1
|
Wilson AJ, Cressey PB, Ghavami N, Carter-Searjeant S, Green M, Kosmas P, Thanou M. Nanomaterials as electromagnetic sensors for tumour detection. Nanomedicine (Lond) 2025; 20:1139-1148. [PMID: 40314206 PMCID: PMC12068346 DOI: 10.1080/17435889.2025.2496130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/17/2025] [Indexed: 05/03/2025] Open
Abstract
AIM Microwave (MW) imaging/sensing is a potential clinical diagnostic technique which exploits differences in the dielectric properties of tissues at MW frequencies. Notably, breast cancer detection has been identified as a key application for this modality; however, inherent contrast in tissue dielectric properties may not always be sufficient to allow imaging/sensing. Nanoparticles could provide the necessary enhancement, due to their effect on the dielectric properties of the target tissue and their ability to accumulate in tumours. This study aims to prepare novel zinc ferrites ZnFe2O4 nanoparticles and investigate their potential as contrast agents for MW imaging/sensing. METHOD Zinc ferrite nanoparticles were synthesized by thermal decomopositon and phase transferred using a co-polymer to improve biocompatibility. Dielectric properties were evaluated using the co-axial probe technique, progressing to ex vivo and in vivo studies in a triple-negative breast cancer xenograft mouse model. RESULTS Tumours regions injected subcutaneously with nanoparticles in vivo showed an increased dielectric constant of up to 49% compared with approximately 3% ex vivo. Significant increases in conductivity were also observed indicating potential application of the particles as MW hyperthermia sensitizers. CONCLUSIONS Crucially, this study presents the first in vivo evaluation of nanoparticles as contrast agents for MW imaging/sensing. Observed increases in the dielectric properties highlight their potential to improve tumour detection using MW technologies.
Collapse
Affiliation(s)
- Annah J. Wilson
- School of Cancer & Pharmaceutical Sciences, King’s CollegeLondon, London, UK
- Department of Engineering, King’s CollegeLondon, London, UK
| | - Paul B. Cressey
- School of Cancer & Pharmaceutical Sciences, King’s CollegeLondon, London, UK
| | - Navid Ghavami
- Department of Engineering, King’s CollegeLondon, London, UK
| | | | - Mark Green
- Department of Physics, King’s CollegeLondon, London, UK
| | | | - Maya Thanou
- School of Cancer & Pharmaceutical Sciences, King’s CollegeLondon, London, UK
| |
Collapse
|
2
|
Patel KD, Keskin-Erdogan Z, Sawadkar P, Nik Sharifulden NSA, Shannon MR, Patel M, Silva LB, Patel R, Chau DYS, Knowles JC, Perriman AW, Kim HW. Oxidative stress modulating nanomaterials and their biochemical roles in nanomedicine. NANOSCALE HORIZONS 2024; 9:1630-1682. [PMID: 39018043 DOI: 10.1039/d4nh00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Many pathological conditions are predominantly associated with oxidative stress, arising from reactive oxygen species (ROS); therefore, the modulation of redox activities has been a key strategy to restore normal tissue functions. Current approaches involve establishing a favorable cellular redox environment through the administration of therapeutic drugs and redox-active nanomaterials (RANs). In particular, RANs not only provide a stable and reliable means of therapeutic delivery but also possess the capacity to finely tune various interconnected components, including radicals, enzymes, proteins, transcription factors, and metabolites. Here, we discuss the roles that engineered RANs play in a spectrum of pathological conditions, such as cancer, neurodegenerative diseases, infections, and inflammation. We visualize the dual functions of RANs as both generator and scavenger of ROS, emphasizing their profound impact on diverse cellular functions. The focus of this review is solely on inorganic redox-active nanomaterials (inorganic RANs). Additionally, we deliberate on the challenges associated with current RANs-based approaches and propose potential research directions for their future clinical translation.
Collapse
Affiliation(s)
- Kapil D Patel
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Zalike Keskin-Erdogan
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
- Department of Chemical Engineering, Imperial College London, Exhibition Rd, South Kensington, SW7 2BX, London, UK
| | - Prasad Sawadkar
- Division of Surgery and Interventional Science, UCL, London, UK
- The Griffin Institute, Northwick Park Institute for Medical Research, Northwick Park and St Mark's Hospitals, London, HA1 3UJ, UK
| | - Nik Syahirah Aliaa Nik Sharifulden
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Mark Robert Shannon
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Women University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Lady Barrios Silva
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Rajkumar Patel
- Energy & Environment Sciences and Engineering (EESE), Integrated Sciences and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdongwahak-ro, Yeonsungu, Incheon 21938, Republic of Korea
| | - David Y S Chau
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Jonathan C Knowles
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Adam W Perriman
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
3
|
Wang S, Chen D, Hong Q, Gui Y, Cao Y, Ren G, Liang Z. Surface functionalization of metal and metal oxide nanoparticles for dispersion and tribological applications – A review. J Mol Liq 2023; 389:122821. [DOI: 10.1016/j.molliq.2023.122821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Sathiyaseelan A, Saravanakumar K, Zhang X, Naveen KV, Wang MH. Ampicillin-resistant bacterial pathogens targeted chitosan nano-drug delivery system (CS-AMP-P-ZnO) for combinational antibacterial treatment. Int J Biol Macromol 2023; 237:124129. [PMID: 36958450 DOI: 10.1016/j.ijbiomac.2023.124129] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/25/2023] [Accepted: 03/18/2023] [Indexed: 03/25/2023]
Abstract
Drug-resistant microorganisms are defeated using combinational drug delivery systems based on biopolymer chitosan (CS) and metal nanoparticles. Hence, PEGylated zinc oxide nanoparticles (P-ZnO NPs) decorated chitosan-based nanoparticles (CS NPs) were prepared to deliver ampicillin (AMP) for improved antibacterial activity. In comparison to ZnO NPs, P-ZnO NPs exhibit less aggregation and more stable rod morphologies in TEM. The size of the P-ZnO NPs decreased and was engulfed by the spherical CS-AMP NPs. The zeta potential of the CS-AMP-P-ZnO NPs was determined to be -32.93 mV and the hydrodynamic size to be 210.2 nm. Further, DEE and DLE of CS-AMP (2.0:0.2 w/w) showed 79.60 ± 2.62 % and 15.14 ± 2.11 %, respectively. The cumulative AMP release was observed at >50 % at 48 h at pH 5.4 and 7.4. Additionally, when compared to AMP, CS-AMP-P-ZnO NPs had better antibacterial activity against E. coli, due to the alternation of cell membrane permeability by CS and ZnO NPs. Moreover, the hemolytic properties of ZnO NPs were attenuated because of PEGylation and CS. Furthermore, due to the biocompatible effect of CS, CS-AMP-P-ZnO NPs did not exhibit toxicity on cells and chick embryos. Hence, this study concludes that CS-AMP-P-ZnO NPs could be a promising antibacterial agent.
Collapse
Affiliation(s)
- Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Kandasamy Saravanakumar
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Kumar Vishven Naveen
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|
5
|
Arkaban H, Shervedani RK, Torabi M, Norouzi-Barough L. Fabrication of a biocompatible & biodegradable targeted theranostic nanocomposite with pH-Controlled drug release ability. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Wilson AJ, Rahman M, Kosmas P, Thanou M. Nanomaterials responding to microwaves: an emerging field for imaging and therapy. NANOSCALE ADVANCES 2021; 3:3417-3429. [PMID: 34527861 PMCID: PMC8388194 DOI: 10.1039/d0na00840k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/12/2021] [Indexed: 05/05/2023]
Abstract
In recent years, new microwave-based imaging, sensing and hyperthermia applications have emerged in the field of diagnostics and therapy. For diagnosis, this technology involves the application of low power microwaves, utilising contrast between the relative permittivity of tissues to identify pathologies. This contrast can be further enhanced through the implementation of nanomaterials. For therapy, this technology can be applied in tissues either through hyperthermia, which can help anti-cancer drug tumour penetration or as ablation to destroy malignant tissues. Nanomaterials can absorb electromagnetic radiation and can enhance the microwave hyperthermic effect. In this review we aim to introduce this area of renewed interest and provide insights into current developments in its technologies and companion nanoparticles, as well as presenting an overview of applications for diagnosis and therapy.
Collapse
Affiliation(s)
- Annah J Wilson
- School of Cancer & Pharmaceutical Sciences, King's College London, Institute of Pharmaceutical Science Franklin Wilkins Building, 150 Stamford Street London SE1 9NH UK
- Department of Engineering, King's College London UK
| | - Mohammed Rahman
- School of Cancer & Pharmaceutical Sciences, King's College London, Institute of Pharmaceutical Science Franklin Wilkins Building, 150 Stamford Street London SE1 9NH UK
- Department of Engineering, King's College London UK
| | | | - Maya Thanou
- School of Cancer & Pharmaceutical Sciences, King's College London, Institute of Pharmaceutical Science Franklin Wilkins Building, 150 Stamford Street London SE1 9NH UK
| |
Collapse
|
7
|
Wang C, Ding S, Wang S, Shi Z, Pandey NK, Chudal L, Wang L, Zhang Z, Wen Y, Yao H, Lin L, Chen W, Xiong L. Endogenous tumor microenvironment-responsive multifunctional nanoplatforms for precision cancer theranostics. Coord Chem Rev 2021; 426:213529. [DOI: 10.1016/j.ccr.2020.213529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Rahman M, Lahri R, Ahsan S, Thanou M, Kosmas P. Assessing Changes in Dielectric Properties Due to Nanomaterials Using a Two-Port Microwave System. SENSORS 2020; 20:s20216228. [PMID: 33142855 PMCID: PMC7663291 DOI: 10.3390/s20216228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/19/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022]
Abstract
Detecting changes in the dielectric properties of tissues at microwave frequencies can offer simple and cost effective tools for cancer detection. These changes can be enhanced by the use of nanoparticles (NPs) that are characterised by both increased tumour uptake and high dielectric constant. This paper presents a two-port experimental setup to assess the impact of contrast enhancement on microwave signals. The study focuses on carbon nanotubes, as they have been previously shown to induce high microwave dielectric contrast. We investigate multiwall carbon nanotubes (MWNT) and their -OH functionalised version (MWNT-OH) dispersed in tissue phantoms as contrast enhancing NPs, as well as salt (NaCl) solutions as reference mixtures which can be easily dissolved inside water mixtures and thus induce dielectric contrast changes reliably. MWNT and MWNT-OH are characterised by atomic force microscopy, and their dielectric properties are measured when dispersed in 60% glycerol–water mixtures. Salt concentrations between 10 and 50 mg/mL in 60% glycerol mixtures are also studied as homogeneous samples known to affect the dielectric constant. Contrast enhancement is then evaluated using a simplified two-port microwave system to identify the impact on microwave signals with respect to dielectric contrast. Numerical simulations are also conducted to compare results with the experimental findings. Our results suggest that this approach can be used as a reliable method to screen and assess contrast enhancing materials with regards to a microwave system’s ability to detect their impact on a target.
Collapse
Affiliation(s)
- Mohammed Rahman
- Institute of Pharmaceutical Sciences, King’s College London, Strand, London WC2R 2LS, UK; (M.R.); (R.L.); (M.T.)
| | - Rachita Lahri
- Institute of Pharmaceutical Sciences, King’s College London, Strand, London WC2R 2LS, UK; (M.R.); (R.L.); (M.T.)
| | - Syed Ahsan
- Faculty of Natural and Mathematical Sciences, King’s College London, Strand, London WC2R 2LS, UK;
| | - Maya Thanou
- Institute of Pharmaceutical Sciences, King’s College London, Strand, London WC2R 2LS, UK; (M.R.); (R.L.); (M.T.)
| | - Panagiotis Kosmas
- Faculty of Natural and Mathematical Sciences, King’s College London, Strand, London WC2R 2LS, UK;
- Correspondence:
| |
Collapse
|
9
|
Feng X, Zhang Y, Zhang C, Lai X, Zhang Y, Wu J, Hu C, Shao L. Nanomaterial-mediated autophagy: coexisting hazard and health benefits in biomedicine. Part Fibre Toxicol 2020; 17:53. [PMID: 33066795 PMCID: PMC7565835 DOI: 10.1186/s12989-020-00372-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Widespread biomedical applications of nanomaterials (NMs) bring about increased human exposure risk due to their unique physicochemical properties. Autophagy, which is of great importance for regulating the physiological or pathological activities of the body, has been reported to play a key role in NM-driven biological effects both in vivo and in vitro. The coexisting hazard and health benefits of NM-mediated autophagy in biomedicine are nonnegligible and require our particular concerns. MAIN BODY We collected research on the toxic effects related to NM-mediated autophagy both in vivo and in vitro. Generally, NMs can be delivered into animal models through different administration routes, or internalized by cells through different uptake pathways, exerting varying degrees of damage in tissues, organs, cells, and organelles, eventually being deposited in or excreted from the body. In addition, other biological effects of NMs, such as oxidative stress, inflammation, necroptosis, pyroptosis, and ferroptosis, have been associated with autophagy and cooperate to regulate body activities. We therefore highlight that NM-mediated autophagy serves as a double-edged sword, which could be utilized in the treatment of certain diseases related to autophagy dysfunction, such as cancer, neurodegenerative disease, and cardiovascular disease. Challenges and suggestions for further investigations of NM-mediated autophagy are proposed with the purpose to improve their biosafety evaluation and facilitate their wide application. Databases such as PubMed and Web of Science were utilized to search for relevant literature, which included all published, Epub ahead of print, in-process, and non-indexed citations. CONCLUSION In this review, we focus on the dual effect of NM-mediated autophagy in the biomedical field. It has become a trend to use the benefits of NM-mediated autophagy to treat clinical diseases such as cancer and neurodegenerative diseases. Understanding the regulatory mechanism of NM-mediated autophagy in biomedicine is also helpful for reducing the toxic effects of NMs as much as possible.
Collapse
Affiliation(s)
- Xiaoli Feng
- Stomatological Hospital, Southern Medical University, 366 South Jiangnan Road, Guangzhou, 510280, China
| | - Yaqing Zhang
- Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Street, Guangzhou, 510515, China
| | - Chao Zhang
- Orthodontic Department, Stomatological Hospital, Southern Medical University, 366 South Jiangnan Road, Guangzhou, 510280, China
| | - Xuan Lai
- Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Street, Guangzhou, 510515, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, 366 South Jiangnan Road, Guangzhou, 510280, China
| | - Junrong Wu
- Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Street, Guangzhou, 510515, China
| | - Chen Hu
- Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Street, Guangzhou, 510515, China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Street, Guangzhou, 510515, China.
| |
Collapse
|
10
|
Coşğun S, Bilgin E, Çayören M. Microwave imaging of breast cancer with factorization method: SPIONs as contrast agent. Med Phys 2020; 47:3113-3122. [PMID: 32202317 DOI: 10.1002/mp.14156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/17/2020] [Accepted: 03/12/2020] [Indexed: 11/08/2022] Open
Abstract
Female breast at macroscopic scale is a nonmagnetic medium, which eliminates the possibility of realizing microwave imaging of the breast cancer based on magnetic permeability variations. However, by administering functionalized, superparamagnetic iron oxide nanoparticles (SPIONs) as a contrast material to modulate magnetic permeability of cancer cells, a small variation on the scattered electric field from the breast is achievable under an external, polarizing magnetic field. PURPOSE We demonstrate an imaging technique that can locate cancerous tumors inside the breast due to electric field variations caused by SPION tracers under different magnetic field intensities. Furthermore, we assess the feasibility of SPION-enhanced microwave imaging for breast cancer with simulations performed on a multi-static imaging configuration. METHODS The imaging procedure is realized as the factorization method of qualitative inverse scattering theory, which is essentially a shape retrieval algorithm for inaccessible objects. The formulation is heuristically modified to accommodate the scattering parameters instead of the electric field to comply with the requirements of experimental microwave imaging systems. RESULTS With full-wave electromagnetic simulations performed on an anthropomorphically realistic breast phantom, which is excited with a cylindrical imaging prototype of 18 dipole antenna arranged as a single row, the technique is able to locate cancerous tumors for a experimentally achievable doses. CONCLUSIONS The technique generates nonanatomic microwave images, which map the cancerous tumors depending on the concentration of SPION tracers, to aid the diagnosis of the breast cancer.
Collapse
Affiliation(s)
- Sema Coşğun
- Department of Electrical and Electronic Engineering, Bolu Abant Izzet Baysal University, Bolu, 14030, Turkey
| | - Egemen Bilgin
- Department of Electrical and Electronics Engineering, MEF University, Sariyer, Istanbul, 34396, Turkey
| | - Mehmet Çayören
- Department of Electronics and Communication Engineering, Istanbul Technical University, 34469, Sariyer, Istanbul, Turkey
| |
Collapse
|
11
|
Akıncı MN, Çayören M, Göse E. Qualitative microwave imaging of breast cancer with contrast agents. Phys Med Biol 2019; 64:115018. [PMID: 31026847 DOI: 10.1088/1361-6560/ab1ce9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A microwave imaging (MWI) methodology for early diagnosis of breast cancer is presented. Instead of generating a tomographic image of the breast, the proposed technique aims to reconstruct a map of malignant tumours inside the breast by adopting an extended form of factorization method. The implementation of factorization method requires (i) two multi-static scattered field measurements around the breast, which correspond to two different states of the breast, and (ii) the inhomogeneous Green's function associated to the breast. For this purpose, the paper proposes the use of contrast agents, which selectively increase the dielectric properties of the malign tissues. Two multi-static field measurements are collected before and after the administration of contrast agents. Later, the inhomogeneous Green's function of the breast is estimated by back-propagating the scattered field measurements, which are taken before the contrast agent usage. The feasibility and efficiency of the proposed technique are demonstrated with numerical examples that are performed on a slice of the realistic breast phantoms, which are derived from real three dimensional magnetic resonance imaging (3D-MRI) measurements.
Collapse
Affiliation(s)
- Mehmet Nuri Akıncı
- Electrical and Electronics Faculty, Istanbul Technical University, Maslak 34467 Istanbul, Turkey
| | | | | |
Collapse
|
12
|
Ahsan S, Guo Z, Miao Z, Sotiriou I, Koutsoupidou M, Kallos E, Palikaras G, Kosmas P. Design and Experimental Validation of a Multiple-Frequency Microwave Tomography System Employing the DBIM-TwIST Algorithm. SENSORS 2018; 18:s18103491. [PMID: 30332843 PMCID: PMC6209939 DOI: 10.3390/s18103491] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/08/2018] [Accepted: 10/12/2018] [Indexed: 11/16/2022]
Abstract
We present a first prototype of a wideband microwave tomography system with potential application to medical imaging. The system relies on a compact and robust printed monopole antenna which can operate in the 1.0–3.0 GHz range when fully immersed in commonly used coupling liquids, such as glycerine–water solutions. By simulating the proposed imaging setup in CST Microwave Studio, we study the signal transmission levels and array sensitivity for different target and coupling liquid media. We then present the experimental prototype design and data acquisition process, and show good agreement between experimentally measured data and results from the CST simulations. We assess imaging performance by applying our previously proposed two-dimensional (2-D) DBIM TwIST-algorithm to both simulated and experimental datasets, and demonstrate that the system can reconstruct simple cylindrical targets at multiple frequencies.
Collapse
Affiliation(s)
- Syed Ahsan
- Faculty of Natural and Mathematical Sciences, King's College London, Strand, London WC2B 4PH, UK.
| | - Ziwen Guo
- Faculty of Natural and Mathematical Sciences, King's College London, Strand, London WC2B 4PH, UK.
| | - Zhenzhuang Miao
- Faculty of Natural and Mathematical Sciences, King's College London, Strand, London WC2B 4PH, UK.
| | - Ioannis Sotiriou
- Faculty of Natural and Mathematical Sciences, King's College London, Strand, London WC2B 4PH, UK.
| | - Maria Koutsoupidou
- Faculty of Natural and Mathematical Sciences, King's College London, Strand, London WC2B 4PH, UK.
| | | | | | - Panagiotis Kosmas
- Faculty of Natural and Mathematical Sciences, King's College London, Strand, London WC2B 4PH, UK.
| |
Collapse
|