1
|
Das IJ, Khan AU, Yadav P. Small-field output factor dependence on the field size definition in MR-Linac. Med Phys 2025. [PMID: 40342169 DOI: 10.1002/mp.17857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Radiation beam characteristics are primarily evaluated based on field size. However, in small fields, especially with magnetic fields used in new technology (MR-Linac), the field size definition is altered. Typically, field size is defined by two methods: geometric and dosimetric, which are evaluated in this study. PURPOSE Small field size definitions are distorted due to lateral electron disequilibrium and the presence of magnetic fields. MR-Linac systems, which combine an MR imaging system and a linear accelerator on a single gantry, require precise evaluations of field size definitions and beam parameters, particularly for small fields. which is investigated in this study. METHODS A 0.35 T MRIdian Viewray system was evaluated using beam profiles and field output factors (FOF) with various MR-compatible microdetectors, such as ion chamber, microDiamond, microSilicon, and plastic scintillators. Validity of geometric field size (S) and dosimetric field size (Sclin) is investigated with measurements performed with MR compatible scanning water phantom at 85 cm source-to-surface distance (SSD) at a depth of 5 cm. Measured FOF data was compared with treatment planning systems (TPS) and independent Monte Carlo simulations. RESULTS The measured Sclin data is detector and machine-dependent, while S is machine-dependent only. The FOF was found to be a smooth function of S within experimental uncertainties, showing higher reproducibility compared to Sclin which exhibited erratic behavior. CONCLUSIONS It is concluded that geometric field size (S) provides accurate beam characterization data, whereas Sclin may not be a reliable parameter in MR-Linac systems.
Collapse
Affiliation(s)
- Indra J Das
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ahtesham U Khan
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Poonam Yadav
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
2
|
Rojas-López JA, Cabrera-Santiago A, García-Andino AA, Olivares-Jiménez LA, Alfonso R. Experimental small fields output factors determination for an MR-linac according to the measuring position and orientation of the detector. Biomed Phys Eng Express 2024; 11:015043. [PMID: 39680998 DOI: 10.1088/2057-1976/ad9f67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
Purpose. To investigate the effect of the position and orientation of the detector and its influence on the determination of output factors (OF) for small fields for a linear accelerator (MR-linac) integrated with 1.5 T magnetic resonance following the TRS-483 formalism.Methods. OF were measured for small fields in the central axis following the recommendations of the manufacturer and at the dose maximum following the TRS-483 formalism. OF were determined using a microDiamond (MD), a Semiflex (SF) 31021 ionization chamber, Gafchromic EBT3 film and were calculated in Monaco treatment planning system (TPS). Additionally, the orientation response of SF was evaluated, placing it in parallel and perpendicular direction to the radiation beam. The values were compared taking film measurements as reference. The corrected factors,ΩQclinical,msrfclinical,msr, required the use of output correction factorkQclinical,msrfclinical,msrtaken from previous reports. Finally, there are proposed experimentalkQclinical,msrfclinical,msrfor SF and MD, following the measured values in this work.Results. In fields smaller than 4 cm, the positioning of the SF and MD in the central axis or at the point of dose maximum affects the reading significantly with differences of up to 6% and 4%, respectively. For the data calculated in the TPS, the maximum difference of the OF between MD and TPS for fields greater than 2 cm was 0.6% and below this field size the TPS underestimates the OF up to 10.6%. The orientation (parallel or perpendicular) of the SF regarding the radiation beam has a considerable impact on the OF for fields smaller than 3 cm, showing a variation up to 10% for the field of 0.5 cm.Conclusion. This study provides valuable information on the challenges and limitations of measuring output factors in small fields. The outcomes have important implications for the practice of radiosurgery, underscoring the need for accuracy in detector placement and orientation, as well as the importance of using more advanced technologies and more robust measurement methods.
Collapse
Affiliation(s)
- José Alejandro Rojas-López
- Hospital Angeles Puebla, Av. Kepler 2143, Reserva Territorial Atlixcáyotl, 72190, Puebla, Mexico
- Facultad de Astronomía, Matemáticas, Física y Computación, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Alexis Cabrera-Santiago
- Hospital Almater, Av. Alvaro Obregon 1100, Segunda, 21100 Mexicali, Baja California, Mexico
- Unidad de Especialidades Médicas de Oncología, Av Claridad, Plutarco Elías Calles, 21376, Mexicali, Baja California, Mexico
| | - Albin Ariel García-Andino
- PTW Latin America, Av. Evandro Lins e Silva, 840 Sala 2018, Barra da Tijuca, RJ 22631-470 Rio de Janeiro, Brazil
| | - Luis Alfonso Olivares-Jiménez
- Centro Estatal de Oncología 'Dr. Rubén Cardoza Macias', Av. de los Deportistas 5115, Antiguo Aeródromo Militar, 23085, La Paz, Baja California Sur, Mexico
| | - Rodolfo Alfonso
- Medical Physics Consultant, INTECNUS Foundation, RP82 8400, San Carlos de Bariloche, Río Negro, Argentina
| |
Collapse
|
3
|
Angelou C, Patallo IS, Doherty D, Romano F, Schettino G. A review of diamond dosimeters in advanced radiotherapy techniques. Med Phys 2024; 51:9230-9249. [PMID: 39221583 PMCID: PMC11656300 DOI: 10.1002/mp.17370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/08/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
This review article synthesizes key findings from studies on the use of diamond dosimeters in advanced radiotherapy techniques, showcasing their applications, challenges, and contributions to enhancing dosimetric accuracy. The article explores various dosimeters, highlighting synthetic diamond dosimeters as potential candidates especially due to their high spatial resolution and negligible ion recombination effect. The clinically validated commercial dosimeter, PTW microDiamond (mD), faces limitations in small fields, proton and hadron therapy and ultra-high dose per pulse (UHDPP) conditions. Variability in reported values for field sizes < $<$ 2 × $\times$ 2cm 2 ${\rm cm}^2$ is noted, reflecting the competition between volume averaging and density perturbation effects. PTW's introduction of flashDiamond (fD) holds promise for dosimetric measurements in UHDPP conditions and is reliable for commissioning ultra-high dose rate (UHDR) electron beam systems, pending the clinical validation of the device. Other advancements in diamond detectors, such as in 3D configurations and real-time dose per pulse x-ray detectors, are considered valuable in overcoming challenges posed by modern radiotherapy techniques, alongside relative dosimetry and pre-treatment verifications. The studies discussed collectively provide a comprehensive overview of the evolving landscape of diamond dosimetry in the field of radiotherapy, and offer insights into future directions for research and development in the field.
Collapse
Affiliation(s)
- Christina Angelou
- Department of PhysicsUniversity of SurreyGuildfordUK
- Radiotherapy and Radiation DosimetryNational Physical Laboratory (NPL)TeddingtonUK
| | | | | | - Francesco Romano
- Istituto Nazionale di Fisica Nucleare (INFN)Sezione di CataniaCataniaItaly
| | - Giuseppe Schettino
- Radiotherapy and Radiation DosimetryNational Physical Laboratory (NPL)TeddingtonUK
| |
Collapse
|
4
|
Das IJ, Khan AU, Dogan SK, Longo M. Grid/lattice therapy: consideration of small field dosimetry. Br J Radiol 2024; 97:1088-1098. [PMID: 38552328 PMCID: PMC11135801 DOI: 10.1093/bjr/tqae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 05/31/2024] Open
Abstract
Small-field dosimetry used in special procedures such as gamma knife, Cyberknife, Tomotherapy, IMRT, and VMAT has been in evolution after several radiation incidences with very significant (70%) errors due to poor understanding of the dosimetry. IAEA-TRS-483 and AAPM-TG-155 have provided comprehensive information on small-fields dosimetry in terms of code of practice and relative dosimetry. Data for various detectors and conditions have been elaborated. It turns out that with a suitable detectors dose measurement accuracy can be reasonably (±3%) achieved for 6 MV beams for fields >1×1 cm2. For grid therapy, even though the treatment is performed with small fields created by either customized blocks, multileaf collimator (MLC), or specialized devices, it is multiple small fields that creates combined treatment. Hence understanding the dosimetry in collection of holes of small field is a separate challenge that needs to be addressed. It is more critical to understand the scattering conditions from multiple holes that form the treatment grid fields. Scattering changes the beam energy (softer) and hence dosimetry protocol needs to be properly examined for having suitable dosimetric parameters. In lieu of beam parameter unavailability in physical grid devices, MLC-based forward and inverse planning is an alternative path for bulky tumours. Selection of detectors in small field measurement is critical and it is more critical in mixed beams created by scattering condition. Ramification of small field concept used in grid therapy along with major consideration of scattering condition is explored. Even though this review article is focussed mainly for dosimetry for low-energy megavoltage photon beam (6 MV) but similar procedures could be adopted for high energy beams. To eliminate small field issues, lattice therapy with the help of MLC is a preferrable choice.
Collapse
Affiliation(s)
- Indra J Das
- Department of Radiation Oncology, Northwest Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Ahtesham Ullah Khan
- San Bortolo Hospital, Medical Physics Department, Viale F. Rodolfi 37, 36100 Vicenza, Italy
| | - Serpil K Dogan
- Department of Radiation Oncology, Northwest Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Mariaconcetta Longo
- San Bortolo Hospital, Medical Physics Department, Viale F. Rodolfi 37, 36100 Vicenza, Italy
| |
Collapse
|
5
|
Chi DD, Toan TN, Hill R. A multi-detector comparison to determine convergence of measured relative output factors for small field dosimetry. Phys Eng Sci Med 2024; 47:371-379. [PMID: 37943444 DOI: 10.1007/s13246-023-01351-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
The TRS-483 Code of Practice (CoP) provides generic relative output correction factors, [Formula: see text], for a range of detectors and beam energies as used in small field dosimetry. In this work, the convergence of the relative output factors (ROFs) for 6 MV X-ray beams with and without flattening filters was investigated under different combinations of beam collimation and published detector correction factors. The SFD, PFD and CC04 (IBA) were used to measure ROFs of a TrueBeam STx linear accelerator with small fields collimated by the high-definition MLC, which has 2.5 and 5.0 mm projected leaves. Two configurations were used for the collimators: (1) fixed jaws at 10 × 10 cm2 and (2) with a 2 mm offset from the MLC edge, in line with the recommended geometry from IROC-H as part of their auditing program and published dataset. The [Formula: see text] factors for the three detectors were taken from the TRS483 CoP and other published works. The average differences of ROFs measured by detectors under MLC fields with fixed jaws and with 2 mm jaws offset for the 6 MV-WFF beam are 1.4% and 1.9%, respectively. Similarly, they are 2.3% and 2.4% for the 6MV-FFF beam. The relative differences between the detector-average ROFs and the corresponding IROC-H dataset are 2.0% and 3.1% for the 6 MV-WFF beam, while they are 2.4% and 3.2% for the 6MV-FFF beam at the smallest available field size of 2 × 2 cm2. For smaller field sizes, the average ROFs of the three detectors and corresponding results from Akino and Dufreneix showed the largest difference to be 6.6% and 6.2% under the 6 MV-WFF beam, while they are 3.4% and 3.6% under the 6 MV-WFF beam at the smallest field size of 0.5 × 0.5 cm2. Some well-published specific output correction factors for different small field detector types give better convergence in the calculation of the relative output factor in comparison with the generic data provided by the TRS-483 CoP. Relative output factor measurements should be performed as close as possible to the clinical settings including a combination of collimation systems, beam types and using at least three different types of small field detector for more accurate computation of the treatment planning system. The IROC-H dataset is not available for field size smaller than 2 × 2 cm2 for double checks and so that user should carefully check with other publications with the same setting.
Collapse
Affiliation(s)
- Do Duc Chi
- 108 Military Central Hospital, Hanoi, Vietnam.
- Vietnam Atomic Energy Institute, Hanoi, Vietnam.
| | | | - Robin Hill
- Department of Radiation Oncology, Chris O'Brien Lifehouse, Missenden Rd, Camperdown, Sydney, NSW, 2050, Australia
- Arto Hardy Family Biomedical Innovation Hub, Chris O'Brien Lifehouse, Missenden Rd, Camperdown, Sydney, NSW, 2050, Australia
- Institute of Medical Physics, School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
6
|
Das IJ, Sohn JJ, Lim SN, Sengupta B, Feijoo M, Yadav P. Characteristics of a plastic scintillation detector in photon beam dosimetry. J Appl Clin Med Phys 2024; 25:e14209. [PMID: 37983685 PMCID: PMC10795454 DOI: 10.1002/acm2.14209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/24/2023] [Accepted: 11/04/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Plastic scintillating detectors (PSD) have gained popularity due to small size and are ideally suited in small-field dosimetry due to no correction needed and hence detector reading can be compared to dose. Likewise, these detectors are active and water equivalent. A new PSD from Blue Physics is characterized in photon beam. PURPOSE Innovation in small-field dosimetry detector has led us to examine Blue Physics PSD (BP-PSD) for use in photon beams from linear accelerator. METHODS BP-PSD was acquired and its characteristics were evaluated in photon beams from a Varian TrueBeam. Data were collected in a 3D water tank. Standard parameters; dose, dose rate, energy, angular dependence and temperature dependence were studied. Depth dose, profiles and output in a reference condition as well as small fields were measured. RESULTS BP-PSD is versatile and provides data very similar to an ion chamber when Cerenkov radiation is properly accounted. This device measures data pulse by pulse which very few detectors can perform. The differences between ion chamber data and PSD are < 2% in most cases. The angular dependence is a bit pronounces to 1.5% which is due to PSD housing. Depth dose and profiles are comparable within < 1% to an ion chamber. For small fields this detector provides suitable field output factor compared to other detectors and Monte Carlo (MC) simulated data without any added correction factor. CONCLUSIONS The characteristics of Blue Physics PSD is uniquely suitable in photon beam and more so in small fields. The data are reproducible compared to ion chamber for most parameters and ideally suitable for small-field dosimetry without any correction factor.
Collapse
Affiliation(s)
- Indra J. Das
- Department of Radiation OncologyNorthwest Memorial HospitalNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Jooyoung J. Sohn
- Department of Radiation OncologyNorthwest Memorial HospitalNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Sara N. Lim
- Department of Radiation OncologyNorthwest Memorial HospitalNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Bishwambhar Sengupta
- Department of Radiation OncologyNorthwest Memorial HospitalNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | | | - Poonam Yadav
- Department of Radiation OncologyNorthwest Memorial HospitalNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| |
Collapse
|
7
|
Younes T, Chatrie F, Zinutti M, Simon L, Fares G, Vieillevigne L. Optimization of the Eclipse TPS beam configuration parameters for small field dosimetry using Monte Carlo simulations and experimental measurements. Phys Med 2023; 114:103141. [PMID: 37820506 DOI: 10.1016/j.ejmp.2023.103141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/24/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
PURPOSE To evaluate the impact of tuning the beam configurations parameters on the Analytical Anisotropic Algorithm (AAA) and the Acuros XB (AXB) algorithm for small fields using Monte Carlo simulations and measurements. METHODS The TrueBeam STx with the high-definition 120 multi-leaf collimator (HD120-MLC) was modeled with Geant4 application for emission tomography (GATE) Monte Carlo platform and validated against measurements. The impact of varying the effective spot size (ESS) and dosimetric leaf gap (DLG) on AAA and AXB calculations was carried out for small MLC-fields ranging from 0.5×0.5 cm2 to 3 × 3 cm2. Beam penumbras, field sizes and output factors calculated by AAA and AXB were compared to GATE calculations and measurements. RESULTS The beam penumbra comparisons showed that the best ESS value for AXB was about 1.0 mm in the crossplane direction and 0.5 mm in the inplane direction. By optimizing the ESS values, AXB could provide output factor results almost within 2% of GATE calculations and measurements for fields down to 0.5×0.5 cm2. For AAA, significant output factor differences were observed for all ESS values and tuning the DLG in addition to the ESS optimization resulted in an absorbed dose difference of less than 2.5% for MLC-fields down to 1 × 1 cm2. CONCLUSION By optimizing the ESS values, AXB can achieve accurate output factors in the case of small MLC-fields without the need of DLG tuning. Nevertheless, compromises between the output factor, DLG and ESS values were found necessary for AAA calculations. A MLC model improvement would allow to avoid the complexity related to tuning the configuration parameters.
Collapse
Affiliation(s)
- Tony Younes
- Department of Medical Physics, Institut Claudius Regaud - Institut Universitaire du Cancer de Toulouse Oncopole, 1 avenue Irène Joliot Curie, 31059 Toulouse Cedex 9, France; Centre de Recherche et de Cancérologie de Toulouse, UMR1037 INSERM - Université Toulouse 3 - ERL5294 CNRS, 2 avenue Hubert Curien, 31037 Toulouse Cedex 1, France; Laboratoire de "Mathématiques et Applications", Unité de recherche "Mathématiques et Modélisation", Centre d'analyses et de recherche, Faculté des sciences, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon.
| | - Frédéric Chatrie
- Centre de Recherche et de Cancérologie de Toulouse, UMR1037 INSERM - Université Toulouse 3 - ERL5294 CNRS, 2 avenue Hubert Curien, 31037 Toulouse Cedex 1, France
| | - Marianne Zinutti
- Department of Medical Physics, Institut Claudius Regaud - Institut Universitaire du Cancer de Toulouse Oncopole, 1 avenue Irène Joliot Curie, 31059 Toulouse Cedex 9, France
| | - Luc Simon
- Department of Medical Physics, Institut Claudius Regaud - Institut Universitaire du Cancer de Toulouse Oncopole, 1 avenue Irène Joliot Curie, 31059 Toulouse Cedex 9, France; Centre de Recherche et de Cancérologie de Toulouse, UMR1037 INSERM - Université Toulouse 3 - ERL5294 CNRS, 2 avenue Hubert Curien, 31037 Toulouse Cedex 1, France
| | - Georges Fares
- Laboratoire de "Mathématiques et Applications", Unité de recherche "Mathématiques et Modélisation", Centre d'analyses et de recherche, Faculté des sciences, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon
| | - Laure Vieillevigne
- Department of Medical Physics, Institut Claudius Regaud - Institut Universitaire du Cancer de Toulouse Oncopole, 1 avenue Irène Joliot Curie, 31059 Toulouse Cedex 9, France; Centre de Recherche et de Cancérologie de Toulouse, UMR1037 INSERM - Université Toulouse 3 - ERL5294 CNRS, 2 avenue Hubert Curien, 31037 Toulouse Cedex 1, France
| |
Collapse
|
8
|
Evaluation of calibration methods of Exradin W2 plastic scintillation detector for CyberKnife small-field dosimetry. RADIAT MEAS 2022. [DOI: 10.1016/j.radmeas.2022.106821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Dose area product primary standards established by graphite calorimetry at the LNE-LNHB for small radiation fields in radiotherapy. Phys Med 2022; 98:18-27. [PMID: 35489128 DOI: 10.1016/j.ejmp.2022.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/10/2022] [Accepted: 03/19/2022] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To present primary standards establishment in terms of Dose Area Product (DAP) for small field sizes. METHODS A large section graphite calorimeter and two plane-parallel ionization chambers were designed and built in-house. These chambers were calibrated in a 6MV FFF beam at the maximum dose rate of 1400 UM/min for fields defined by specifically designed circular collimators of 5, 7.5, 10, 13 and 15 mm diameter and jaws of 5, 7, 10, 13 and 15 mm side length on a Varian TrueBeam linac. RESULTS The two chambers show the same behaviour regardless of field shape and size. From 5 to 15 mm, calibration coefficients slightly increase with the field size with a magnitude of 1.8% and 1.1% respectively for the two chambers, and are independent of the field shape. This tendency was confirmed by Monte Carlo calculations. The average associated uncertainty of the calibration coefficients is around 0.6% at k=1. CONCLUSIONS For the first time, primary standards in terms of DAP were established by graphite calorimetry for an extended range of small field sizes. These promising results open the door for an alternative approach in small fields dosimetry.
Collapse
|
10
|
Das IJ, Dogan SK, Gopalakrishnan M, Ding GX, Longo M, Franscescon P. Validity of equivalent square field concept in small field dosimetry. Med Phys 2022; 49:4043-4055. [PMID: 35344220 DOI: 10.1002/mp.15624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 11/11/2022] Open
Abstract
PURPOSE The equivalent Square (ES) concept has been used for traditional radiation fields defined by the machine collimating system. For small fields, the concept Sclin was introduced based on measuring dosimetric field width (full-width half maximum, FWHM) of the cardinal axis of the beam profiles. The pros and cons of this concept are evaluated in small fields and compared with the traditional ES using area and perimeter (4A/P) method based on geometric field size settings e.g. light field settings. METHODS One hundred thirty-seven square and rectangular fields from 5-50 mm with every possible permutation (keeping one jaw fixed and varying other jaw from 5 mm to 50 mm) were utilized to measure FWHM for the validation of Sclin . Using a microSilicon detector and a scanning water tank, measurements were performed on an Elekta (Versa) machine with Agility head and a Varian TrueBeam with different MLC/Jaw design to evaluate the Sclin concept and to understand the effect of exchange factor in small fields. Field output factors were also measured for all 137 fields. RESULTS The data fitting for fields ranging from 5-50 mm between the traditional 4A/P method and Sclin shows differences and indicates a linear relationship with distinct separation of slope for Elekta and Varian machines. As Elekta does not have y jaws, the ES based on 4A/P < Sclin but for the Varian linac 4A/P > Sclin for square fields. Our measured data shows that both methods are equally valid but does vary by the machine design. The field output factor is dependent on the elongation factor as well as machine design. For fields with sides ≥10 mm, the exchange factor is nearly identical in both machines with magnitude up to 4% which is close to measurement uncertainty (±3%) but for small fields (<10 mm) the Elekta machine has higher exchange factors compared to the Varian machine. CONCLUSION The results demonstrate that the two concepts for defining equivalent field (Sclin and 4A/P) are equivalent and can be directly related through an empirical equation. This study confirms that 4A/P is still valid for small fields except for very small fields (≤10 mm) where source occlusion is a dominating factor. The Sclin method is potentially sensitive to measurement uncertainty due to measurement of FWHM which is machine, detector and user dependent, while the 4A/P method relies mainly on geometry of the machine and has less dependency on type of machine, detector and user. The exchange factors are comparable for both types of machines. The conclusion is based on data from an Elekta with Agility head and a Varian TrueBeam machine that may have potential for bias due to light field/collimator set up and alignment. Care should be taken in extrapolating these data to any other machine. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Indra J Das
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Serpil K Dogan
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Mahesh Gopalakrishnan
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - George X Ding
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Mariaconcetta Longo
- Department of Radiation Oncology Ospedale Di Vicenza, Viale Rodolfi, Vicenza, 36100, Italy
| | - Paolo Franscescon
- Department of Radiation Oncology Ospedale Di Vicenza, Viale Rodolfi, Vicenza, 36100, Italy
| |
Collapse
|
11
|
Das IJ, Francescon P, Moran JM, Ahnesjö A, Aspradakis MM, Cheng CW, Ding GX, Fenwick JD, Saiful Huq M, Oldham M, Reft CS, Sauer OA. Report of AAPM Task Group 155: Megavoltage photon beam dosimetry in small fields and non-equilibrium conditions. Med Phys 2021; 48:e886-e921. [PMID: 34101836 DOI: 10.1002/mp.15030] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/06/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Small-field dosimetry used in advance treatment technologies poses challenges due to loss of lateral charged particle equilibrium (LCPE), occlusion of the primary photon source, and the limited choice of suitable radiation detectors. These challenges greatly influence dosimetric accuracy. Many high-profile radiation incidents have demonstrated a poor understanding of appropriate methodology for small-field dosimetry. These incidents are a cause for concern because the use of small fields in various specialized radiation treatment techniques continues to grow rapidly. Reference and relative dosimetry in small and composite fields are the subject of the International Atomic Energy Agency (IAEA) dosimetry code of practice that has been published as TRS-483 and an AAPM summary publication (IAEA TRS 483; Dosimetry of small static fields used in external beam radiotherapy: An IAEA/AAPM International Code of Practice for reference and relative dose determination, Technical Report Series No. 483; Palmans et al., Med Phys 45(11):e1123, 2018). The charge of AAPM task group 155 (TG-155) is to summarize current knowledge on small-field dosimetry and to provide recommendations of best practices for relative dose determination in small megavoltage photon beams. An overview of the issue of LCPE and the changes in photon beam perturbations with decreasing field size is provided. Recommendations are included on appropriate detector systems and measurement methodologies. Existing published data on dosimetric parameters in small photon fields (e.g., percentage depth dose, tissue phantom ratio/tissue maximum ratio, off-axis ratios, and field output factors) together with the necessary perturbation corrections for various detectors are reviewed. A discussion on errors and an uncertainty analysis in measurements is provided. The design of beam models in treatment planning systems to simulate small fields necessitates special attention on the influence of the primary beam source and collimating devices in the computation of energy fluence and dose. The general requirements for fluence and dose calculation engines suitable for modeling dose in small fields are reviewed. Implementations in commercial treatment planning systems vary widely, and the aims of this report are to provide insight for the medical physicist and guidance to developers of beams models for radiotherapy treatment planning systems.
Collapse
Affiliation(s)
- Indra J Das
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Paolo Francescon
- Department of Radiation Oncology, Ospedale Di Vicenza, Vicenza, Italy
| | - Jean M Moran
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Anders Ahnesjö
- Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Maria M Aspradakis
- Institute of Radiation Oncology, Cantonal Hospital of Graubünden, Chur, Switzerland
| | - Chee-Wai Cheng
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - George X Ding
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - John D Fenwick
- Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - M Saiful Huq
- Department of Radiation Oncology, University of Pittsburgh, School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Mark Oldham
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Chester S Reft
- Department of Radiation Oncology, University of Chicago, Chicago, IL, USA
| | - Otto A Sauer
- Department of Radiation Oncology, Klinik fur Strahlentherapie, University of Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Eaton DJ, Bass G, Booker P, Byrne J, Duane S, Frame J, Grattan M, Thomas RAS, Thorp N, Nisbet A. IPEM code of practice for high-energy photon therapy dosimetry based on the NPL absorbed dose calibration service. ACTA ACUST UNITED AC 2020; 65:195006. [DOI: 10.1088/1361-6560/ab99e3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Brace OJ, Alhujaili SF, Paino JR, Butler DJ, Wilkinson D, Oborn BM, Rosenfeld AB, Lerch MLF, Petasecca M, Davis JA. Evaluation of the PTW microDiamond in edge-on orientation for dosimetry in small fields. J Appl Clin Med Phys 2020; 21:278-288. [PMID: 32441884 PMCID: PMC7484886 DOI: 10.1002/acm2.12906] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/16/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose The PTW microDiamond has an enhanced spatial resolution when operated in an edge‐on orientation but is not typically utilized in this orientation due to the specifications of the IAEA TRS‐483 code of practice for small field dosimetry. In this work the suitability of an edge‐on orientation and advantages over the recommended face‐on orientation will be presented. Methods The PTW microDiamond in both orientations was compared on a Varian TrueBeam linac for: machine output factor (OF), percentage depth dose (PDD), and beam profile measurements from 10 × 10 cm2 to a 0.5 × 0.5 cm2 field size for 6X and 6FFF beam energies in a water tank. A quantification of the stem effect was performed in edge‐on orientation along with tissue to phantom ratio (TPR) measurements. An extensive angular dependence study for the two orientations was also undertaken within two custom PMMA plastic cylindrical phantoms. Results The OF of the PTW microDiamond in both orientations agrees within 1% down to the 2 × 2 cm2 field size. The edge‐on orientation overresponds in the build‐up region but provides improved penumbra and has a maximum observed stem effect of 1%. In the edge‐on orientation there is an angular independent response with a maximum of 2% variation down to a 2 × 2 cm2 field. The PTW microDiamond in edge‐on orientation for TPR measurements agreed to the CC01 ionization chamber within 1% for all field sizes. Conclusions The microDiamond was shown to be suitable for small field dosimetry when operated in edge‐on orientation. When edge‐on, a significantly reduced angular dependence is observed with no significant stem effect, making it a more versatile QA instrument for rotational delivery techniques.
Collapse
Affiliation(s)
- Owen J Brace
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Sultan F Alhujaili
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Jason R Paino
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Duncan J Butler
- Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), Yallambie, VIC, UK
| | - Dean Wilkinson
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Cancer Care Centre Wollongong Hospital Wollongong, Wollongong, NSW, Australia
| | - Brad M Oborn
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Cancer Care Centre Wollongong Hospital Wollongong, Wollongong, NSW, Australia
| | - Anatoly B Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Michael L F Lerch
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Marco Petasecca
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Jeremy A Davis
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
14
|
Debnath SBC, Fauquet C, Tallet A, Goncalves A, Lavandier S, Jandard F, Tonneau D, Darreon J. High spatial resolution inorganic scintillator detector for high-energy X-ray beam at small field irradiation. Med Phys 2020; 47:1364-1371. [PMID: 31883388 PMCID: PMC7155062 DOI: 10.1002/mp.14002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/03/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose Small field dosimetry for radiotherapy is one of the major challenges due to the size of most dosimeters, for example, sufficient spatial resolution, accurate dose distribution and energy dependency of the detector. In this context, the purpose of this research is to develop a small size scintillating detector targeting small field dosimetry and compare its performance with other commercial detectors. Method An inorganic scintillator detector (ISD) of about 200 µm outer diameter was developed and tested through different small field dosimetric characterizations under high‐energy photons (6 and 15 MV) delivered by an Elekta Linear Accelerator (LINAC). Percentage depth dose (PDD) and beam profile measurements were compared using dosimeters from PTW namely, microdiamond and PinPoint three‐dimensional (PP3D) detector. A background fiber method has been considered to quantitate and eliminate the minimal Cerenkov effect from the total optical signal magnitude. Measurements were performed inside a water phantom under IAEA Technical Reports Series recommendations (IAEA TRS 381 and TRS 483). Results Small fields ranging from 3 × 3 cm2, down to 0.5 × 0.5 cm2 were sequentially measured using the ISD and commercial dosimeters, and a good agreement was obtained among all measurements. The result also shows that, scintillating detector has good repeatability and reproducibility of the output signal with maximum deviation of 0.26% and 0.5% respectively. The Full Width Half Maximum (FWHM) was measured 0.55 cm for the smallest available square size field of 0.5 × 0.5 cm2, where the discrepancy of 0.05 cm is due to the scattering effects inside the water and convolution effect between field and detector geometries. Percentage depth dose factor dependence variation with water depth exhibits nearly the same behavior for all tested detectors. The ISD allows to perform dose measurements at a very high accuracy from low (50 cGy/min) to high dose rates (800 cGy/min) and was found to be independent of dose rate variation. The detection system also showed an excellent linearity with dose; hence, calibration was easily achieved. Conclusions The developed detector can be used to accurately measure the delivered dose at small fields during the treatment of small volume tumors. The author's measurement shows that despite using a nonwater‐equivalent detector, the detector can be a powerful candidate for beam characterization and quality assurance in, for example, radiosurgery, Intensity‐Modulated Radiotherapy (IMRT), and brachytherapy. Our detector can provide real‐time dose measurement and good spatial resolution with immediate readout, simplicity, flexibility, and robustness.
Collapse
Affiliation(s)
| | - Carole Fauquet
- Aix Marseille Université, CNRS, CINaM, UMR 7325, 13288, Marseille, France
| | - Agnes Tallet
- Institut Paoli-Calmettes, 13009, Marseille, France
| | - Anthony Goncalves
- Aix Marseille Université, CNRS, UMR 7258, INSERM, UMR 1068, CRCM, 13009, Marseille, France
| | | | - Franck Jandard
- Aix Marseille Université, CNRS, CINaM, UMR 7325, 13288, Marseille, France
| | - Didier Tonneau
- Aix Marseille Université, CNRS, CINaM, UMR 7325, 13288, Marseille, France
| | | |
Collapse
|
15
|
Russo S, Masi L, Francescon P, Dicarolo P, De Martin E, Frassanito C, Redaelli I, Vigorito S, Stasi M, Mancosu P. Multi-site evaluation of the Razor stereotactic diode for CyberKnife small field relative dosimetry. Phys Med 2019; 65:40-45. [DOI: 10.1016/j.ejmp.2019.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/22/2019] [Accepted: 07/30/2019] [Indexed: 10/26/2022] Open
|
16
|
Palmans H, Andreo P, Huq MS, Seuntjens J, Christaki KE, Meghzifene A. Reply to "Comments on the TRS-483 Protocol on Small field Dosimetry" [Med. Phys. 45(12), 5666-5668 (2018)]. Med Phys 2019; 45:5669-5671. [PMID: 30536943 DOI: 10.1002/mp.13235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 11/09/2022] Open
Affiliation(s)
- Hugo Palmans
- Medical Radiation Science, National Physical Laboratory, Teddington, TW11 0LW, UK.,Department of Medical Physics, EBG MedAustron GmbH, A-2700, Wiener Neustadt, Austria
| | - Pedro Andreo
- Department of Medical Physics and Nuclear Medicine, Karolinska University Hospital, SE-17176, Stockholm, Sweden
| | - M Saiful Huq
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15232, USA
| | - Jan Seuntjens
- Medical Physics Unit, McGill University, Montréal, QC, H3A 0G4, Canada
| | - Karen E Christaki
- Dosimetry and Medical Radiation Physics Section, International Atomic Energy Agency, A-1400, Vienna, Austria
| | - Ahmed Meghzifene
- Dosimetry and Medical Radiation Physics Section, International Atomic Energy Agency, A-1400, Vienna, Austria
| |
Collapse
|
17
|
Looe HK, Poppinga D, Kranzer R, Büsing I, Tekin T, Ulrichs A, Delfs B, Vogt D, Würfel J, Poppe B. The role of radiation-induced charge imbalance on the dose-response of a commercial synthetic diamond detector in small field dosimetry. Med Phys 2019; 46:2752-2759. [PMID: 30972756 PMCID: PMC6849526 DOI: 10.1002/mp.13542] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 11/11/2022] Open
Abstract
PURPOSE Discrepancy between experimental and Monte Carlo simulated dose-response of the microDiamond (mD) detector (type 60019, PTW Freiburg, Germany) at small field sizes has been reported. In this work, the radiation-induced charge imbalance in the structural components of the detector has been investigated as the possible cause of this discrepancy. MATERIALS AND METHODS Output ratio (OR) measurements have been performed using standard and modified versions of the mD detector at nominal field sizes from 6 mm × 6 mm to 40 mm × 40 mm. In the first modified mD detector (mD_reversed), the type of charge carriers collected is reversed by connecting the opposite contact to the electrometer. In the second modified mD detector (mD_shortened), the detector's contacts have been shortened. The third modified mD detector (mD_noChip) is the same as the standard version but the diamond chip with the sensitive volume has been removed. Output correction factors were calculated from the measured OR and simulated using the EGSnrc package. An adapted Monte Carlo user-code has been used to study the underlying mechanisms of the field size-dependent charge imbalance and to identify the detector's structural components contributing to this effect. RESULTS At the smallest field size investigated, the OR measured using the standard mD detector is >3% higher than the OR obtained using the modified mD detector with reversed contact (mD_reversed). Combining the results obtained with the different versions of the detector, the OR have been corrected for the effect of radiation imbalance. The OR obtained using the modified mD detector with shortened contacts (mD_shortened) agree with the corrected OR, all showing an over-response of less than 2% at the field sizes investigated. The discrepancy between the experimental and simulated output correction factors has been eliminated after accounting for the effect of charge imbalance. DISCUSSIONS AND CONCLUSIONS The role of radiation-induced charge imbalance on the dose-response of mD detector in small field dosimetry has been studied and quantified. It has been demonstrated that the effect is significant at small field sizes. Multiple methods were used to quantify the effect of charge imbalance with good agreement between Monte Carlo simulations and experimental results obtained with modified detectors. When this correction is applied to the Monte Carlo data, the discrepancy from experimental data is eliminated. Based on the detailed component analysis using an adapted Monte Carlo user-code, it has been demonstrated that the effect of charge imbalance can be minimized by modifying the design of the detector's contacts.
Collapse
Affiliation(s)
- Hui Khee Looe
- University Clinic for Medical Radiation PhysicsMedical Campus Pius HospitalCarl von Ossietzky UniversityOldenburgGermany
| | | | | | - Isabel Büsing
- University Clinic for Medical Radiation PhysicsMedical Campus Pius HospitalCarl von Ossietzky UniversityOldenburgGermany
| | - Tuba Tekin
- University Clinic for Medical Radiation PhysicsMedical Campus Pius HospitalCarl von Ossietzky UniversityOldenburgGermany
| | - Ann‐Britt Ulrichs
- University Clinic for Medical Radiation PhysicsMedical Campus Pius HospitalCarl von Ossietzky UniversityOldenburgGermany
| | - Björn Delfs
- University Clinic for Medical Radiation PhysicsMedical Campus Pius HospitalCarl von Ossietzky UniversityOldenburgGermany
| | | | | | - Björn Poppe
- University Clinic for Medical Radiation PhysicsMedical Campus Pius HospitalCarl von Ossietzky UniversityOldenburgGermany
| |
Collapse
|