1
|
Ghaznavi H, Maraghechi B, Zhang H, Zhu T, Laugeman E, Zhang T, Zhao T, Mazur TR, Darafsheh A. Quantitative use of cone-beam computed tomography in proton therapy: challenges and opportunities. Phys Med Biol 2025; 70:09TR01. [PMID: 40269645 DOI: 10.1088/1361-6560/adc86c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 04/01/2025] [Indexed: 04/25/2025]
Abstract
The fundamental goal in radiation therapy (RT) is to simultaneously maximize tumor cell killing and healthy tissue sparing. Reducing uncertainty margins improves normal tissue sparing, but generally requires advanced techniques. Adaptive RT (ART) is a compelling technique that leverages daily imaging and anatomical information to support reduced margins and to optimize plan quality for each treatment fraction. An especially exciting avenue for ART is proton therapy (PT), which aims to combine daily plan re-optimization with the unique advantages provided by protons, including reduced integral dose and near-zero dose deposition distal to the target along the beam direction. A core component for ART is onboard image guidance, and currently two options are available on proton systems, including cone-beam computed tomography (CBCT) and CT-on-rail (CToR) imaging. While CBCT suffers from poorer image quality compared to CToR imaging, CBCT platforms can be more easily integrated with PT systems and thus may support more streamlined adaptive proton therapy (APT). In this review, we present current status of CBCT application to proton therapy dose evaluation and plan adaptation, including progress, challenges and future directions.
Collapse
Affiliation(s)
- Hamid Ghaznavi
- Department of Radiation Oncology, WashU Medicine, St. Louis, MO 63110, United States of America
| | - Borna Maraghechi
- Department of Radiation Oncology, WashU Medicine, St. Louis, MO 63110, United States of America
- Department of Radiation Oncology, City of Hope Cancer Center, Irvine, CA 92618, United States of America
| | - Hailei Zhang
- Department of Radiation Oncology, WashU Medicine, St. Louis, MO 63110, United States of America
| | - Tong Zhu
- Department of Radiation Oncology, WashU Medicine, St. Louis, MO 63110, United States of America
| | - Eric Laugeman
- Department of Radiation Oncology, WashU Medicine, St. Louis, MO 63110, United States of America
| | - Tiezhi Zhang
- Department of Radiation Oncology, WashU Medicine, St. Louis, MO 63110, United States of America
| | - Tianyu Zhao
- Department of Radiation Oncology, WashU Medicine, St. Louis, MO 63110, United States of America
| | - Thomas R Mazur
- Department of Radiation Oncology, WashU Medicine, St. Louis, MO 63110, United States of America
| | - Arash Darafsheh
- Department of Radiation Oncology, WashU Medicine, St. Louis, MO 63110, United States of America
| |
Collapse
|
2
|
Xie K, Gao L, Xi Q, Zhang H, Zhang S, Zhang F, Sun J, Lin T, Sui J, Ni X. New technique and application of truncated CBCT processing in adaptive radiotherapy for breast cancer. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 231:107393. [PMID: 36739623 DOI: 10.1016/j.cmpb.2023.107393] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE A generative adversarial network (TCBCTNet) was proposed to generate synthetic computed tomography (sCT) from truncated low-dose cone-beam computed tomography (CBCT) and planning CT (pCT). The sCT was applied to the dose calculation of radiotherapy for patients with breast cancer. METHODS The low-dose CBCT and pCT images of 80 female thoracic patients were used for training. The CBCT, pCT, and replanning CT (rCT) images of 20 thoracic patients and 20 patients with breast cancer were used for testing. All patients were fixed in the same posture with a vacuum pad. The CBCT images were scanned under the Fast Chest M20 protocol with a 50% reduction in projection frames compared with the standard Chest M20 protocol. Rigid registration was performed between pCT and CBCT, and deformation registration was performed between rCT and CBCT. In the training stage of the TCBCTNet, truncated CBCT images obtained from complete CBCT images by simulation were used. The input of the CBCT→CT generator was truncated CBCT and pCT, and TCBCTNet was applied to patients with breast cancer after training. The accuracy of the sCT was evaluated by anatomy and dosimetry and compared with the generative adversarial network with UNet and ResNet as the generators (named as UnetGAN, ResGAN). RESULTS The three models could improve the image quality of CBCT and reduce the scattering artifacts while preserving the anatomical geometry of CBCT. For the chest test set, TCBCTNet achieved the best mean absolute error (MAE, 21.18±3.76 HU), better than 23.06±3.90 HU in UnetGAN and 22.47±3.57 HU in ResGAN. When applied to patients with breast cancer, TCBCTNet performance decreased, and MAE was 25.34±6.09 HU. Compared with rCT, sCT by TCBCTNet showed consistent dose distribution and subtle absolute dose differences between the target and the organ at risk. The 3D gamma pass rates were 98.98%±0.64% and 99.69%±0.22% at 2 mm/2% and 3 mm/3%, respectively. Ablation experiments confirmed that pCT and content loss played important roles in TCBCTNet. CONCLUSIONS High-quality sCT images could be synthesized from truncated low-dose CBCT and pCT by using the proposed TCBCTNet model. In addition, sCT could be used to accurately calculate the dose distribution for patients with breast cancer.
Collapse
Affiliation(s)
- Kai Xie
- Radiotherapy Department, Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou 213000, China; Jiangsu Province Engineering Research Center of Medical Physics, Changzhou 213000, China
| | - Liugang Gao
- Radiotherapy Department, Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou 213000, China; Jiangsu Province Engineering Research Center of Medical Physics, Changzhou 213000, China
| | - Qianyi Xi
- Center for Medical Physics, Nanjing Medical University, Changzhou 213003, China; Changzhou Key Laboratory of Medical Physics, Changzhou 213000, China
| | - Heng Zhang
- Center for Medical Physics, Nanjing Medical University, Changzhou 213003, China; Changzhou Key Laboratory of Medical Physics, Changzhou 213000, China
| | - Sai Zhang
- Center for Medical Physics, Nanjing Medical University, Changzhou 213003, China; Changzhou Key Laboratory of Medical Physics, Changzhou 213000, China
| | - Fan Zhang
- Center for Medical Physics, Nanjing Medical University, Changzhou 213003, China; Changzhou Key Laboratory of Medical Physics, Changzhou 213000, China
| | - Jiawei Sun
- Radiotherapy Department, Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou 213000, China; Jiangsu Province Engineering Research Center of Medical Physics, Changzhou 213000, China
| | - Tao Lin
- Radiotherapy Department, Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou 213000, China; Jiangsu Province Engineering Research Center of Medical Physics, Changzhou 213000, China
| | - Jianfeng Sui
- Radiotherapy Department, Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou 213000, China; Jiangsu Province Engineering Research Center of Medical Physics, Changzhou 213000, China
| | - Xinye Ni
- Radiotherapy Department, Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou 213000, China; Jiangsu Province Engineering Research Center of Medical Physics, Changzhou 213000, China; Center for Medical Physics, Nanjing Medical University, Changzhou 213003, China; Changzhou Key Laboratory of Medical Physics, Changzhou 213000, China.
| |
Collapse
|
3
|
Trapp P, Maier J, Susenburger M, Sawall S, Kachelrieß M. Empirical scatter correction (ESC): CBCT scatter artifact reduction without prior information. Med Phys 2022; 49:4566-4584. [PMID: 35390181 DOI: 10.1002/mp.15656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The image quality of cone-beam CT (CBCT) scans severely suffers from scattered radiation if no countermeasures are taken. Scatter artifacts may induce cupping and streak artifacts and lead to a reduced image contrast and wrong CT values of the reconstructed volumes. Established software-based approaches for a correction of scattered radiation typically rely on prior knowledge of the CT system, scan parameters, the scanned object, or all of the aforementioned. PURPOSE This study proposes a simple and effective post-processing software-based correction method of scatter artifacts in CBCT scans without specific prior knowledge. METHODS We propose the empirical scatter correction (ESC) which generates scatter-like basis images from each projection image by convolution operations. A linear combination of these basis images is subtracted from the original projection image. The logarithm is taken and an FDK reconstruction is performed. The coefficients needed for the linear combination are determined automatically by a downhill simplex algorithm such that the resulting reconstructed images show no scatter artifacts. We demonstrate the potential of ESC by correcting simulated volumes with Monte Carlo scatter artifacts, a head phantom scan performed on our table-top CBCT, and a pelvis scan from a Varian Edge CBCT scanner. RESULTS ESC is able to improve the image quality of CBCT scans which is shown on the basis of our simulations and on measured data. For a simulated head CT, the CT value difference to the scatter-free reference image was as low as -6 HU after using ESC whereas the uncorrected data deviated by more than -200 HU from the reference data. Simulations of thorax and abdomen CT scans show that although scatter artifacts are not fully removed, anatomical features which were hard to discover prior to the correction become clearly visible and better segmentable with ESC. Similar results are obtained in the phantom measurement where a comparison to a slit scan of our head phantom shows only small differences. The CT values in soft tissue are improved in this measurement, as well. In soft tissue areas with severe scatter artifacts the CT values agree well with those of the slit scan (difference to slit scan: 35 HU corrected, -289 HU uncorrected). Scatter artifacts in measured patient data can also be reduced using the proposed empirical scatter correction. The results are comparable to those achieved with designated correction algorithms installed on the Varian Edge CBCT system. CONCLUSIONS ESC allows to reduce artifacts caused by patient scatter solely based on the projection data. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Philip Trapp
- Division of X-Ray Imaging and Computed Tomography, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Department of Physics and Astronomy, Ruprecht-Karls-University, Heidelberg, 69120, Germany
| | - Joscha Maier
- Division of X-Ray Imaging and Computed Tomography, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Markus Susenburger
- Division of X-Ray Imaging and Computed Tomography, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Department of Physics and Astronomy, Ruprecht-Karls-University, Heidelberg, 69120, Germany
| | - Stefan Sawall
- Division of X-Ray Imaging and Computed Tomography, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Medical Faculty, Ruprecht-Karls-University, Heidelberg, 69120, Germany
| | - Marc Kachelrieß
- Division of X-Ray Imaging and Computed Tomography, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Medical Faculty, Ruprecht-Karls-University, Heidelberg, 69120, Germany
| |
Collapse
|
4
|
Rossi M, Belotti G, Paganelli C, Pella A, Barcellini A, Cerveri P, Baroni G. Image-based shading correction for narrow-FOV truncated pelvic CBCT with deep convolutional neural networks and transfer learning. Med Phys 2021; 48:7112-7126. [PMID: 34636429 PMCID: PMC9297981 DOI: 10.1002/mp.15282] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose: Cone beam computed tomography (CBCT) is a standard solution for in‐room image guidance for radiation therapy. It is used to evaluate and compensate for anatomopathological changes between the dose delivery plan and the fraction delivery day. CBCT is a fast and versatile solution, but it suffers from drawbacks like low contrast and requires proper calibration to derive density values. Although these limitations are even more prominent with in‐room customized CBCT systems, strategies based on deep learning have shown potential in improving image quality. As such, this article presents a method based on a convolutional neural network and a novel two‐step supervised training based on the transfer learning paradigm for shading correction in CBCT volumes with narrow field of view (FOV) acquired with an ad hoc in‐room system. Methods: We designed a U‐Net convolutional neural network, trained on axial slices of corresponding CT/CBCT couples. To improve the generalization capability of the network, we exploited two‐stage learning using two distinct data sets. At first, the network weights were trained using synthetic CBCT scans generated from a public data set, and then only the deepest layers of the network were trained again with real‐world clinical data to fine‐tune the weights. Synthetic data were generated according to real data acquisition parameters. The network takes a single grayscale volume as input and outputs the same volume with corrected shading and improved HU values. Results: Evaluation was carried out with a leave‐one‐out cross‐validation, computed on 18 unique CT/CBCT pairs from six different patients from a real‐world dataset. Comparing original CBCT to CT and improved CBCT to CT, we obtained an average improvement of 6 dB on peak signal‐to‐noise ratio (PSNR), +2% on structural similarity index measure (SSIM). The median interquartile range (IQR) Hounsfield unit (HU) difference between CBCT and CT improved from 161.37 (162.54) HU to 49.41 (66.70) HU. Region of interest (ROI)‐based HU difference was narrowed by 75% in the spongy bone (femoral head), 89% in the bladder, 85% for fat, and 83% for muscle. The improvement in contrast‐to‐noise ratio for these ROIs was about 67%. Conclusions: We demonstrated that shading correction obtaining CT‐compatible data from narrow‐FOV CBCTs acquired with a customized in‐room system is possible. Moreover, the transfer learning approach proved particularly beneficial for such a shading correction approach.
Collapse
Affiliation(s)
- Matteo Rossi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Gabriele Belotti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Andrea Pella
- Bioengineering Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Amelia Barcellini
- Radiation Oncology Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Pietro Cerveri
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Guido Baroni
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy.,Bioengineering Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| |
Collapse
|
5
|
Maier J, Eulig E, Vöth T, Knaup M, Kuntz J, Sawall S, Kachelrieß M. Real-time scatter estimation for medical CT using the deep scatter estimation: Method and robustness analysis with respect to different anatomies, dose levels, tube voltages, and data truncation. Med Phys 2018; 46:238-249. [DOI: 10.1002/mp.13274] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/01/2018] [Accepted: 10/29/2018] [Indexed: 01/02/2023] Open
Affiliation(s)
- Joscha Maier
- German Cancer Research Center (DKFZ); Im Neuenheimer Feld 280 69120 Heidelberg Germany
- Department of Physics and Astronomy; Ruprecht-Karls-University Heidelberg; Im Neuenheimer Feld 226 69120 Heidelberg Germany
| | - Elias Eulig
- German Cancer Research Center (DKFZ); Im Neuenheimer Feld 280 69120 Heidelberg Germany
- Department of Physics and Astronomy; Ruprecht-Karls-University Heidelberg; Im Neuenheimer Feld 226 69120 Heidelberg Germany
| | - Tim Vöth
- German Cancer Research Center (DKFZ); Im Neuenheimer Feld 280 69120 Heidelberg Germany
- Department of Physics and Astronomy; Ruprecht-Karls-University Heidelberg; Im Neuenheimer Feld 226 69120 Heidelberg Germany
| | - Michael Knaup
- German Cancer Research Center (DKFZ); Im Neuenheimer Feld 280 69120 Heidelberg Germany
| | - Jan Kuntz
- German Cancer Research Center (DKFZ); Im Neuenheimer Feld 280 69120 Heidelberg Germany
| | - Stefan Sawall
- German Cancer Research Center (DKFZ); Im Neuenheimer Feld 280 69120 Heidelberg Germany
- Medical Faculty; Ruprecht-Karls-University Heidelberg; Im Neuenheimer Feld 672 69120 Heidelberg Germany
| | - Marc Kachelrieß
- German Cancer Research Center (DKFZ); Im Neuenheimer Feld 280 69120 Heidelberg Germany
- Medical Faculty; Ruprecht-Karls-University Heidelberg; Im Neuenheimer Feld 672 69120 Heidelberg Germany
| |
Collapse
|