1
|
Thunberg P, Wastensson G, Lidén G, Adjeiwaah M, Tellman J, Bergström B, Fornander L, Lundberg P. Welding techniques and manganese concentrations in blood and brain: Results from the WELDFUMES study. Neurotoxicology 2024; 105:121-130. [PMID: 39326638 DOI: 10.1016/j.neuro.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
This study used whole-brain mapping to investigate the effect of different welding processes on manganese (Mn) accumulation in the brain. Exposure measurements were performed at the welders' workplaces about 3 weeks before a magnetic resonance imaging (MRI) examination. The welders were categorized into three main groups based on welding method, and the T1-relaxation rate (R1) was measured using quantitative MRI (qMRI). Welders using shielded metal arc welding (SMAW) were found to have lower accumulations of total Mn in clusters encompassing white matter, thalamus, putamen, pallidum, and substantia nigra compared with welders using inert gas tungsten arc welding (GTAW) or continuous consumable electrode arc welding (CCEAW). A positive correlation was found between Mn in red blood cells (Mn-RBC) and R1 in a region encompassing pre-and post-central gyri. The results of this study show that the accumulation of free, bound, or compartmentalized Mn ions in the brain differed depending on the welding method used. These differences were predominately located in the basal ganglia but were also found in regions encompassing white matter. The level of Mn-RBC was correlated to the deposition of Mn in the left primary somatosensory and motor cortex and may therefore be linked to neurological and neurobehavioral symptoms.
Collapse
Affiliation(s)
- Per Thunberg
- Center for Experimental and Biomedical Imaging in Örebro (CEBIO), Örebro University, Örebro, Sweden; Department of Radiology and Medical Physics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| | - Gunilla Wastensson
- Department of Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Göran Lidén
- Department of Environment Science, Stockholm University, Stockholm, Sweden
| | - Mary Adjeiwaah
- Center for Medical Imaging and Visualization Science (CMIV), Linköping University, Linköping, Sweden; Department of Radiation Physics and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Jens Tellman
- Center for Medical Imaging and Visualization Science (CMIV), Linköping University, Linköping, Sweden; Department of Radiation Physics and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Bernt Bergström
- Department of Occupational and Environmental Medicine, Örebro University Hospital, Region Örebro County, Sweden
| | - Louise Fornander
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Sweden
| | - Peter Lundberg
- Center for Medical Imaging and Visualization Science (CMIV), Linköping University, Linköping, Sweden; Department of Radiation Physics and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
2
|
Uselman TW, Medina CS, Gray HB, Jacobs RE, Bearer EL. Longitudinal manganese-enhanced magnetic resonance imaging of neural projections and activity. NMR IN BIOMEDICINE 2022; 35:e4675. [PMID: 35253280 PMCID: PMC11064873 DOI: 10.1002/nbm.4675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/19/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) holds exceptional promise for preclinical studies of brain-wide physiology in awake-behaving animals. The objectives of this review are to update the current information regarding MEMRI and to inform new investigators as to its potential. Mn(II) is a powerful contrast agent for two main reasons: (1) high signal intensity at low doses; and (2) biological interactions, such as projection tracing and neural activity mapping via entry into electrically active neurons in the living brain. High-spin Mn(II) reduces the relaxation time of water protons: at Mn(II) concentrations typically encountered in MEMRI, robust hyperintensity is obtained without adverse effects. By selectively entering neurons through voltage-gated calcium channels, Mn(II) highlights active neurons. Safe doses may be repeated over weeks to allow for longitudinal imaging of brain-wide dynamics in the same individual across time. When delivered by stereotactic intracerebral injection, Mn(II) enters active neurons at the injection site and then travels inside axons for long distances, tracing neuronal projection anatomy. Rates of axonal transport within the brain were measured for the first time in "time-lapse" MEMRI. When delivered systemically, Mn(II) enters active neurons throughout the brain via voltage-sensitive calcium channels and clears slowly. Thus behavior can be monitored during Mn(II) uptake and hyperintense signals due to Mn(II) uptake captured retrospectively, allowing pairing of behavior with neural activity maps for the first time. Here we review critical information gained from MEMRI projection mapping about human neuropsychological disorders. We then discuss results from neural activity mapping from systemic Mn(II) imaged longitudinally that have illuminated development of the tonotopic map in the inferior colliculus as well as brain-wide responses to acute threat and how it evolves over time. MEMRI posed specific challenges for image data analysis that have recently been transcended. We predict a bright future for longitudinal MEMRI in pursuit of solutions to the brain-behavior mystery.
Collapse
Affiliation(s)
- Taylor W. Uselman
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | | | - Harry B. Gray
- Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Russell E. Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Elaine L. Bearer
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- Beckman Institute, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
3
|
Tanihira H, Fujiwara T, Kikuta S, Homma N, Osanai M. Manganese Dynamics in Mouse Brain After Systemic MnCl 2 Administration for Activation-Induced Manganese-Enhanced MRI. Front Neural Circuits 2022; 15:787692. [PMID: 34987361 PMCID: PMC8722453 DOI: 10.3389/fncir.2021.787692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/16/2021] [Indexed: 12/02/2022] Open
Abstract
Activation-induced manganese-enhanced MRI (AIM-MRI) is an attractive tool for non-invasively mapping whole brain activities. Manganese ions (Mn2+) enter and accumulate in active neurons via calcium channels. Mn2+ shortens the longitudinal relaxation time (T1) of H+, and the longitudinal relaxation rate R1 (1/T1) is proportional to Mn2+ concentration. Thus, AIM-MRI can map neural activities throughout the brain by assessing the R1 map. However, AIM-MRI is still not widely used, partially due to insufficient information regarding Mn2+ dynamics in the brain. To resolve this issue, we conducted a longitudinal study looking at manganese dynamics after systemic administration of MnCl2 by AIM-MRI with quantitative analysis. In the ventricle, Mn2+ increased rapidly within 1 h, remained high for 3 h, and returned to near control levels by 24 h after administration. Microdialysis showed that extracellular Mn returned to control levels by 4 h after administration, indicating a high concentration of extracellular Mn2+ lasts at least about 3 h after administration. In the brain parenchyma, Mn2+ increased slowly, peaked 24–48 h after administration, and returned to control level by 5 days after a single administration and by 2 weeks after a double administration with a 24-h interval. These time courses suggest that AIM-MRI records neural activity 1–3 h after MnCl2 administration, an appropriate timing of the MRI scan is in the range of 24–48 h following systemic administration, and at least an interval of 5 days or a couple of weeks for single or double administrations, respectively, is needed for a repeat AIM-MRI experiment.
Collapse
Affiliation(s)
- Hiroki Tanihira
- Department of Radiological Imaging and Informatics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomonori Fujiwara
- Faculty of Health and Medical Care, Saitama Medical University, Hidaka, Japan.,Department of Medical Physiology, Faculty of Medicine, Kyorin University, Mitaka, Japan
| | - Satomi Kikuta
- Department of Radiological Imaging and Informatics, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Noriyasu Homma
- Department of Radiological Imaging and Informatics, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Intelligent Biomedical Systems Engineering, Graduate Scholl of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Makoto Osanai
- Department of Radiological Imaging and Informatics, Tohoku University Graduate School of Medicine, Sendai, Japan.,Laboratory for Physiological Functional Imaging, Department of Medical Physics and Engineering, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
4
|
Saar G, Millo CM, Szajek LP, Bacon J, Herscovitch P, Koretsky AP. Anatomy, Functionality, and Neuronal Connectivity with Manganese Radiotracers for Positron Emission Tomography. Mol Imaging Biol 2019; 20:562-574. [PMID: 29396750 DOI: 10.1007/s11307-018-1162-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Manganese ion has been extensively used as a magnetic resonance imaging (MRI) contrast agent in preclinical studies to assess tissue anatomy, function, and neuronal connectivity. Unfortunately, its use in human studies has been limited by cellular toxicity and the need to use a very low dose. The much higher sensitivity of positron emission tomography (PET) over MRI enables the use of lower concentrations of manganese, potentially expanding the methodology to humans. PROCEDURES PET tracers manganese-51 (Mn-51, t1/2 = 46 min) and manganese-52 (Mn-52, t1/2 = 5.6 days) were used in this study. The biodistribution of manganese in animals in the brain and other tissues was studied as well as the uptake in the pancreas after glucose stimulation as a functional assay. Finally, neuronal connectivity in the olfactory pathway following nasal administration of the divalent radioactive Mn-52 ([52Mn]Mn2+) was imaged. RESULTS PET imaging with the divalent radioactive Mn-51 ([51Mn]Mn2+) and [52Mn]Mn2+ in both rodents and monkeys demonstrates that the accumulation of activity in different organs is similar to that observed in rodent MRI studies following systemic administration. Furthermore, we demonstrated the ability of manganese to enter excitable cells. We followed activity-induced [51Mn]Mn2+ accumulation in the pancreas after glucose stimulation and showed that [52Mn]Mn2+ can be used to trace neuronal connections analogous to manganese-enhanced MRI neuronal tracing studies. CONCLUSIONS The results were consistent with manganese-enhanced MRI studies, despite the much lower manganese concentration used for PET (100 mM Mn2+ for MRI compared to ~ 0.05 mM for PET). This indicates that uptake and transport mechanisms are comparable even at low PET doses. This helps establish the use of manganese-based radiotracers in both preclinical and clinical studies to assess anatomy, function, and connectivity.
Collapse
Affiliation(s)
- Galit Saar
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Corina M Millo
- PET Department, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lawrence P Szajek
- PET Department, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeff Bacon
- PET Department, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Peter Herscovitch
- PET Department, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alan P Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Li Y, Xu S, Cai M. PO 2-based biodosimetry evaluation using an EPR technique acts as a sensitive index for chemotherapy. Oncol Lett 2018; 16:2167-2174. [PMID: 30008915 PMCID: PMC6036430 DOI: 10.3892/ol.2018.8911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 04/17/2018] [Indexed: 12/02/2022] Open
Abstract
The partial pressure of oxygen (PO2) in the tumor microenvironment directly affects tumor sensitivity to chemotherapy. In the present study, a lithium phthalocyanine probe was implanted into MCF-7 human breast cancer cells, followed by transplant of the cells into nude mice. The present study used an electron paramagnetic resonance (EPR) oximetry measuring technique to dynamically monitor PO2 in the tumor microenvironment prior to and following chemotherapy, and aimed to determine the precise time window in which the microenvironmental PO2 peaked following chemotherapy. The results indicated that PO2 was significantly higher in breast cancer compared with control (P<0.05). Following four cycles of chemotherapy, the activity of NADH dehydrogenase, succinate-cytochrome c reductase and cytochrome c oxidase in the mitochondria of cells was significantly reduced when compared with their activity prior to chemotherapy (P<0.05). Regional blood flow in tumor tissues undergoing chemotherapy was significantly lower than that prior to chemotherapy (P<0.05). The rate of cellular apoptosis in the PO2 peak-based chemotherapy group was significantly greater than that in the conventional chemotherapy group after two and four cycles of chemotherapy (P<0.05). Tumor volume in the PO2 peak-based chemotherapy group was significantly reduced compared with that in the 0.9% NaCl solution control and the conventional chemotherapy groups after four cycles of chemotherapy (P<0.05). The tumor inhibitory rate of the experimental group was significantly higher than that of the conventional chemotherapy group (P<0.01). In conclusion, the present study may provide guidance for the development of effective strategies depending on tumor-maximal response to chemotherapy in an oxygen-rich environment. Additionally, the present study aimed to establish a foundation for a clinical noninvasive assessment intended to guide treatment and formulate individual regimens, in order to improve cancer therapeutics, sensitivity monitoring and curative effect estimation.
Collapse
Affiliation(s)
- Yuanjing Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shengxin Xu
- Institute of Atomic and Molecular Physics, Anhui Normal University, Wuhu 241000, Anhui, P.R. China
| | - Ming Cai
- Department of Endocrinology and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|