1
|
Mohyedin MZ, Zin HM, Adenan MZ, Abdul Rahman AT. A Review of PRESAGE Radiochromic Polymer and the Compositions for Application in Radiotherapy Dosimetry. Polymers (Basel) 2022; 14:2887. [PMID: 35890665 PMCID: PMC9320230 DOI: 10.3390/polym14142887] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 02/01/2023] Open
Abstract
Recent advances in radiotherapy technology and techniques have allowed a highly conformal radiation to be delivered to the tumour target inside the body for cancer treatment. A three-dimensional (3D) dosimetry system is required to verify the accuracy of the complex treatment delivery. A 3D dosimeter based on the radiochromic response of a polymer towards ionising radiation has been introduced as the PRESAGE dosimeter. The polyurethane dosimeter matrix is combined with a leuco-dye and a free radical initiator, whose colour changes in proportion to the radiation dose. In the previous decade, PRESAGE gained improvement and enhancement as a 3D dosimeter. Notably, PRESAGE overcomes the limitations of its predecessors, the Fricke gel and the polymer gel dosimeters, which are challenging to fabricate and read out, sensitive to oxygen, and sensitive to diffusion. This article aims to review the characteristics of the radiochromic dosimeter and its clinical applications. The formulation of PRESAGE shows a delicate balance between the number of radical initiators, metal compounds, and catalysts to achieve stability, optimal sensitivity, and water equivalency. The applications of PRESAGE in advanced radiotherapy treatment verifications are also discussed.
Collapse
Affiliation(s)
- Muhammad Zamir Mohyedin
- School of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia;
- Centre of Astrophysics & Applied Radiation, Institute of Science, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| | - Hafiz Mohd Zin
- Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13700, Penang, Malaysia;
| | - Mohd Zulfadli Adenan
- Centre of Medical Imaging, Faculty of Health Sciences, Universiti Teknologi MARA, Cawangan Selangor Campus of Puncak Alam, Puncak Alam 42300, Selangor, Malaysia;
| | - Ahmad Taufek Abdul Rahman
- School of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia;
- Centre of Astrophysics & Applied Radiation, Institute of Science, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| |
Collapse
|
2
|
Review on the feasibility of using PRESAGE® dosimeter in various radiotherapy techniques. JOURNAL OF RADIOTHERAPY IN PRACTICE 2021. [DOI: 10.1017/s1460396920000163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe emergence of advanced radiotherapy techniques, such as intensity-modulated radiotherapy (IMRT), brachytherapy, conformal radiotherapy, magnetic resonance-guided radiotherapy (MRgRT), stereotactic synchrotron radiotherapy (SSRT) and microbeam radiotherapy (MRT), has increased the importance of the verification of volumetric dose distribution. The verification of dose distribution is usually done by 2D films and 3D gel dosimeters, but PRESAGE® due to its affordability, reproducibility, precision, accuracy, unique dosimetric and physical properties is considered as an effective candidate in providing 3D dose data. PRESAGE® is insensitive to oxygen contamination, machinable and can be molded to a variety of shapes and sizes. It is absorbing rather than scattering light which facilitates high-accuracy readout by optical computed tomography (OP-CT). This review focuses on the feasibility of using PRESAGE® in various complicated radiotherapy techniques by comparing its measured doses with 2D films and treatment planning system (TPS) calculated doses.
Collapse
|
3
|
Day LRJ, Donzelli M, Pellicioli P, Smyth LML, Barnes M, Bartzsch S, Crosbie JC. A commercial treatment planning system with a hybrid dose calculation algorithm for synchrotron radiotherapy trials. Phys Med Biol 2021; 66:055016. [PMID: 33373979 DOI: 10.1088/1361-6560/abd737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Synchrotron Radiotherapy (SyncRT) is a preclinical radiation treatment which delivers synchrotron x-rays to cancer targets. SyncRT allows for novel treatments such as Microbeam Radiotherapy, which has been shown to have exceptional healthy tissue sparing capabilities while maintaining good tumour control. Veterinary trials in SyncRT are anticipated to take place in the near future at the Australian Synchrotron's Imaging and Medical Beamline (IMBL). However, before veterinary trials can commence, a computerised treatment planning system (TPS) is required, which can quickly and accurately calculate the synchrotron x-ray dose through patient CT images. Furthermore, SyncRT TPS's must be familiar and intuitive to radiotherapy planners in order to alleviate necessary training and reduce user error. We have paired an accurate and fast Monte Carlo (MC) based SyncRT dose calculation algorithm with EclipseTM, the most widely implemented commercial TPS in the clinic. Using EclipseTM, we have performed preliminary SyncRT trials on dog cadavers at the IMBL, and verified calculated doses against dosimetric measurement to within 5% for heterogeneous tissue-equivalent phantoms. We have also performed a validation of the TPS against a full MC simulation for constructed heterogeneous phantoms in EclipseTM, and showed good agreement for a range of water-like tissues to within 5%-8%. Our custom EclipseTM TPS for SyncRT is ready to perform live veterinary trials at the IMBL.
Collapse
Affiliation(s)
- L R J Day
- School of Science, RMIT University, Melbourne, Australia
| | - M Donzelli
- The European Synchrotron Radiation Facility, ID17 Biomedical Beamline, Grenoble, France.,Institute of Cancer Research, London, United Kingdom
| | - P Pellicioli
- The European Synchrotron Radiation Facility, ID17 Biomedical Beamline, Grenoble, France.,Inserm UA7 STROBE, Grenoble Alps University, Grenoble, France.,Swansea University Medical School, Singleton Park, Swansea, United Kingdom
| | - L M L Smyth
- Department of Obstetrics and Gynaecology, University of Melbourne, Royal Women's Hospital, Melbourne, Australia
| | - M Barnes
- School of Science, RMIT University, Melbourne, Australia.,Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Australia.,The Australian Synchrotron, Imaging and Medical Beamline, Melbourne, Australia
| | - S Bartzsch
- Institute of Cancer Research, London, United Kingdom.,Technical University of Munich, Munich, Germany
| | - J C Crosbie
- School of Science, RMIT University, Melbourne, Australia
| |
Collapse
|
4
|
Gagliardi FM, Franich RD, Geso M. Nanoparticle dose enhancement of synchrotron radiation in PRESAGE dosimeters. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:1590-1600. [PMID: 33147183 DOI: 10.1107/s1600577520012849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
The physical absorbed dose enhancement by the inclusion of gold and bismuth nanoparticles fabricated into water-equivalent PRESAGE dosimeters was investigated. Nanoparticle-loaded water-equivalent PRESAGE dosimeters were irradiated with superficial, synchrotron and megavoltage X-ray beams. The change in optical density of the dosimeters was measured using UV-Vis spectrophotometry pre- and post-irradiation using a wavelength of 630 nm. Dose enhancement was measured for 5 nm and 50 nm monodispersed gold nanoparticles, 5-50 nm polydispersed bismuth nanoparticles, and 80 nm monodispersed bismuth nanoparticles at concentrations from 0.25 mM to 2 mM. The dose enhancement was highest for the 95.3 keV mean energy synchrotron beam (16-32%) followed by the 150 kVp superficial beam (12-21%) then the 6 MV beam (2-5%). The bismuth nanoparticle-loaded dosimeters produced a larger dose enhancement than the gold nanoparticle-loaded dosimeters in the synchrotron beam for the same concentration. For the superficial and megavoltage beams the dose enhancement was similar for both species of nanoparticles. The dose enhancement increased with nanoparticle concentration in the dosimeters; however, there was no observed nanoparticle size dependence on the dose enhancement.
Collapse
Affiliation(s)
- Frank M Gagliardi
- Alfred Health Radiation Oncology, The Alfred, Commercial Road, Melbourne, Victoria 3004, Australia
| | - Rick D Franich
- School of Science, RMIT University, La Trobe Street, Melbourne, Victoria 3000, Australia
| | - Moshi Geso
- School of Health and Biomedical Sciences, RMIT University, Plenty Road, Bundoora, Victoria 3083, Australia
| |
Collapse
|
5
|
Day LRJ, Pellicioli P, Gagliardi F, Barnes M, Smyth LML, Butler D, Livingstone J, Stevenson AW, Lye J, Poole CM, Hausermann D, Rogers PAW, Crosbie JC. A Monte Carlo model of synchrotron radiotherapy shows good agreement with experimental dosimetry measurements: Data from the imaging and medical beamline at the Australian Synchrotron. Phys Med 2020; 77:64-74. [PMID: 32791426 DOI: 10.1016/j.ejmp.2020.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/22/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Experimental measurement of Synchrotron Radiotherapy (SyncRT) doses is challenging, especially for Microbeam Radiotherapy (MRT), which is characterised by very high dynamic ranges with spatial resolutions on the micrometer scale. Monte Carlo (MC) simulation is considered a gold standard for accurate dose calculation in radiotherapy, and is therefore routinely relied upon to produce verification data. We present a MC model for Australian Synchrotron's Imaging and Medical Beamline (IMBL), which is capable of generating accurate dosimetry data to inform and/or verify SyncRT experiments. Our MC model showed excellent agreement with dosimetric measurement for Synchrotron Broadbeam Radiotherapy (SBBR). Our MC model is also the first to achieve validation for MRT, using two methods of dosimetry, to within clinical tolerances of 5% for a 20×20 mm2 field size, except for surface measurements at 5 mm depth, which remained to within good agreement of 7.5%. Our experimental methodology has allowed us to control measurement uncertainties for MRT doses to within 5-6%, which has also not been previously achieved, and provides a confidence which until now has been lacking in MRT validation studies. The MC model is suitable for SyncRT dose calculation of clinically relevant field sizes at the IMBL, and can be extended to include medical beamlines at other Synchrotron facilities as well. The presented MC model will be used as a validation tool for treatment planning dose calculation algorithms, and is an important step towards veterinary SyncRT trials at the Australian Synchrotron.
Collapse
Affiliation(s)
- L R J Day
- School of Science, RMIT University, Melbourne, Australia.
| | - P Pellicioli
- The European Synchrotron Radiation Facility, ID17 Biomedical Beamline, Grenoble, France; Inserm UA7 STROBE, Grenoble Alps University, Grenoble, France; Swansea University Medical School, Singleton Park, Swansea, United Kingdom
| | - F Gagliardi
- Radiation Oncology, Alfred Hospital, Melbourne, Australia; School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - M Barnes
- Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Australia; Australian Nuclear Science and Technology Organisation (ANSTO), Australian Synchrotron, Clayton, Australia
| | - L M L Smyth
- Department of Obstetrics and Gynaecology, University of Melbourne, Royal Women's Hospital, Melbourne, Australia
| | - D Butler
- Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), Melbourne, Australia
| | - J Livingstone
- Australian Nuclear Science and Technology Organisation (ANSTO), Australian Synchrotron, Clayton, Australia
| | - A W Stevenson
- Australian Nuclear Science and Technology Organisation (ANSTO), Australian Synchrotron, Clayton, Australia
| | - J Lye
- Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), Melbourne, Australia
| | - C M Poole
- Radiation Analytics, Brisbane, Australia
| | - D Hausermann
- Australian Nuclear Science and Technology Organisation (ANSTO), Australian Synchrotron, Clayton, Australia
| | - P A W Rogers
- Department of Obstetrics and Gynaecology, University of Melbourne, Royal Women's Hospital, Melbourne, Australia
| | - J C Crosbie
- School of Science, RMIT University, Melbourne, Australia
| |
Collapse
|
6
|
Film dosimetry studies for patient specific quality assurance in microbeam radiation therapy. Phys Med 2019; 65:227-237. [DOI: 10.1016/j.ejmp.2019.09.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/02/2019] [Accepted: 09/05/2019] [Indexed: 11/21/2022] Open
|
7
|
Gagliardi FM, Franich RD, Geso M. Dose response and stability of water equivalent PRESAGE® dosimeters for synchrotron radiation therapy dosimetry. ACTA ACUST UNITED AC 2018; 63:235027. [DOI: 10.1088/1361-6560/aaf1f5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|