) dosimetric characteristics in a small field. The dosimetric parameters of the two chambers were compared. Materials and Methods The chamber characteristics of leakage (pre and post), stability, energy dependency, dose linearity, dose rate effect, stem effect, angular dependency, ion recombination effect, and polarity effect were studied. Relative dose measurements of the percentage depth dose, profile measurement, and output factor (OF) measurements were performed for small fields. All measurements were performed in a Theratron 780E telecobalt unit and an Elekta Versa HD™ Linear Accelerator. Results and Discussion The measured pre- and postirradiation leakage and energy dependency were within 0.5% of the acceptable limit. In the stability check, the standard error and standard error of mean were 0.047% and 0.068%, respectively, for both RNC and RC. The deviation in the angular responses of the RNC and RC ion chambers was negligible. In the ion recombination measurements, both the RNC and RC were overestimated for the 10 flattening filter-free photon beam. In small fields, there were no significant differences in the kpol values for either chamber. The RNC showed good agreement in the relative dose measurements compared to the RC. Conclusion RNC and RC showed good agreement in small-field dosimetry. The RNC angular dependency and OF showed a superior response compared to the RC because of the small volume spherical shape and high spatial resolution, which gives a reduced penumbra and no volume averaging effect.
Collapse
Affiliation(s)
- Mageshraja Kannan
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
| | - Sathiyan Saminathan
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
| | - B. Shwetha
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
| | - Varatharaj Chandraraj
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
| | - D. Gowtham Raj
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
| | - K. M. Ganesh
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
| |
Collapse
|
5
|
Patwe PT, Deshpande SS, Mahajan GR. Evaluation of Ion Recombination Correction for Indigenously Developed Farmer Ion Chamber in Flattening Filter-Free Photon Beams. J Med Phys 2024; 49:279-284. [PMID: 39131423 PMCID: PMC11309131 DOI: 10.4103/jmp.jmp_136_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 08/13/2024] Open
Abstract
Purpose and Aim Modern generation linear accelerator (linac) either generates X-rays with a flattening filter (WFF beam) or without flattening filter free (FFF beam). The FFF beams are associated with a significantly higher dose per pulse compared to WFF beams due to the absence of a flattening filter and the corresponding attenuation caused by it. This results in increased ion recombination and a larger saturation correction factor (ks). In accordance with the IAEA TRS 398 dosimetry protocol, ks is necessary for the accurate measurement of absorbed dose at a point in water. The objective of this study was to evaluate the ks for the indigenous FAR 65-GB ion chamber (IC) for the FFF X-rays. Materials and Methods The study was carried out on TrueBeam linac (Varian, A Siemens Healthineers company) which offers 6 MV WFF, 6 MV FFF, 10 MV WFF and 10 MV FFF beams. The two-voltage method was employed to measure ks in a solid water phantom at a depth of 10 cm for a FAR 65-GB and SNC 600c and 0.6cc PTW 30013 Farmer chambers at 100 cm and 150 cm source-to-chamber distances for a 10 cm × 10 cm field size. Results The ks values for the FAR 65-GB, PTW 30,013, and SNC 600c were 1.0055 (1.0113), 1.0051 (1.0071), and 1.0033 (1.0066) for the 6 MV WFF (FFF) beams, respectively, and 1.0066 (1.0178), 1.0061 (1.0137), and 1.0035 (1.0119) for the 10MV WFF (FFF) beams, respectively. The ks values calculated by two-voltage method matches with ks values obtained from Jaffe's plot. The chamber exhibited a linear dose-response up to 3000 cGy, beyond which a saturation effect was observed. Conclusions Our study reveals that this chamber is suitable for the reference dosimetry for the FFF beams.
Collapse
Affiliation(s)
- Parimal T. Patwe
- School of Physical Sciences, Swami Ramanand Tirth Marathwada University, Nanded, Maharashtra, India
| | - Sudesh S. Deshpande
- Department of Radiation Oncology, P.D. Hinduja Hospital and Medical Research Centre, Mumbai, Maharashtra, India
| | - Gajanan R. Mahajan
- Department of Physics, Shri Datta Arts, Commerce and Science College, Hadgaon, Maharashtra, India
| |
Collapse
|
6
|
Mateus D, Greco C, Peralta L. Field output correction factors of small static field for IBA razor nanochamber. Biomed Phys Eng Express 2023; 10:015004. [PMID: 37939486 DOI: 10.1088/2057-1976/ad0ae0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/08/2023] [Indexed: 11/10/2023]
Abstract
Purpose.The goal of this work is present results of field output factors (OF) using an IBA CC003 (Razor NanoChamber) and compare these results with PTW 60019 (MicroDiamond) and IBA Razor Diode. The experimental results for IBA CC003 were also compared with Monte Carlo (MC) Simulation, using Penelope and Ulysses programs. In addition, field output correction factors (kQclin,Qmsrfclin,fmsr) for IBA CC003 were derived with three different methods: (1) using PTW 60019 and IBA Razor as reference detectors; (2) comparison between MC and experimental measurements; and (3) using only MC.Material and Methods. The beam collimation included in this study were (1) square field size between 10 × 10 and 0.5 × 0.5 cm2defined by the MLC and jaws and (2) cones of different diameters. For IBA CC003 it was determined the polarity and ion collection efficiency correction factors in parallel and perpendicular orientation.Results.The results indicate (1) the variation of polarity effect with the field size is relevant for the determination of OF using IBA CC003, especially for parallel orientation; (2) there is no significant variation of the ion collection efficiency with the field size using IBA CC003 in parallel orientation; (3) OF differences between IBA CC003 and PTW 60019/IBA Razor, and experimental and MC results, increase with decreasing field size;ThekQclin,Qmsrfclin,fmsrresults indicate (1) using the first and second method,kQclin,Qmsrfclin,fmsrincrease with decreasing field size, which can be related with the influence of the volume effect and (2) using the third method,kQclin,Qmsrfclin,fmsrdecrease with decreasing field size, which can be explained by the perturbation effect.Conclusions. Our results demonstrate the need of applyingkQclin,Qmsrfclin,fmsrfor IBA CC003 forSclin≤1 cm, to compensate for volume averaging and perturbations effects.
Collapse
Affiliation(s)
- D Mateus
- Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
- Mercurius Health S.A, Lisboa, Portugal
- Fundação Champalimaud, Lisboa, Portugal
| | - C Greco
- Fundação Champalimaud, Lisboa, Portugal
| | - L Peralta
- Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
- Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
| |
Collapse
|
7
|
Kojima H, Ishikawa M, Takigami M. Technical note: Point-by-point ion-recombination correction for accurate dose profile measurement in high dose-per-pulse irradiation field. Med Phys 2023; 50:7281-7293. [PMID: 37528637 DOI: 10.1002/mp.16641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Although flattening filter free (FFF) beams are commonly used in clinical treatment, the accuracy of dose measurements in FFF beams has been questioned. Higher dose per pulse (DPP) such as FFF beams from a linear accelerator may cause problems in dose profile measurements using an ionization chamber due to the change of the charge collection efficiency. Ionization chambers are commonly used for percent depth dose (PDD) measurements. Changes of DPP due to chamber movement during PDD measurement can vary the ion collection efficiency of ionization chambers. In the case of FF beams, the DPP fluctuation is negligible, but in the case of the FFF beams, the DPP is 2.5 ∼ 4 times larger than that of the FF beam, and the change in ion collection efficiency is larger than that of the FF beam. PDD profile normalized by maximum dose depth, 10 cm depth for example, may therefore be affected by the ion collection efficiency. PURPOSE In this study, we investigate the characteristics of the ion collection efficiency change depending on the DPP of each ionization chamber in the FFF beam. We furthermore propose a method to obtain the chamber- independent PDD by applying a DPP-dependent ion recombination correction. METHODS Prior to investigating the relationship between DPP and charge collection efficiency, Jaffe-plots were generated with different DPP settings to investigate the linearity between the applied voltage and collected charge. The absolute dose measurement using eight ionization chambers under the irradiation settings of 0.148, 0.087, and 0.008 cGy/pulse were performed. Applied voltages for the Jaffe-plots were 100, 125, 150, 200, 250, and 300 V. The ion recombination correction factor Pion was calculated by the two-voltage analysis (TVA) method at the applied voltages of 300 and 100 V. The DPP dependency of the charge collection efficiency for each ionization chamber were evaluated from the DPP- Pion plot. PDD profiles for the 10 MV FFF beam were measured using Farmer type chambers (TN30013, FC65-P, and FC65-G) and mini-type chambers (TN31010, TN31021, CC13, CC04, and FC23-C). The PDD profiles were corrected with ion recombination correction at negative and positive polar applied voltages of 100 and 300 V. RESULTS From the DPP-Pion relation for each ionization chamber with DPP ranging from 0.008 cGy/pulse to 0.148 cGy/pulse, all Farmer and mini-type chambers satisfied the requirements described in AAPM TG-51 addendum. However, Pion for the CC13 was most affected by DPP among tested chambers. The maximum deviation among PDDs using eight ionization chambers for 10 MV FFF was about 1%, but the deviation was suppressed to about 0.5% by applying ion recombination correction at each depth. CONCLUSIONS In this study, the deviation of PDD profile among the ionization chambers was reduced by the ion recombination coefficient including the DPP dependency, especially for high DPP beams such as FFF beams. The present method is particularly effective for CC13, where the ion collection efficiency is highly DPP dependent.
Collapse
Affiliation(s)
- Hideki Kojima
- Department of Radiation Oncology, Sapporo Higashi Tokushukai Hospital, Sapporo, Hokkaido, Japan
| | - Masayori Ishikawa
- Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Makoto Takigami
- Department of Radiation Technology, KKR Sapporo Medical Center, Sapporo, Hokkaido, Japan
| |
Collapse
|
8
|
Muir B, Culberson W, Davis S, Kim GGY, Lee SW, Lowenstein J, Renaud J, Sarfehnia A, Siebers J, Tantôt L, Tolani N. AAPM WGTG51 Report 374: Guidance for TG-51 reference dosimetry. Med Phys 2022; 49:6739-6764. [PMID: 36000424 DOI: 10.1002/mp.15949] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 12/13/2022] Open
Abstract
Practical guidelines that are not explicit in the TG-51 protocol and its Addendum for photon beam dosimetry are presented for the implementation of the TG-51 protocol for reference dosimetry of external high-energy photon and electron beams. These guidelines pertain to: (i) measurement of depth-ionization curves required to obtain beam quality specifiers for the selection of beam quality conversion factors, (ii) considerations for the dosimetry system and specifications of a reference-class ionization chamber, (iii) commissioning a dosimetry system and frequency of measurements, (iv) positioning/aligning the water tank and ionization chamber for depth ionization and reference dose measurements, (v) requirements for ancillary equipment needed to measure charge (triaxial cables and electrometers) and to correct for environmental conditions, and (vi) translation from dose at the reference depth to that at the depth required by the treatment planning system. Procedures are identified to achieve the most accurate results (errors up to 8% have been observed) and, where applicable, a commonly used simplified procedure is described and the impact on reference dosimetry measurements is discussed so that the medical physicist can be informed on where to allocate resources.
Collapse
Affiliation(s)
- Bryan Muir
- Metrology Research Centre, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Wesley Culberson
- Department of Medical Physics, University of Wisconsin - Madison, Madison, Wisconsin, United States
| | - Stephen Davis
- Radiation Oncology, Miami Cancer Institute, Miami, Florida, United States
| | - Grace Gwe-Ya Kim
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine, La Jolla, California, United States
| | - Sung-Woo Lee
- Department of Radiation Oncology, University of Maryland School of Medicine, Columbia, Maryland, United States
| | - Jessica Lowenstein
- Department of Radiation Physics, UT M.D. Anderson Cancer Center, Houston, Texas, United States
| | - James Renaud
- Metrology Research Centre, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Arman Sarfehnia
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey Siebers
- Department of Radiation Oncology, University of Virginia Health System, Charlottesville, Virginia, United States
| | - Laurent Tantôt
- Département de radio-oncologie, CIUSSS de l'Est-de-l'Île-de-Montréal - Hôpital Maisonneuve-Rosemont, Montreal, Quebec, Canada
| | - Naresh Tolani
- Department of Radiation Therapy, Michael E. DeBakey VA Medical Center, Houston, Texas, United States
| |
Collapse
|
9
|
Thrower S, Prajapati S, Holmes S, Schüler E, Beddar S. Characterization of the Plastic Scintillator Detector System Exradin W2 in a High Dose Rate Flattening-Filter-Free Photon Beam. SENSORS (BASEL, SWITZERLAND) 2022; 22:6785. [PMID: 36146135 PMCID: PMC9505273 DOI: 10.3390/s22186785] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
(1) Background: The Exradin W2 is a commercially available scintillator detector designed for reference and relative dosimetry in small fields. In this work, we investigated the performance of the W2 scintillator in a 10 MV flattening-filter-free photon beam and compared it to the performance of ion chambers designed for small field measurements. (2) Methods: We measured beam profiles and percent depth dose curves with each detector and investigated the linearity of each system based on dose per pulse (DPP) and pulse repetition frequency. (3) Results: We found excellent agreement between the W2 scintillator and the ion chambers for beam profiles and percent depth dose curves. Our results also showed that the two-voltage method of calculating the ion recombination correction factor was sufficient to correct for the ion recombination effect of ion chambers, even at the highest DPP. (4) Conclusions: These findings show that the W2 scintillator shows excellent agreement with ion chambers in high DPP conditions.
Collapse
Affiliation(s)
- Sara Thrower
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Surendra Prajapati
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Medical Physics Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | | | - Emil Schüler
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Medical Physics Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Sam Beddar
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Medical Physics Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
10
|
Construction and pre-evaluation of an in-house cylindrical ionization chamber fabricated from locally available materials. POLISH JOURNAL OF MEDICAL PHYSICS AND ENGINEERING 2022. [DOI: 10.2478/pjmpe-2022-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Abstract
Introduction: The objectives of this study were to construct a very robust in-house cylindrical ionization chamber from locally available materials to minimize cost, and to assess its suitability for use in a clinical setting.
Materials and Methods: The entire body of the constructed IC was composed of Perspex (PMMA). Other components of the IC were made from locally available materials, such as paper and discarded items. The in-house IC was made waterproof by passing the triaxial cable connecting its various electrodes through a plastic tube which once served as a drainage tube of a urine bag. This connection was made such that the chamber was vented to the environment. The completed in-house IC was evaluated for: polarity effect, ion recombination, ion collection efficiency, stability, dose linearity, stem effect, leakage current, angular, dose rate and energy dependences.
Results: Although the pre-evaluation results confirmed that the in-house IC satisfied the stipulated international standards for ICs, there was a need to enhance the stem effect and leakage current characteristics of the IC. The in-house IC was found to have an absorbed dose to water calibration coefficient of 4.475 x 107 Gy/C (uncertainty of 1.6%) for cobalt 60 through a cross-calibration with a commercial 0.6 cc cylindrical IC with traceability to the Germany National Dosimetry Laboratory. Using a Jaffé diagram, the in-house IC was also found to have a recombination correction factor of 1.0078 when operated at the calibration voltage of + 400 V. In terms of beam quality correction factors for megavoltage beams, the in-house IC was found to exhibit characteristics similar to those of Scanditronix-Wellhofer IC 70 Farmer type IC.
Conclusion: The constructed in-house Farmer-type IC was able to meet all the recommended characteristics for an IC, and therefore, the in-house IC is suitable for beam output calibration in external beam radiotherapy.
Collapse
|
11
|
Silvestre Patallo I, Carter R, Maughan D, Nisbet A, Schettino G, Subiel A. Evaluation of a micro ionization chamber for dosimetric measurements in image-guided preclinical irradiation platforms. Phys Med Biol 2021; 66. [PMID: 34794132 DOI: 10.1088/1361-6560/ac3b35] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/18/2021] [Indexed: 11/12/2022]
Abstract
Image-guided small animal irradiation platforms deliver small radiation fields in the medium energy x-ray range. Commissioning of such platforms, followed by dosimetric verification of treatment planning, are mostly performed with radiochromic film. There is a need for independent measurement methods, traceable to primary standards, with the added advantage of immediacy in obtaining results. This investigation characterizes a small volume ionization chamber in medium energy x-rays for reference dosimetry in preclinical irradiation research platforms. The detector was exposed to a set of reference x-ray beams (0.5 to 4 mm Cu HVL). Leakage, reproducibility, linearity, response to detector's orientation, dose rate, and energy dependence were determined for a 3D PinPoint ionization chamber (PTW 31022). Polarity and ion recombination were also studied. Absorbed doses at 2 cm depth were compared, derived either by applying the experimentally determined cross-calibration coefficient at a typical small animal radiation platform "user's" quality (0.84 mm Cu HVL) or by interpolation from air kerma calibration coefficients in a set of reference beam qualities. In the range of reference x-ray beams, correction for ion recombination was less than 0.1%. The largest polarity correction was 1.4% (for 4 mm Cu HVL). Calibration and correction factors were experimentally determined. Measurements of absorbed dose with the PTW 31022, in conditions different from reference were successfully compared to measurements with a secondary standard ionization chamber. The implementation of an End-to-End test for delivery of image-targeted small field plans resulted in differences smaller than 3% between measured and treatment planning calculated doses. The investigation of the properties and response of a PTW 31022 small volume ionization chamber in medium energy x-rays and small fields can contribute to improve measurement uncertainties evaluation for reference and relative dosimetry of small fields delivered by preclinical irradiators while maintaining the traceability chain to primary standards.
Collapse
Affiliation(s)
- Ileana Silvestre Patallo
- Medical, Marine & Nuclear: Medical Radiation Physics&Sciences, National Physical Laboratory, Teddington, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Rebecca Carter
- Cancer Institute, University College London, London, London, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - David Maughan
- Medical, Marine & Nuclear: Medical Radiation Physics&Sciences, National Physical Laboratory, Teddington, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Andrew Nisbet
- Department of Medical Physics & Biomedical Engineering, University College London, London, London, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Giuseppe Schettino
- Medical, Marine & Nuclear: Medical Radiation Physics&Sciences, National Physical Laboratory, Teddington, Middlesex, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Anna Subiel
- Medical, Marine & Nuclear: Medical Radiation Physics&Sciences, National Physical Laboratory, Teddington, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
12
|
Kodama T, Yasui K, Nishioka S, Miyaura K, Takakura T, Katayose T, Nakamura M. Survey on utilization of flattening filter-free photon beams in Japan. JOURNAL OF RADIATION RESEARCH 2021; 62:726-734. [PMID: 34036361 PMCID: PMC8273795 DOI: 10.1093/jrr/rrab042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/08/2021] [Indexed: 06/12/2023]
Abstract
To understand the current state of flattening filter-free (FFF) beam implementation in C-arm linear accelerators (LINAC) in Japan, the quality assurance (QA)/quality control (QC) 2018-2019 Committee of the Japan Society of Medical Physics (JSMP) conducted a 37-question survey, designed to investigate facility information and specifications regarding FFF beam adoption and usage. The survey comprised six sections: facility information, devices, clinical usage, standard calibration protocols, modeling for treatment planning (TPS) systems and commissioning and QA/QC. A web-based questionnaire was developed. Responses were collected between 18 June and 18 September 2019. Of the 846 institutions implementing external radiotherapy, 323 replied. Of these institutions, 92 had adopted FFF beams and 66 had treated patients using them. FFF beams were used in stereotactic radiation therapy (SRT) for almost all disease sites, especially for the lungs using 6 MV and liver using 10 MV in 51 and 32 institutions, respectively. The number of institutions using FFF beams for treatment increased yearly, from eight before 2015 to 60 in 2018. Farmer-type ionization chambers were used as the standard calibration protocol in 66 (72%) institutions. In 73 (80%) institutions, the beam-quality conversion factor for FFF beams was calculated from TPR20,10, via the same protocol used for beams with flattening filter (WFF). Commissioning, periodic QA and patient-specific QA for FFF beams also followed the procedures used for WFF beams. FFF beams were primarily used in high-volume centers for SRT. In most institutions, measurement and QA was conducted via the procedures used for WFF beams.
Collapse
Affiliation(s)
- Takumi Kodama
- Department of Radiation Oncology, Saitama Cancer Center, 780 Ooazakomuro, Inamachi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Keisuke Yasui
- Faculty of Radiological Technology, School of Health Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470–1192, Japan
| | - Shie Nishioka
- Department of Medical Physics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104–0045, Japan
| | - Kazunori Miyaura
- Graduate School of Health Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142–8666, Japan
| | - Toru Takakura
- Department of Radiation Therapy, Uji-Tokushukai Medical Center, 145 Ishibashi, Makichima-cho, Uji-shi, Kyoto 611–0041, Japan
| | - Tetsurou Katayose
- Department of Radiation Oncology, Chiba Cancer Center, 666-2 Nitona-cho, Chuo-ku, Chiba 260–8717, Japan
| | - Mitsuhiro Nakamura
- Department of Information Technology and Medical engineering, Human Health Science, Graduate School of Medicine, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
13
|
Mirzakhanian L, Bassalow R, Zaks D, Huntzinger C, Seuntjens J. IAEA-AAPM TRS-483-based reference dosimetry of the new RefleXion biology-guided radiotherapy (BgRT) machine. Med Phys 2021; 48:1884-1892. [PMID: 33296515 DOI: 10.1002/mp.14631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/10/2020] [Accepted: 11/18/2020] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The purpose of this study is to provide data for the calibration of the recent RefleXion TM biology-guided radiotherapy (BgRT) machine (Hayward, CA, USA) following the International Atomic Energy Agency (IAEA) and the American Association of Physicists in Medicine (AAPM) TRS-483 code of practice (COP) (Palmans et al. International Atomic Energy Agency, Vienna, 2017) and (Mirzakhanian et al. Med Phys, 2020). METHODS In RefleXion BgRT machine, reference dosimetry was performed using two methodologies described in TRS-483 and (Mirzakhanian et al. Med Phys, 2020) In the first approach (Approach 1), the generic beam quality correction factor k Q A , Q 0 f A , f ref was calculated using an accurate Monte Carlo (MC) model of the beam and of six ionization chamber types. The k Q A , Q 0 f A , f ref is a beam quality factor that corrects N D , w , Q 0 f ref (absorbed dose to water calibration coefficient in a calibration beam quality Q 0 ) for the differences between the response of the chamber in the conventional reference calibration field f ref with beam quality Q 0 at the standards laboratory and the response of the chamber in the user's A field f A with beam quality Q A . Field A represents the reference calibration field that does not fulfill msr conditions. In the second approach (Approach 2), a square equivalent field size was determined for field A of 10 × 2 cm 2 and 10 × 3 cm 2 . Knowing the equivalent field size, the beam quality specifier for the hypothetical 10 × 10 cm 2 field size was derived. This was used to calculate the beam quality correction factor analytically for the six chamber types using the TRS-398. (Andreo et al. Int Atom Energy Agency 420, 2001) Here, TRS-398 was used instead of TRS-483 since the beam quality correction values for the chambers used in this study are not tabulated in TRS-483. The accuracy of Approach 2 is studied in comparison to Approach 1. RESULTS Among the chambers, the PTW 31010 had the largest k Q A , Q 0 f A , f ref correction due to the volume averaging effect. The smallest-volume chamber (IBA CC01) had the smallest correction followed by the other microchambers Exradin-A14 and -A14SL. The equivalent square fields sizes were found to be 3.6 cm and 4.8 cm for the 10 × 2 cm 2 and 10 × 3 cm 2 field sizes, respectively. The beam quality correction factors calculated using the two approaches were within 0.27% for all chambers except IBA CC01. The latter chamber has an electrode made of steel and the differences between the correction calculated using the two approaches was the largest, that is, 0.5%. CONCLUSIONS In this study, we provided the k Q A , Q 0 f A , f ref values as a function of the beam quality specifier at the RefleXion BgRT setup ( TPR 20 , 10 ( S ) and % d d ( 10 , S ) x ) for six chamber types. We suggest using the first approach for calibration of the RefleXion BgRT machine. However, if the MC correction is not available for a user's detector, the user can use the second approach for estimating the beam quality correction factor to sufficient accuracy (0.3%) provided the chamber electrode is not made of high Z material.
Collapse
Affiliation(s)
| | - Rostem Bassalow
- RefleXion Medical, 25841 Industrial Blvd, Hayward, California, 94545, USA
| | - Daniel Zaks
- RefleXion Medical, 25841 Industrial Blvd, Hayward, California, 94545, USA
| | - Calvin Huntzinger
- RefleXion Medical, 25841 Industrial Blvd, Hayward, California, 94545, USA
| | - Jan Seuntjens
- Medical Physics Unit, McGill University, Montreal, Quebec, H4A 3J1, Canada
| |
Collapse
|
14
|
Martin-Martin G, Walter S, Guibelalde E. Dose accuracy improvement on head and neck VMAT treatments by using the Acuros algorithm and accurate FFF beam calibration. ACTA ACUST UNITED AC 2021; 26:73-85. [PMID: 33948305 DOI: 10.5603/rpor.a2021.0014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/22/2020] [Indexed: 11/25/2022]
Abstract
Background The purpose of this study was to assess dose accuracy improvement and dosimetric impact of switching from the anisotropic analytical algorithm (AA) to the Acuros XB algorithm (AXB) when performing an accurate beam calibration in head and neck (H&N) FFF-VMAT treatments. Materials and methods Twenty H&N cancer patients treated with FFF-VMAT techniques were included. Calculations were performed with the AA and AXB algorithm (dose-to-water - AXBw- and dose-to-medium - AXBm-). An accurate beam calibration was used for AXB calculations. Dose prescription to the tumour (PTV70) and at-risk-nodal region (PTV58.1) were 70 Gy and 58.1 Gy, respectively. A PTV70_bone including bony structures in PTV70 was contoured. Dose-volume parameters were compared between the algorithms. Statistical tests were used to analyze the differences in mean values and the correlation between compliance with the D95 > 95% requirement and occurrence of local recurrence. Results AA systematically overestimated the dose compared to AXB algorithm with mean dose differences within 1.3 Gy/2%, except for the PTV70_bone (2.2 Gy/3.2%). Dose differences were significantly higher for AXBm calculations when including accurate beam calibration (maximum dose differences up to 2.8 Gy/4.1% and 4.2 Gy/6.3% for PTV70 and PTV70_bone, respectively). 80% of AA-calculated plans did not meet the D95 > 95% requirement after recalculation with AXBm and accurate beam calibration. The reduction in D95 coverage in the tumour was not clinically relevant. Conclusions Using the AXBm algorithm and carefully reviewing the beam calibration procedure in H&N FFF-VMAT treatments ensures (1) dose accuracy increase by approximately 3%; (2) a consequent dose increase in targets; and (3) a dose reporting mode that is consistent with the trend of current algorithms.
Collapse
Affiliation(s)
- Guadalupe Martin-Martin
- Medical Physics and Radiation Protection Service, Hospital Universitario de Fuenlabrada, Madrid, Spain
| | - Stefan Walter
- Department of Medicine and Public Health, Rey Juan Carlos University, Alcorcón, Spain
| | - Eduardo Guibelalde
- Medical Physics Group, Department of Radiology, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
15
|
Martin-Martin G, Walter S, Guibelalde E. Dosimetric impact of failing to apply correction factors to ion recombination in percentage depth dose measurements and the volume-averaging effect in flattening filter-free beams. Phys Med 2020; 77:176-180. [DOI: 10.1016/j.ejmp.2020.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 10/23/2022] Open
|
16
|
Akino Y, Mizuno H, Isono M, Tanaka Y, Masai N, Yamamoto T. Small-field dosimetry of TrueBeam TM flattened and flattening filter-free beams: A multi-institutional analysis. J Appl Clin Med Phys 2020; 21:78-87. [PMID: 31816176 PMCID: PMC6964782 DOI: 10.1002/acm2.12791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/23/2019] [Accepted: 11/18/2019] [Indexed: 11/21/2022] Open
Abstract
PURPOSE Detector-dependent interinstitutional variations of the beam data may lead to uncertainties of the delivered dose to patients. Here we evaluated the inter-unit variability of the flattened and flattening filter-free (FFF) beam data of multiple TrueBeam (Varian Medical Systems) linear accelerators focusing on the small-field dosimetry. METHODS The beam data of 6- and 10-MV photon beams with and without flattening filter measured for modeling of an iPLAN treatment planning system (BrainLAB) were collected from 12 institutions - ten HD120 Multileaf Collimator (MLC) and two Millennium120 MLC. Percent-depth dose (PDD), off-center ratio (OCR), and detector output factors (OFdet ) measured with different detectors were evaluated. To investigate the detector-associated effects, we evaluated the inter-unit variations of the OFdet before and after having applied the output correction factors provided by the International Atomic Energy Agency (IAEA) Technical Reports Series no. 483. RESULTS PDD measured with a field size of 5 × 5 mm2 showed that the data measured using an ionization chamber had variations exceeding 1% from the median values. The maximum difference from median value was 2.87% for 10 MV photon beam. The maximum variations of the penumbra width for OCR with 10 × 10 mm2 field size were 0.97 mm. The OFdet showed large variations exceeding 15% for a field size of 5 × 5 mm2 . When the output correction factors were applied to the OFdet , the variations were greatly reduced. The relative difference of almost all field output factors were within ± 5% from the median field output factors. CONCLUSION In this study, the inter-unit variability of small-field dosimetry was evaluated for TrueBeam linear accelerators. The variations were large at a field size of 5 × 5 mm2 , and most occurred in a detector-dependent manner.
Collapse
Affiliation(s)
- Yuichi Akino
- Oncology CenterOsaka University HospitalSuitaOsakaJapan
| | - Hirokazu Mizuno
- Department of Medical Physics and EngineeringOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Masaru Isono
- Department of Radiation OncologyOsaka International Cancer InstituteOsakaJapan
| | - Yoshihiro Tanaka
- Department of Radiation TherapyJapanese Red Cross Society Kyoto Daiichi HospitalKyoto PrefectureJapan
| | | | | |
Collapse
|
17
|
Martin-Martin G, Aguilar PB, Barbés B, Guibelalde E. Assessment of ion recombination correction and polarity effects for specific ionization chambers in flattening-filter-free photon beams. Phys Med 2019; 67:176-184. [PMID: 31734555 DOI: 10.1016/j.ejmp.2019.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 11/17/2022] Open
Abstract
PURPOSE To investigate ion recombination correction and polarity effects in four ion chamber models in flattening-filter-free (FFF) beams to (1) evaluate their suitability for reference dosimetry; (2) assess the accuracy of the two-voltage technique (TVA) against the Bruggmoser formalism; and (3) examine the influence of the accelerator type on the recombination correction. METHODS Jaffé plots were created for a variety of microchambers, small-volume and Farmer-type chambers to obtain kS, the recombination correction factor, using two different types of accelerators. These values were plotted against dose-per-pulse and Jaffé plots for opposite polarities were created to determine which chambers meet the AAPM TG-51 addendum recombination and polarity specifications. RESULTS Nearly all small-volume chambers exhibited reference-class behavior with respect to ion recombination and polarity effects. The microchambers exhibited anomalous recombination and polarity effects, precluding their use for reference dosimetry in FFF beams. For the reference-class chambers, agreement between TVA-determined kS values and Jaffé and Bruggmoser formalisms-determined kS values was within 0.1%. No significant differences were found between the kS values obtained with the two different accelerators used in this work. CONCLUSIONS This study stresses the need to characterize ion recombination correction and polarity effects for small-volume chambers and microchambers on an individual chamber basis and with the more rigorous criteria of the AAPM TG-51 addendum. Furthermore, the study demonstrated the suitability of the TVA method for chambers that exhibit reference-class behavior in FFF beams. Finally, this work has shown that the recombination correction does not depend on the type of accelerator but on its dose-per-pulse.
Collapse
Affiliation(s)
- Guadalupe Martin-Martin
- Medical Physics and Radiation Protection Service, Hospital Universitario de Fuenlabrada, C/ Camino del Molino 2, 28492 Fuenlabrada, Madrid, Spain.
| | - Pedro Borja Aguilar
- Clínica Universidad de Navarra, Department of Radiation Physics, Avenida Pío XII, 31080 Pamplona, Navarra, Spain
| | - Benigno Barbés
- Clínica Universidad de Navarra, Department of Radiation Physics, Avenida Pío XII, 31080 Pamplona, Navarra, Spain
| | - Eduardo Guibelalde
- Medical Physics Group, Department of Radiology, University Complutense of Madrid, 28040 Madrid, Spain
| |
Collapse
|
18
|
Desai VK, Labby ZE, Hyun MA, DeWerd LA, Culberson WS. VMAT and IMRT plan‐specific correction factors for linac‐based ionization chamber dosimetry. Med Phys 2018; 46:913-924. [DOI: 10.1002/mp.13293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 11/07/2022] Open
Affiliation(s)
- Vimal K. Desai
- Department of Medical Physics School of Medicine and Public Health University of Wisconsin‐Madison Madison WI 53705USA
| | - Zacariah E. Labby
- Department of Human Oncology School of Medicine and Public Health University of Wisconsin‐Madison Madison WI 53705 USA
| | - Megan A. Hyun
- Department of Radiation Oncology University of Nebraska Medical Center Omaha NE 68198 USA
| | - Larry A. DeWerd
- Department of Medical Physics School of Medicine and Public Health University of Wisconsin‐Madison Madison WI 53705USA
| | - Wesley S. Culberson
- Department of Medical Physics School of Medicine and Public Health University of Wisconsin‐Madison Madison WI 53705USA
| |
Collapse
|
19
|
Wegener S, Sauer OA. Electrometer offset current due to scattered radiation. J Appl Clin Med Phys 2018; 19:274-281. [PMID: 30298980 PMCID: PMC6236832 DOI: 10.1002/acm2.12458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/14/2018] [Accepted: 08/27/2018] [Indexed: 11/05/2022] Open
Abstract
Relative dose measurements with small ionization chambers in combination with an electrometer placed in the treatment room ("internal electrometer") show a large dependence on the polarity used. While this was observed previously for percent depth dose curves (PDDs), the effect has not been understood or preventable. To investigate the polarity dependence of internal electrometers used in conjunction with a small-volume ionization chamber, we placed an internal electrometer at a distance of 1 m from the isocenter and exposed it to different amounts of scattered radiation by varying the field size. We identified irradiation of the electrometer to cause a current of approximately -1 pA, regardless of the sign of the biasing voltage. For low-sensitivity detectors, such a current noticeably distorts relative dose measurements. To demonstrate how the current systematically changes PDDs, we collected measurements with nine ionization chambers of different volumes. As the chamber volume decreased, signal ratios at 20 and 10 cm depth (M20/M10) became smaller for positive bias voltage and larger for negative bias voltage. At the size of the iba CC04 (40 mm³) the difference of M20/M10 was around 1% and for the smallest studied chamber, the iba CC003 chamber (3 mm³), around 7% for a 10 × 10 cm² field. When the electrometer was moved further from the source or shielded, the additional current decreased. Consequently, PDDs at both polarities were brought into alignment at depth even for the 3 mm³ ionization chamber. The apparent polarity effect on PDDs and lateral beam profiles was reduced considerably by shielding the electrometer. Due to normalization the effect on output values was low. When measurements with a low-sensitivity probe are carried out in conjunction with an internal electrometer, we recommend careful monitoring of the particular setup by testing both polarities, and if deemed necessary, we suggest shielding the electrometer.
Collapse
Affiliation(s)
- Sonja Wegener
- Department of Radiation Oncology, University of Wuerzburg, Wuerzburg, Germany
| | - Otto A Sauer
- Department of Radiation Oncology, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
20
|
Reggiori G, Stravato A, Mancosu P, Lobefalo F, Paganini L, Zucconi F, Palumbo V, Gaudino A, Scorsetti M, Tomatis S. Small field characterization of a Nanochamber prototype under flattening filter free photon beams. Phys Med 2018; 49:139-146. [DOI: 10.1016/j.ejmp.2017.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/04/2017] [Accepted: 08/16/2017] [Indexed: 11/28/2022] Open
|