1
|
Yang C, Zhang ZM, Zhao ZP, Wang ZQ, Zheng J, Xiao HJ, Xu H, Liu H, Yang L. Radiomic analysis based on magnetic resonance imaging for the prediction of VEGF expression in hepatocellular carcinoma patients. Abdom Radiol (NY) 2024; 49:3824-3833. [PMID: 38896246 PMCID: PMC11519187 DOI: 10.1007/s00261-024-04427-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE The purpose of this study was to investigate the ability of radiomic characteristics of magnetic resonance images to predict vascular endothelial growth factor (VEGF) expression in hepatocellular carcinoma (HCC) patients. METHODS One hundred and twenty-four patients with HCC who underwent fat-suppressed T2-weighted imaging (FS-T2WI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) one week before surgical resection were enrolled in this retrospective study. Immunohistochemical analysis was used to evaluate the expression level of VEGF. Radiomic features were extracted from the axial FS-T2WI, DCE-MRI (arterial phase and portal venous phase) images of axial MRI. Least absolute shrinkage and selection operator (LASSO) and stepwise regression analyses were performed to select the best radiomic features. Multivariate logistic regression models were constructed and validated using tenfold cross-validation. Receiver operating characteristic (ROC) curve analysis, calibration curve analysis and decision curve analysis (DCA) were employed to evaluate these models. RESULTS Our results show that there were 94 patients with high VEGF expression and 30 patients with low VEGF expression among the 124 HCC patients. The FS-T2WI, DCE-MRI and combined MRI radiomics models had AUCs of 0.8713, 0.7819, and 0.9191, respectively. There was no significant difference in the AUC between the FS-T2WI radiomics model and the DCE-MRI radiomics model (p > 0.05), but the AUC for the combined model was significantly greater than the AUCs for the other two models (p < 0.05) according to the DeLong test. The combined model had the greatest net benefit according to the DCA results. CONCLUSION The radiomic model based on multisequence MR images has the potential to predict VEGF expression in HCC patients. The combined model showed the best performance.
Collapse
Affiliation(s)
- Cui Yang
- Department of Radiology, Panzhihua Central Hospital, Panzhihua, 617000, Sichuan, China
| | - Ze-Ming Zhang
- Department of Radiology, Panzhihua Central Hospital, Panzhihua, 617000, Sichuan, China
| | - Zhang-Ping Zhao
- Department of Radiology, Panzhihua Central Hospital, Panzhihua, 617000, Sichuan, China
| | - Zhi-Qing Wang
- Department of Radiology, Panzhihua Central Hospital, Panzhihua, 617000, Sichuan, China
| | - Jing Zheng
- Medical Imaging Key Laboratory of Sichuan Province, Science and Technology Innovation Center, Interventional Medical Center, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, P. R. China
| | - Hua-Jing Xiao
- Department of Pathology, Panzhihua Central Hospital, Panzhihua, 617000, Sichuan, China
| | - Hong Xu
- Department of Radiology, Panzhihua Central Hospital, Panzhihua, 617000, Sichuan, China
| | - Hui Liu
- Department of Radiology, Panzhihua Central Hospital, Panzhihua, 617000, Sichuan, China
| | - Lin Yang
- Medical Imaging Key Laboratory of Sichuan Province, Science and Technology Innovation Center, Interventional Medical Center, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, P. R. China.
| |
Collapse
|
2
|
Li Z, Carton AK, Muller S, Almecija T, de Carvalho PM, Desolneux A. A 3D Mathematical Breast Texture Model With Parameters Automatically Inferred From Clinical Breast CT Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:1107-1120. [PMID: 36417739 DOI: 10.1109/tmi.2022.3224223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A numerical realistic 3D anthropomorphic breast model is useful for evaluating breast imaging applications. A method is proposed to model small and medium-scale fibroglandular and intra-glandular adipose tissues observed in the center part of clinical breast CT images. The method builds upon a previously proposed model formulated as stochastic geometric processes with mathematically tractable parameters. In this work, the medium-scale parameters were automatically and objectively inferred from breast CT images. We hypothesized that a set of random ellipsoids exhibiting cluster interaction is representative to model the medium-scale intra-glandular adipose compartments. The ellipsoids were reconstructed using a multiple birth, death and shift algorithm. Then, a Matérn cluster process was used to fit the reconstructed ellipsoid centers. Finally, distributions of the ellipsoid shapes and orientations were estimated using maximum likelihood estimators. Feasibility was demonstrated on 16 volumes of interests (VOI). To assess the realism of the 3D breast texture model, β and LFE metrics computed in simulated projection images of simulated texture realizations and clinical images were compared. Visual realism was illustrated. For 12 out of 16 VOIs, our hypothesis on clustering interaction process is confirmed. The average β values from simulated texture images (3.7 to 4.2) of the 12 different VOIs are higher than the average β value from 2D clinical images (2.87). LFE of simulated texture images and clinical mammograms are similar. Compared to our previous model, whereby simulation parameters were based upon empirical observations, our inference method substantially augments the ability to generate textures with higher visual realism and larger morphological variety.
Collapse
|
3
|
Kuo CFJ, Chen HY, Barman J, Ko KH, Hsu HH. Complete, Fully Automatic Detection and Classification of Benign and Malignant Breast Tumors Based on CT Images Using Artificial Intelligent and Image Processing. J Clin Med 2023; 12:1582. [PMID: 36836118 PMCID: PMC9960342 DOI: 10.3390/jcm12041582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 02/19/2023] Open
Abstract
Breast cancer is the most common type of cancer in women, and early detection is important to significantly reduce its mortality rate. This study introduces a detection and diagnosis system that automatically detects and classifies breast tumors in CT scan images. First, the contours of the chest wall are extracted from computed chest tomography images, and two-dimensional image characteristics and three-dimensional image features, together with the application of active contours without edge and geodesic active contours methods, are used to detect, locate, and circle the tumor. Then, the computer-assisted diagnostic system extracts features, quantifying and classifying benign and malignant breast tumors using a greedy algorithm and a support vector machine. The study used 174 breast tumors for experiment and training and performed cross-validation 10 times (k-fold cross-validation) to evaluate performance of the system. The accuracy, sensitivity, specificity, and positive and negative predictive values of the system were 99.43%, 98.82%, 100%, 100%, and 98.89% respectively. This system supports the rapid extraction and classification of breast tumors as either benign or malignant, helping physicians to improve clinical diagnosis.
Collapse
Affiliation(s)
- Chung-Feng Jeffrey Kuo
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Hsuan-Yu Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Jagadish Barman
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Kai-Hsiung Ko
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Hsian-He Hsu
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
4
|
Tao YY, Shi Y, Gong XQ, Li L, Li ZM, Yang L, Zhang XM. Radiomic Analysis Based on Magnetic Resonance Imaging for Predicting PD-L2 Expression in Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:365. [PMID: 36672315 PMCID: PMC9856314 DOI: 10.3390/cancers15020365] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common malignant tumour and the third leading cause of cancer death in the world. The emerging field of radiomics involves extracting many clinical image features that cannot be recognized by the human eye to provide information for precise treatment decision making. Radiomics has shown its importance in HCC identification, histological grading, microvascular invasion (MVI) status, treatment response, and prognosis, but there is no report on the preoperative prediction of programmed death ligand-2 (PD-L2) expression in HCC. The purpose of this study was to investigate the value of MRI radiomic features for the non-invasive prediction of immunotherapy target PD-L2 expression in hepatocellular carcinoma (HCC). A total of 108 patients with HCC confirmed by pathology were retrospectively analysed. Immunohistochemical analysis was used to evaluate the expression level of PD-L2. 3D-Slicer software was used to manually delineate volumes of interest (VOIs) and extract radiomic features on preoperative T2-weighted, arterial-phase, and portal venous-phase MR images. Least absolute shrinkage and selection operator (LASSO) was performed to find the best radiomic features. Multivariable logistic regression models were constructed and validated using fivefold cross-validation. The area under the receiver characteristic curve (AUC) was used to evaluate the predictive performance of each model. The results show that among the 108 cases of HCC, 50 cases had high PD-L2 expression, and 58 cases had low PD-L2 expression. Radiomic features correlated with PD-L2 expression. The T2-weighted, arterial-phase, and portal venous-phase and combined MRI radiomics models showed AUCs of 0.789 (95% CI: 0.702-0.875), 0.727 (95% CI: 0.632-0.823), 0.770 (95% CI: 0.682-0.875), and 0.871 (95% CI: 0.803-0.939), respectively. The combined model showed the best performance. The results of this study suggest that prediction based on the radiomic characteristics of MRI could noninvasively predict the expression of PD-L2 in HCC before surgery and provide a reference for the selection of immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Yun-Yun Tao
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Yue Shi
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Xue-Qin Gong
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Li Li
- Department of Pathology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Zu-Mao Li
- Department of Pathology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Lin Yang
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Xiao-Ming Zhang
- Medical Imaging Key Laboratory of Sichuan Province, Interventional Medical Center, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| |
Collapse
|
5
|
Pautasso JJ, Caballo M, Mikerov M, Boone JM, Michielsen K, Sechopoulos I. Deep learning for x-ray scatter correction in dedicated breast CT. Med Phys 2022; 50:2022-2036. [PMID: 36565012 DOI: 10.1002/mp.16185] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Accurate correction of x-ray scatter in dedicated breast computed tomography (bCT) imaging may result in improved visual interpretation and is crucial to achieve quantitative accuracy during image reconstruction and analysis. PURPOSE To develop a deep learning (DL) model to correct for x-ray scatter in bCT projection images. METHODS A total of 115 patient scans acquired with a bCT clinical system were segmented into the major breast tissue types (skin, adipose, and fibroglandular tissue). The resulting breast phantoms were divided into training (n = 110) and internal validation cohort (n = 5). Training phantoms were augmented by a factor of four by random translation of the breast in the image field of view. Using a previously validated Monte Carlo (MC) simulation algorithm, 12 primary and scatter bCT projection images with a 30-degree step were generated from each phantom. For each projection, the thickness map and breast location in the field of view were also calculated. A U-Net based DL model was developed to estimate the scatter signal based on the total input simulated image and trained single-projection-wise, with the thickness map and breast location provided as additional inputs. The model was internally validated using MC-simulated projections and tested using an external data set of 10 phantoms derived from images acquired with a different bCT system. For this purpose, the mean relative difference (MRD) and mean absolute error (MAE) were calculated. To test for accuracy in reconstructed images, a full bCT acquisition was mimicked with MC-simulations and then assessed by calculating the MAE and the structural similarity (SSIM). Subsequently, scatter was estimated and subtracted from the bCT scans of three patients to obtain the scatter-corrected image. The scatter-corrected projections were reconstructed and compared with the uncorrected reconstructions by evaluating the correction of the cupping artifact, increase in image contrast, and contrast-to-noise ratio (CNR). RESULTS The mean MRD and MAE across all cases (min, max) for the internal validation set were 0.04% (-1.1%, 1.3%) and 2.94% (2.7%, 3.2%), while for the external test set they were -0.64% (-1.6%, 0.2%) and 2.84% (2.3%, 3.5%), respectively. For MC-simulated reconstruction slices, the computed SSIM was 0.99 and the MAE was 0.11% (range: 0%, 0.35%) with a single outlier slice of 2.06%. For the three patient bCT reconstructed images, the correction increased the contrast by a mean of 25% (range: 20%, 30%), and reduced the cupping artifact. The mean CNR increased by 0.32 after scatter correction, which was not found to be significant (95% confidence interval: [-0.01, 0.65], p = 0.059). The time required to correct the scatter in a single bCT projection was 0.2 s on an NVIDIA GeForce GTX 1080 GPU. CONCLUSION The developed DL model could accurately estimate scatter in bCT projection images and could enhance contrast and correct for cupping artifact in reconstructed patient images without significantly affecting the CNR. The time required for correction would allow its use in daily clinical practice, and the reported accuracy will potentially allow quantitative reconstructions.
Collapse
Affiliation(s)
- Juan J Pautasso
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marco Caballo
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mikhail Mikerov
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - John M Boone
- Department of Radiology, University of California Davis, Sacramento, California, USA.,Department of Biomedical Engineering, University of California Davis, Sacramento, California, USA
| | - Koen Michielsen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ioannis Sechopoulos
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands.,Dutch Expert Centre for Screening (LRCB), Nijmegen, The Netherlands.,Technical Medical Centre, University of Twente, Enschede, The Netherlands
| |
Collapse
|
6
|
Physical and digital phantoms for 2D and 3D x-ray breast imaging: Review on the state-of-the-art and future prospects. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Mettivier G, Sarno A, Varallo A, Russo P. Attenuation coefficient in the energy range 14–36 keV of 3D printing materials for physical breast phantoms. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac8966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/12/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. To measure the monoenergetic x-ray linear attenuation coefficient, μ, of fused deposition modeling (FDM) colored 3D printing materials (ABS, PLAwhite, PLAorange, PET and NYLON), used as adipose, glandular or skin tissue substitutes for manufacturing physical breast phantoms. Approach. Attenuation data (at 14, 18, 20, 24, 28, 30 and 36 keV) were acquired at Elettra synchrotron radiation facility, with step-wedge objects, using the Lambert–Beer law and a CCD imaging detector. Test objects were 3D printed using the Ultimaker 3 FDM printer. PMMA, Nylon-6 and high-density polyethylene step objects were also investigated for the validation of the proposed methodology. Printing uniformity was assessed via monoenergetic and polyenergetic imaging (32 kV, W/Rh). Main results. Maximum absolute deviation of μ for PMMA, Nylon-6 and HD-PE was 5.0%, with reference to literature data. For ABS and NYLON, μ differed by less than 6.1% and 7.1% from that of adipose tissue, respectively; for PET and PLAorange the difference was less than 11.3% and 6.3% from glandular tissue, respectively. PLAorange is a good substitute of skin (differences from −9.4% to +1.2%). Hence, ABS and NYLON filaments are suitable adipose tissue substitutes, while PET and PLAorange mimick the glandular tissue. PLAwhite could be printed at less than 100% infill density for matching the attenuation of glandular tissue, using the measured density calibration curve. The printing mesh was observed for sample thicknesses less than 60 mm, imaged in the direction normal to the printing layers. Printing dimensional repeatability and reproducibility was less 1%. Significance. For the first time an experimental determination was provided of the linear attenuation coefficient of common 3D printing filament materials with estimates of μ at all energies in the range 14–36 keV, for their use in mammography, breast tomosynthesis and breast computed tomography investigations.
Collapse
|
8
|
Shim S, Cester D, Ruby L, Bluethgen C, Marcon M, Berger N, Unkelbach J, Boss A. Fully automated breast segmentation on spiral breast computed tomography images. J Appl Clin Med Phys 2022; 23:e13726. [PMID: 35946049 PMCID: PMC9588268 DOI: 10.1002/acm2.13726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/10/2022] [Accepted: 06/24/2022] [Indexed: 11/10/2022] Open
Abstract
Introduction The quantification of the amount of the glandular tissue and breast density is important to assess breast cancer risk. Novel photon‐counting breast computed tomography (CT) technology has the potential to quantify them. For accurate analysis, a dedicated method to segment the breast components—the adipose and glandular tissue, skin, pectoralis muscle, skinfold section, rib, and implant—is required. We propose a fully automated breast segmentation method for breast CT images. Methods The framework consists of four parts: (1) investigate, (2) segment the components excluding adipose and glandular tissue, (3) assess the breast density, and (4) iteratively segment the glandular tissue according to the estimated density. For the method, adapted seeded watershed and region growing algorithm were dedicatedly developed for the breast CT images and optimized on 68 breast images. The segmentation performance was qualitatively (five‐point Likert scale) and quantitatively (Dice similarity coefficient [DSC] and difference coefficient [DC]) demonstrated according to human reading by experienced radiologists. Results The performance evaluation on each component and overall segmentation for 17 breast CT images resulted in DSCs ranging 0.90–0.97 and in DCs 0.01–0.08. The readers rated 4.5–4.8 (5 highest score) with an excellent inter‐reader agreement. The breast density varied by 3.7%–7.1% when including mis‐segmented muscle or skin. Conclusion The automatic segmentation results coincided with the human expert's reading. The accurate segmentation is important to avoid the significant bias in breast density analysis. Our method enables accurate quantification of the breast density and amount of the glandular tissue that is directly related to breast cancer risk.
Collapse
Affiliation(s)
- Sojin Shim
- Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, Zurich, Switzerland
| | - Davide Cester
- Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, Zurich, Switzerland
| | - Lisa Ruby
- Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, Zurich, Switzerland
| | - Christian Bluethgen
- Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, Zurich, Switzerland
| | - Magda Marcon
- Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, Zurich, Switzerland
| | - Nicole Berger
- Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, Zurich, Switzerland
| | - Jan Unkelbach
- Department of Radiation Oncology, University Hospital of Zurich, Zurich, Switzerland
| | - Andreas Boss
- Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Caballo M, Rabin C, Fedon C, Rodríguez-Ruiz A, Diaz O, Boone JM, Dance DR, Sechopoulos I. Patient-derived heterogeneous breast phantoms for advanced dosimetry in mammography and tomosynthesis. Med Phys 2022; 49:5423-5438. [PMID: 35635844 PMCID: PMC9546119 DOI: 10.1002/mp.15785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/26/2022] [Accepted: 05/24/2022] [Indexed: 12/03/2022] Open
Abstract
Background Understanding the magnitude and variability of the radiation dose absorbed by the breast fibroglandular tissue during mammography and digital breast tomosynthesis (DBT) is of paramount importance to assess risks versus benefits. Although homogeneous breast models have been proposed and used for decades for this purpose, they do not accurately reflect the actual heterogeneous distribution of the fibroglandular tissue in the breast, leading to biases in the estimation of dose from these modalities. Purpose To develop and validate a method to generate patient‐derived, heterogeneous digital breast phantoms for breast dosimetry in mammography and DBT. Methods The proposed phantoms were developed starting from patient‐based models of compressed breasts, generated for multiple thicknesses and representing the two standard views acquired in mammography and DBT, that is, cranio‐caudal (CC) and medio‐lateral‐oblique (MLO). Internally, the breast phantoms were defined as consisting of an adipose/fibroglandular tissue mixture, with a nonspatially uniform relative concentration. The parenchyma distributions were obtained from a previously described model based on patient breast computed tomography data that underwent simulated compression. Following these distributions, phantoms with any glandular fraction (1%–100%) and breast thickness (12–125 mm) can be generated, for both views. The phantoms were validated, in terms of their accuracy for average normalized glandular dose (DgN) estimation across samples of patient breasts, using 88 patient‐specific phantoms involving actual patient distribution of the fibroglandular tissue in the breast, and compared to that obtained using a homogeneous model similar to those currently used for breast dosimetry. Results The average DgN estimated for the proposed phantoms was concordant with that absorbed by the patient‐specific phantoms to within 5% (CC) and 4% (MLO). These DgN estimates were over 30% lower than those estimated with the homogeneous models, which overestimated the average DgN by 43% (CC), and 32% (MLO) compared to the patient‐specific phantoms. Conclusions The developed phantoms can be used for dosimetry simulations to improve the accuracy of dose estimates in mammography and DBT.
Collapse
Affiliation(s)
- Marco Caballo
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Carolina Rabin
- Instituto de Física, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11600, Uruguay
| | - Christian Fedon
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Alejandro Rodríguez-Ruiz
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands.,epartment of Image Guided Therapy Systems, Philips Healthcare, Veenpluis 6, 5684 PC Best, the Netherlands
| | - Oliver Diaz
- Department of Mathematics and Computer Science, University of Barcelona, Spain
| | - John M Boone
- Department of Radiology and Biomedical Engineering, University of California Davis Health, 4860 "Y" Street, suite 3100 Ellison building, Sacramento, CA, 95817, USA
| | - David R Dance
- National Co-ordinating Centre for the Physics of Mammography (NCCPM), Royal Surrey County Hospital, Department of Physics, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Ioannis Sechopoulos
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands.,Dutch Expert Centre for Screening (LRCB), Wijchenseweg 101, 6538 SW, Nijmegen, The Netherlands.,Technical Medicine Centre, University of Twente, Hallenweg 5, 7522 NH, Enschede, The Netherlands
| |
Collapse
|
10
|
Błajda J, Barnaś E, Kucab A. Application of Personalized Education in the Mobile Medical App for Breast Self-Examination. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4482. [PMID: 35457349 PMCID: PMC9032731 DOI: 10.3390/ijerph19084482] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 12/15/2022]
Abstract
Introduction. Mobile apps are considered intelligent tools useful in various areas of public health. The social dimension of breast cancer and the current epidemic situation require tools that may increase knowledge and improve the skills in the field of breast self-examination. The study aims to assess the use of personalized education based on algorithms with conditions in the mobile medical app for breast self-examination. Materials and methods. In total, 500 women from the Podkarpackie Province were enrolled in the study, which was a representative group for the inhabitants of this province. The subjects were randomly divided into two groups (group I: the study group including 250 people; group II: the controls of 250 people). The study group was subjected to intervention, which was personalized education on breast cancer. The method was a proprietary mobile medical app based on algorithms with conditions. The study was carried out from March 2018 to February 2019. Results. The majority of women, 77.8% (N = 389), were under 30 years of age. Only a small amount of the breast area was marked in the tactile test in both groups. In the study group, the average number of selected points was 14.86 (7.43% of the area to be examined), while in the control group it amounted to 9.14 (4.57%). The area most commonly examined in Test I in both groups was the central area of the mammary gland with the nipple. After the intervention in Test II, women from the study group marked a significantly greater area in the tactile test than women from the control group (χ2 = 99.733; df = 6; p < 0.0001). The mean result in the study group was 22.10, while in the control group it amounted to 9.10. It was found that the breast area marked in both tests depended solely on the women’s knowledge about breast cancer (p < 0.001). It was also found that the higher the risk of developing breast cancer, the more points in Test I were indicated by the women in the tactile test (p = 0.0122). Conclusions. Educational mobile medical apps for breast cancer prevention may help to deal with breast cancer, which is an important public health issue. It is also important to broaden the possibilities of medical apps for breast self-examination with elements verifying the skills of the three-stage compression of the examined breast.
Collapse
Affiliation(s)
- Joanna Błajda
- Institute of Health Sciences, Medical College of University of Rzeszów, Kopisto 2a, 35-959 Rzeszow, Poland; (E.B.); (A.K.)
| | | | | |
Collapse
|
11
|
Xie X, Song Y, Ye F, Yan H, Wang S, Zhao X, Dai J. Prior information guided auto-contouring of breast gland for deformable image registration in postoperative breast cancer radiotherapy. Quant Imaging Med Surg 2021; 11:4721-4730. [PMID: 34888184 DOI: 10.21037/qims-20-1141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/04/2021] [Indexed: 12/24/2022]
Abstract
Background Contouring of breast gland in planning CT is important to postoperative radiotherapy of patients after breast conserving surgery (BCS). However, the contouring task is difficult because of the poorer contrast of breast gland in planning CT. To improve its efficiency and accuracy, prior information was introduced in a 3D U-Net model to predict the contour of breast gland automatically. Methods The preoperative CT was first aligned to the planning CT via affine registration. The resulting transform was then applied to the contour of breast gland in preoperative CT, and the corresponding contour in planning CT was obtained. This transformed contour was a preliminary estimation of breast gland in planning CT and was used as prior information in a 3D U-Net model to obtain a more accurate contour. For evaluation, the dice similarity coefficient (DSC) and Hausdorff distance (HD) were used to assess the deep learning (DL) model's prediction accuracy. Results The average DSC and HD of the prediction model were 0.775±0.065 and 44.979±20.565 for breast gland without the input of prior information, while the average values were 0.830±0.038 and 17.896±5.737 with the input of prior information (0.775 vs. 0.830, P=0.0014<0.05; 44.979 vs. 17.896, P=0.002<0.05). Conclusions The prediction accuracy was increased significantly with the introduction of prior information, which provided valuable geometrical distribution of target for model training. This method provides an effective way to identify low-contrast targets from surrounding tissues in CT and will be useful in other image modalities.
Collapse
Affiliation(s)
- Xin Xie
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuchun Song
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feng Ye
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Yan
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shulian Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinming Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianrong Dai
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Liu A, Yin L, Ma Y, Han P, Wu Y, Wu Y, Ye Z. Quantitative breast density measurement based on three-dimensional images: a study on cone-beam breast computed tomography. Acta Radiol 2021; 63:1023-1031. [PMID: 34259021 DOI: 10.1177/02841851211027386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Breast density is an independent predictor of breast cancer risk. Quantitative volumetric breast density (QVBD) is expected to provide more information on the prediction of breast cancer risk. PURPOSE To evaluate the reliability of QVBD measurements based on cone-beam breast computed tomography (CBBCT) images. MATERIAL AND METHODS A total of 216 breasts were used to evaluate the stability of QVBD measurements based on CBBCT images and the correlations between this volumetric measurement and visual and area-based measurement methods. The intra- and inter-observer consistency of QVBD measurements were compared. Visual breast density (VBD) was evaluated with Breast Imaging Reporting and Data System (BI-RADS) standard on CBBCT images. The correlation between QVBD and VBD was evaluated by Spearman correlation coefficient. Receiver operating characteristic (ROC) curve was used to assess the sensitivity and specificity of the volumetric method in distinguishing dense and non-dense breasts. The correlation between QVBD and quantitative area-based breast density (QABD) was determined with Pearson correlation coefficient. Then, the breast volume measured with CBBCT images was compared with the breast specimen obtained during nipple-sparing mastectomy (NSM) by Pearson correlation coefficient and linear regression. RESULTS Excellent intra- and inter-observer consistency was found from QVBD measurements. The volumetric method distinguished dense and non-dense breasts at a cutoff value of 9.5%, with 94.5% sensitivity and 77.1% specificity. Positive correlations were found between QVBD and QABD (r=0.890; P<0.001) and between the volume measured with CBBCT images and Archimedes method (r=0.969; P<0.001). CONCLUSION CBBCT images can evaluate breast density reliably on a continuous scale.
Collapse
Affiliation(s)
- Aidi Liu
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, PR China
| | - Lu Yin
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, PR China
| | - Yue Ma
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, PR China
| | - Peng Han
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, PR China
| | - Yalin Wu
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, PR China
| | - Yaopan Wu
- Department of Radiology, Sun Yat-sen University Cancer Prevention and Treatment Center, Guangzhou, Guangdong, PR China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, PR China
| |
Collapse
|
13
|
Massera RT, Tomal A. Breast glandularity and mean glandular dose assessment using a deep learning framework: Virtual patients study. Phys Med 2021; 83:264-277. [PMID: 33984580 DOI: 10.1016/j.ejmp.2021.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 01/16/2023] Open
Abstract
PURPOSE Breast dosimetry in mammography is an important aspect of radioprotection since women are exposed periodically to ionizing radiation due to breast cancer screening programs. Mean glandular dose (MGD) is the standard quantity employed for the establishment of dose reference levels in retrospective population studies. However, MGD calculations requires breast glandularity estimation. This work proposes a deep learning framework for volume glandular fraction (VGF) estimations based on mammography images, which in turn are converted to glandularity values for MGD calculations. METHODS 208 virtual breast phantoms were generated and compressed computationally. The mammography images were obtained with Monte Carlo simulations (MC-GPU code) and a ray-tracing algorithm was employed for labeling the training data. The architectures of the neural networks are based on the XNet and multilayer perceptron, adapted for each task. The network predictions were compared with the ground truth using the coefficient of determination (r2). RESULTS The results have shown a good agreement for inner breast segmentation (r2 = 0.999), breast volume prediction (r2 = 0.982) and VGF prediction (r2 = 0.935). Moreover, the DgN coefficients using the predicted VGF for the virtual population differ on average 1.3% from the ground truth values. Afterwards with the obtained DgN coefficients, the MGD values were estimated from exposure factors extracted from the DICOM header of a clinical cohort, with median(75 percentile) values of 1.91(2.45) mGy. CONCLUSION We successfully implemented a deep learning framework for VGF and MGD calculations for virtual breast phantoms.
Collapse
Affiliation(s)
- Rodrigo T Massera
- Institute of Physics "Gleb Wataghin", University of Campinas, Campinas, Brazil
| | - Alessandra Tomal
- Institute of Physics "Gleb Wataghin", University of Campinas, Campinas, Brazil.
| |
Collapse
|
14
|
Teuwen J, Moriakov N, Fedon C, Caballo M, Reiser I, Bakic P, García E, Diaz O, Michielsen K, Sechopoulos I. Deep learning reconstruction of digital breast tomosynthesis images for accurate breast density and patient-specific radiation dose estimation. Med Image Anal 2021; 71:102061. [PMID: 33910108 DOI: 10.1016/j.media.2021.102061] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022]
Abstract
The two-dimensional nature of mammography makes estimation of the overall breast density challenging, and estimation of the true patient-specific radiation dose impossible. Digital breast tomosynthesis (DBT), a pseudo-3D technique, is now commonly used in breast cancer screening and diagnostics. Still, the severely limited 3rd dimension information in DBT has not been used, until now, to estimate the true breast density or the patient-specific dose. This study proposes a reconstruction algorithm for DBT based on deep learning specifically optimized for these tasks. The algorithm, which we name DBToR, is based on unrolling a proximal-dual optimization method. The proximal operators are replaced with convolutional neural networks and prior knowledge is included in the model. This extends previous work on a deep learning-based reconstruction model by providing both the primal and the dual blocks with breast thickness information, which is available in DBT. Training and testing of the model were performed using virtual patient phantoms from two different sources. Reconstruction performance, and accuracy in estimation of breast density and radiation dose, were estimated, showing high accuracy (density <±3%; dose <±20%) without bias, significantly improving on the current state-of-the-art. This work also lays the groundwork for developing a deep learning-based reconstruction algorithm for the task of image interpretation by radiologists.
Collapse
Affiliation(s)
- Jonas Teuwen
- Department of Medical Imaging, Radboud University Medical Center, the Netherlands; Department of Radiation Oncology, Netherlands Cancer Institute, the Netherlands
| | - Nikita Moriakov
- Department of Medical Imaging, Radboud University Medical Center, the Netherlands; Department of Radiation Oncology, Netherlands Cancer Institute, the Netherlands
| | - Christian Fedon
- Department of Medical Imaging, Radboud University Medical Center, the Netherlands
| | - Marco Caballo
- Department of Medical Imaging, Radboud University Medical Center, the Netherlands
| | - Ingrid Reiser
- Department of Radiology, The University of Chicago, USA
| | - Pedrag Bakic
- Department of Radiology, University of Pennsylvania, USA; Department of Translational Medicine, Lund University, Sweden
| | - Eloy García
- Vall d'Hebron Institute of Oncology, VHIO, Spain
| | - Oliver Diaz
- Department of Mathematics and Computer Science, University of Barcelona, Spain
| | - Koen Michielsen
- Department of Medical Imaging, Radboud University Medical Center, the Netherlands
| | - Ioannis Sechopoulos
- Department of Medical Imaging, Radboud University Medical Center, the Netherlands; Dutch Expert Centre for Screening (LRCB), the Netherlands.
| |
Collapse
|
15
|
Sarno A, Mettivier G, di Franco F, Varallo A, Bliznakova K, Hernandez AM, Boone JM, Russo P. Dataset of patient-derived digital breast phantoms for in silico studies in breast computed tomography, digital breast tomosynthesis, and digital mammography. Med Phys 2021; 48:2682-2693. [PMID: 33683711 DOI: 10.1002/mp.14826] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/22/2021] [Accepted: 02/28/2021] [Indexed: 01/10/2023] Open
Abstract
PURPOSE To present a dataset of computational digital breast phantoms derived from high-resolution three-dimensional (3D) clinical breast images for the use in virtual clinical trials in two-dimensional (2D) and 3D x-ray breast imaging. ACQUISITION AND VALIDATION METHODS Uncompressed computational breast phantoms for investigations in dedicated breast CT (BCT) were derived from 150 clinical 3D breast images acquired via a BCT scanner at UC Davis (California, USA). Each image voxel was classified in one out of the four main materials presented in the field of view: fibroglandular tissue, adipose tissue, skin tissue, and air. For the image classification, a semi-automatic software was developed. The semi-automatic classification was compared via manual glandular classification performed by two researchers. A total of 60 compressed computational phantoms for virtual clinical trials in digital mammography (DM) and digital breast tomosynthesis (DBT) were obtained from the corresponding uncompressed phantoms via a software algorithm simulating the compression and the elastic deformation of the breast, using the tissue's elastic coefficient. This process was evaluated in terms of glandular fraction modification introduced by the compression procedure. The generated cohort of 150 uncompressed computational breast phantoms presented a mean value of the glandular fraction by mass of 12.3%; the average diameter of the breast evaluated at the center of mass was 105 mm. Despite the slight differences between the two manual segmentations, the resulting glandular tissue segmentation did not consistently differ from that obtained via the semi-automatic classification. The difference between the glandular fraction by mass before and after the compression was 2.1% on average. The 60 compressed phantoms presented an average glandular fraction by mass of 12.1% and an average compressed thickness of 61 mm. DATA FORMAT AND ACCESS The generated digital breast phantoms are stored in DICOM files. Image voxels can present one out of four values representing the different classified materials: 0 for the air, 1 for the adipose tissue, 2 for the glandular tissue, and 3 for the skin tissue. The generated computational phantoms datasets were stored in the Zenodo public repository for research purposes (http://doi.org/10.5281/zenodo.4529852, http://doi.org/10.5281/zenodo.4515360). POTENTIAL APPLICATIONS The dataset developed within the INFN AGATA project will be used for developing a platform for virtual clinical trials in x-ray breast imaging and dosimetry. In addition, they will represent a valid support for introducing new breast models for dose estimates in 2D and 3D x-ray breast imaging and as models for manufacturing anthropomorphic physical phantoms.
Collapse
Affiliation(s)
| | - Giovanni Mettivier
- INFN Sezione di Napoli, Naples, Italy.,Dipartimento di Fisica "Ettore Pancini", Università di Napoli Federico II, Naples, Italy
| | - Francesca di Franco
- INFN Sezione di Napoli, Naples, Italy.,Dipartimento di Fisica "Ettore Pancini", Università di Napoli Federico II, Naples, Italy.,Léon Bérard Cancer Center, University of Lyon & CREATiS, University of Lyon, CNRS, Lyon, France
| | - Antonio Varallo
- Dipartimento di Fisica "Ettore Pancini", Università di Napoli Federico II, Naples, Italy
| | - Kristina Bliznakova
- Department of Medical Equipment, Electronic and Information Technologies in Healthcare, Medical University of Varna, Varna, Bulgaria
| | - Andrew M Hernandez
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - John M Boone
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | - Paolo Russo
- INFN Sezione di Napoli, Naples, Italy.,Dipartimento di Fisica "Ettore Pancini", Università di Napoli Federico II, Naples, Italy
| |
Collapse
|
16
|
Fedon C, Caballo M, García E, Diaz O, Boone JM, Dance DR, Sechopoulos I. Fibroglandular tissue distribution in the breast during mammography and tomosynthesis based on breast CT data: A patient-based characterization of the breast parenchyma. Med Phys 2021; 48:1436-1447. [PMID: 33452822 PMCID: PMC7986202 DOI: 10.1002/mp.14716] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/30/2020] [Accepted: 01/07/2021] [Indexed: 01/19/2023] Open
Abstract
PURPOSE To develop a patient-based breast density model by characterizing the fibroglandular tissue distribution in patient breasts during compression for mammography and digital breast tomosynthesis (DBT) imaging. METHODS In this prospective study, 88 breast images were acquired using a dedicated breast computed tomography (CT) system. The breasts in the images were classified into their three main tissue components and mechanically compressed to mimic the positioning for mammographic acquisition of the craniocaudal (CC) and mediolateral oblique (MLO) views. The resulting fibroglandular tissue distribution during these compressions was characterized by dividing the compressed breast volume into small regions, for which the median and the 25th and 75th percentile values of local fibroglandular density were obtained in the axial, coronal, and sagittal directions. The best fitting function, based on the likelihood method, for the median distribution was obtained in each direction. RESULTS The fibroglandular tissue tends to concentrate toward the caudal (about 15% below the midline of the breast) and anterior regions of the breast, in both the CC- and MLO-view compressions. A symmetrical distribution was found in the MLO direction in the case of the CC-view compression, while a shift of about 12% toward the lateral direction was found in the MLO-view case. CONCLUSIONS The location of the fibroglandular tissue in the breast under compression during mammography and DBT image acquisition is a major factor for determining the actual glandular dose imparted during these examinations. A more realistic model of the parenchyma in the compressed breast, based on patient image data, was developed. This improved model more accurately reflects the fibroglandular tissue spatial distribution that can be found in patient breasts, and therefore might aid in future studies involving radiation dose and/or cancer development risk estimation.
Collapse
Affiliation(s)
- Christian Fedon
- Department of Medical ImagingRadboud University Medical Center6500 HB Geert Grooteplein‐ZuidNijmegenThe Netherlands
| | - Marco Caballo
- Department of Medical ImagingRadboud University Medical Center6500 HB Geert Grooteplein‐ZuidNijmegenThe Netherlands
| | - Eloy García
- Vall d’ Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Oliver Diaz
- Department of Mathematics and Computer ScienceUniversity of BarcelonaBarcelonaSpain
- CIMDParc Taulí Hospital UniversitariInstitut d’Investigació i Innovació Parc TaulíSabadellSpain
| | - John M. Boone
- Department of Radiology and Biomedical EngineeringUniversity of California Davis Health4860 “Y” Street, suite 3100 Ellison buildingSacramentoCA95817USA
| | - David R. Dance
- National Co‐ordinating Centre for the Physics of MammographyNCCPMRoyal Surrey County HospitalGuildfordGU2 7XHUK
- Department of PhysicsUniversity of SurreyGuildfordGU2 7XHUK
| | - Ioannis Sechopoulos
- Department of Medical ImagingRadboud University Medical Center6500 HB Geert Grooteplein‐ZuidNijmegenThe Netherlands
- Dutch Expert Centre for Screening (LRCB)PO Box 6873Nijmegen6503 GJThe Netherlands
| |
Collapse
|
17
|
Luo YH, Xi IL, Wang R, Abdallah HO, Wu J, Vance AZ, Chang K, Kohi M, Jones L, Reddy S, Zhang ZS, Bai HX, Shlansky-Goldberg R. Deep Learning Based on MR Imaging for Predicting Outcome of Uterine Fibroid Embolization. J Vasc Interv Radiol 2020; 31:1010-1017.e3. [DOI: 10.1016/j.jvir.2019.11.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/23/2019] [Accepted: 11/27/2019] [Indexed: 01/09/2023] Open
|
18
|
Hernandez AM, Abbey CK, Ghazi P, Burkett G, Boone JM. Effects of kV, filtration, dose, and object size on soft tissue and iodine contrast in dedicated breast CT. Med Phys 2020; 47:2869-2880. [PMID: 32233091 DOI: 10.1002/mp.14159] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/30/2019] [Accepted: 03/13/2020] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Clinical use of dedicated breast computed tomography (bCT) requires relatively short scan times necessitating systems with high frame rates. This in turn impacts the x-ray tube operating range. We characterize the effects of tube voltage, beam filtration, dose, and object size on contrast and noise properties related to soft tissue and iodine contrast agents as a way to optimize imaging protocols for soft tissue and iodine contrast at high frame rates. METHODS This study design uses the signal-difference-to-noise ratio (SDNR), noise-equivalent quanta (NEQ), and detectability (d´) as measures of imaging performance for a prototype breast CT scanner that utilizes a pulsed x-ray tube (with a 4 ms pulse width) at 43.5 fps acquisition rate. We assess a range of kV, filtration, breast phantom size, and mean glandular dose (MGD). Performance measures are estimated from images of adipose-equivalent breast phantoms machined to have a representative size and shape of small, medium, and large breasts. Water (glandular tissue equivalent) and iodine contrast (5 mg/ml) were used to fill two cylindrical wells in the phantoms. RESULTS Air kerma levels required for obtaining an MGD of 6 mGy ranged from 7.1 to 9.1 mGy and are reported across all kV, filtration, and breast phantom sizes. However, at 50 kV, the thick filters (0.3 mm of Cu or Gd) exceeded the maximum available mA of the x-ray generator, and hence, these conditions were excluded from subsequent analysis. There was a strong positive association between measurements of SDNR and d' (R2 > 0.97) within the range of parameters investigated in this work. A significant decrease in soft tissue SDNR was observed for increasing phantom size and increasing kV with a maximum SDNR at 50 kV with 0.2 mm Cu or 0.2 mm Gd filtration. For iodine contrast SDNR, a significant decrease was observed with increasing phantom size, but a decrease in SDNR for increasing kV was only observed for 70 kV (50 and 60 kV were not significantly different). Thicker Gd filtration (0.3 mm Gd) resulted in a significant increase in iodine SDNR and decrease in soft tissue SDNR but requires significantly more tube current to deliver the same MGD. CONCLUSIONS The choice of 60 kV with 0.2 mm Gd filtration provides a good trade-off for maximizing both soft tissue and iodine contrast. This scanning technique takes advantage of the ~50 keV Gd k-edge to produce contrast and can be achieved within operating range of the x-ray generator used in this work. Imaging at 60 kV allows for a greater range in dose delivered to the large breast sizes when uniform image quality is desired across all breast sizes. While imaging performance metrics (i.e., detectability index and SDNR) were shown to be strongly correlated, the methodologies presented in this work for the estimation of NEQ (and subsequently d') provides a meaningful description of the spatial resolution and noise characteristics of this prototype bCT system across a range of beam quality, dose, and object sizes.
Collapse
Affiliation(s)
- Andrew M Hernandez
- Department of Radiology, University of California Davis, Sacramento, 95817, CA, USA
| | - Craig K Abbey
- Department of Psychological & Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | | | - George Burkett
- Department of Radiology, University of California Davis, Sacramento, 95817, CA, USA
| | - John M Boone
- Department of Radiology, University of California Davis, Sacramento, 95817, CA, USA.,Department of Biomedical Engineering, University of California Davis, Sacramento, CA, 95817, USA
| |
Collapse
|
19
|
Fedon C, Rabin C, Caballo M, Diaz O, García E, Rodríguez-Ruiz A, González-Sprinberg GA, Sechopoulos I. Monte Carlo study on optimal breast voxel resolution for dosimetry estimates in digital breast tomosynthesis. Phys Med Biol 2018; 64:015003. [PMID: 30524034 DOI: 10.1088/1361-6560/aaf453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Digital breast tomosynthesis (DBT) is currently used as an adjunct technique to digital mammography (DM) for breast cancer imaging. Being a quasi-3D image, DBT is capable of providing depth information on the internal breast glandular tissue distribution, which may be enough to obtain an accurate patient-specific radiation dose estimate. However, for this, information regarding the location of the glandular tissue, especially in the vertical direction (i.e. x-ray source to detector), is needed. Therefore, a dedicated reconstruction algorithm designed to localize the amount of glandular tissue, rather than for optimal diagnostic value, could be desirable. Such a reconstruction algorithm, or, alternatively, a reconstructed DBT image classification algorithm, could benefit from the use of larger voxels, rather than the small sizes typically used for the diagnostic task. In addition, the Monte Carlo (MC) based dose estimates would be accelerated by the representation of the breast tissue with fewer and larger voxels. Therefore, in this study we investigate the optimal DBT reconstructed voxel size that allows accurate dose evaluations (i.e. within 5%) using a validated Geant4-based MC code. For this, sixty patient-based breast models, previously acquired using dedicated breast computed tomography (BCT) images, were deformed to reproduce the breast during compression under a given DBT scenario. Two re-binning approaches were applied to the compressed phantoms, leading to isotropic and anisotropic voxels of different volumes. MC DBT simulations were performed reproducing the acquisition geometry of a SIEMENS Mammomat Inspiration system. Results show that isotropic cubic voxels of 2.73 mm size provide a dose estimate accurate to within 5% for 51/60 patients, while a comparable accuracy is obtained with anisotropic voxels of dimension 5.46 × 5.46 × 2.73 mm3. In addition, the MC simulation time is reduced by more than half in respect to the original voxel dimension of 0.273 × 0.273 × 0.273 mm3 when either of the proposed re-binning approaches is used. No significant differences in the effect of binning on the dose estimates are observed (Wilcoxon-Mann-Whitney test, p-value > 0.4) between the 0° the 23° (i.e. the widest angular range) exposure.
Collapse
Affiliation(s)
- Christian Fedon
- Department of Radiology and Nuclear Medicine, Radboud University Medical Centre, Geert Grooteplein 10, 6525 GA, Nijmgen, The Netherlands. These authors contributed equally to this work
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Caballo M, Fedon C, Brombal L, Mann R, Longo R, Sechopoulos I. Development of 3D patient-based super-resolution digital breast phantoms using machine learning. Phys Med Biol 2018; 63:225017. [PMID: 30418943 DOI: 10.1088/1361-6560/aae78d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Digital phantoms are important tools for optimization and evaluation of x-ray imaging systems, and should ideally reflect the 3D structure of human anatomy and its potential variability. In addition, they need to include a good level of detail at a high enough spatial resolution to accurately model the continuous nature of the human anatomy. A pipeline to increase the spatial resolution of patient-based digital breast phantoms that can be used for computer simulations of breast imaging is proposed. Given a tomographic breast image of finite resolution, the proposed methods can generate a phantom and increase its resolution at will, not only simply through super-sampling, but also by generating additional random glandular details to account for glandular edges and strands to compensate for those that may have not been detected in the original image due to the limited spatial resolution of the imaging system used. The proposed algorithms use supervised learning to predict the loss in glandularity due to limited resolution, and then to realistically recover this loss by learning the mapping between low and high resolution images. They were trained on high-resolution synchrotron images (detector pixel size 60 μm) reconstructed at seven voxel dimensions (60 μm-480 μm), and applied to patient images acquired with a clinical breast CT system (detector pixel size 194 μm) to generate super-resolution phantoms (voxel sizes 68 μm). Several evaluations were made to assess the appropriateness of the developed methods, both with the synchrotron (relative prediction error 0.010 ± 0.004, recovering accuracy 0.95 ± 0.04), and with the clinical images (average glandularity error at 194 μm: 0.15% ± 0.12%). Finally, a breast radiologist assessed the realism of the developed phantoms by blindly comparing original and phantom images, resulting in not being able to distinguish the real from the phantom images. In conclusion, the proposed method can generate super-resolution phantoms from tomographic breast patient images that can be used for future computer simulations for optimization of new breast imaging technologies.
Collapse
Affiliation(s)
- Marco Caballo
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, Netherlands
| | | | | | | | | | | |
Collapse
|
21
|
Caballo M, Mann R, Sechopoulos I. Patient-based 4D digital breast phantom for perfusion contrast-enhanced breast CT imaging. Med Phys 2018; 45:4448-4460. [PMID: 30151857 PMCID: PMC6181787 DOI: 10.1002/mp.13156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/17/2018] [Accepted: 08/19/2018] [Indexed: 11/06/2022] Open
Abstract
Purpose The purpose of this study was to develop a realistic patient‐based 4D digital breast phantom including time‐varying contrast enhancement for simulation of dedicated breast CT perfusion imaging. Methods A 3D static phantom is first created by segmenting a breast CT image from a healthy patient into skin, fibroglandular tissue, adipose tissue, and vasculature. For the creation of abnormal cases, a breast lesion model was developed and can be added to the phantom. After defining the necessary perfusion parameters for each tissue (e.g., arterial input function for vasculature, blood volume and blood flow for the other normal tissues) based on contrast‐enhanced dynamic breast MRI data, the corresponding time‐enhancement curves are computed for each voxel in the phantom, according to tissue type. These curves are calculated by convolution between the arterial input function and a shifted exponential function. This exponential depends on the perfusion parameters associated with each tissue voxel, and, to incorporate normal biological variability, a uniform random distribution is used to vary the perfusion parameters on a voxel‐basis. Finally, a 4D array is produced by sampling the continuous time‐enhancement curves at the desired sampling rate. Beside modeling different enhancement dynamics according to the given input perfusion parameters, the phantom also includes the possibility to realistically simulate different spatial enhancement patterns for the breast parenchyma, taking into account the arterial sources supplying the breast. Finally, different patterns of contrast medium uptake can also be simulated for the tumor models (homogeneous and rim enhancement). Results As an example, a typical 4D phantom has dimensions of 426 × 421 × 260 × 559 (x, y, z, t), with a voxel size of 273 μm and a sampling time of 1 s. The characteristics of the tumor model can be modified at will to evaluate perfusion in different types of breast lesions. Results show the expected enhancement of tissues, consistent with the given input parameters. Moreover, the tumor models evaluated in this work show different enhancement dynamics according to the tumor type (defined by different input perfusion parameters), and also present a higher enhancement compared to the other healthy tissues, as expected. Conclusions The proposed digital phantom can model the breast tissue perfusion during 4D breast CT image acquisition, displaying the different enhancement dynamics that could be found in a real patient breast. This phantom can be used during the development of dynamic contrast‐enhanced dedicated breast CT imaging, for optimization of image acquisition, image reconstruction, and image analysis. This modality could provide functional information of the breast, resulting in detection, diagnosis, and treatment improvements of breast cancer with breast CT.
Collapse
Affiliation(s)
- Marco Caballo
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Ritse Mann
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Ioannis Sechopoulos
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.,Dutch Expert Center for Screening (LRCB), PO Box 6873, 6503 GJ, Nijmegen, The Netherlands
| |
Collapse
|