1
|
Ureba A, Toma-Dasu I, Lazzeroni M. Biologically guided automated treatment planning and evaluation: potential for treatment adaptation in head and neck cancer. Acta Oncol 2023; 62:1389-1393. [PMID: 37643087 DOI: 10.1080/0284186x.2023.2249221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Affiliation(s)
- Ana Ureba
- Department of Physics, Medical Radiation Physics, Stockholms Universitet, Stockholm, Sweden
- Department of Oncology-Pathology, Medical Radiation Physics, Karolinska Institutet, Stockholm, Sweden
| | - Iuliana Toma-Dasu
- Department of Physics, Medical Radiation Physics, Stockholms Universitet, Stockholm, Sweden
- Department of Oncology-Pathology, Medical Radiation Physics, Karolinska Institutet, Stockholm, Sweden
| | - Marta Lazzeroni
- Department of Physics, Medical Radiation Physics, Stockholms Universitet, Stockholm, Sweden
- Department of Oncology-Pathology, Medical Radiation Physics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Mittal S, Mallia MB. Molecular imaging of tumor hypoxia: Evolution of nitroimidazole radiopharmaceuticals and insights for future development. Bioorg Chem 2023; 139:106687. [PMID: 37406518 DOI: 10.1016/j.bioorg.2023.106687] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023]
Abstract
Though growing evidence has been collected in support of the concept of dose escalation based on the molecular level images indicating hypoxic tumor sub-volumes that could be radio-resistant, validation of the concept is still a work in progress. Molecular imaging of tumor hypoxia using radiopharmaceuticals is expected to provide the required input to plan dose escalation through Image Guided Radiation Therapy (IGRT) to kill/control the radio-resistant hypoxic tumor cells. The success of the IGRT, therefore, is heavily dependent on the quality of images obtained using the radiopharmaceutical and the extent to which the image represents the true hypoxic status of the tumor in spite of the heterogeneous nature of tumor hypoxia. Available literature on radiopharmaceuticals for imaging hypoxia is highly skewed in favor of nitroimidazole as the pharmacophore given their ability to undergo oxygen dependent reduction in hypoxic cells. In this context, present review on nitroimidazole radiopharmaceuticals would be immensely helpful to the researchers to obtain a birds-eye view on what has been achieved so far and what can be tried differently to obtain a better hypoxia imaging agent. The review also covers various methods of radiolabeling that could be utilized for developing radiotracers for hypoxia targeting applications.
Collapse
Affiliation(s)
- Sweety Mittal
- Radiopharmaceuticals Division, Bhabha Atomic Research Center, Mumbai 400085, India.
| | - Madhava B Mallia
- Radiopharmaceuticals Division, Bhabha Atomic Research Center, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
3
|
Schiavo F, Toma-Dasu I, Kjellsson Lindblom E. Hypoxia dose painting in SBRT - the virtual clinical trial approach. Acta Oncol 2023; 62:1239-1245. [PMID: 37713263 DOI: 10.1080/0284186x.2023.2258272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Treating hypoxic tumours remains a challenge in radiotherapy as hypoxia leads to enhanced tumour aggressiveness and resistance to radiation. As escalating the doses is rarely feasible within the healthy tissue constraints, dose-painting strategies have been explored. Consensus about the best of care for hypoxic tumours has however not been reached because, among other reasons, the limits of current functional in-vivo imaging systems in resolving the details and dynamics of oxygen transport in tissue. Computational modelling of the tumour microenvironment enables the design and conduction of virtual clinical trials by providing relationships between biological features and treatment outcomes. This study presents a framework for assessing the therapeutic influence of the individual characteristics of the vasculature and the resulting oxygenation of hypoxic tumours in a virtual clinical trial on dose painting in stereotactic body radiotherapy (SBRT) circumventing the limitations of the imaging systems. MATERIAL AND METHODS The homogeneous doses required to overcome hypoxia in simulated SBRT treatments of 1, 3 or 5 fractions were calculated for tumours with heterogeneous oxygenation derived from virtual vascular networks. The tumour control probability (TCP) was calculated for different scenarios for oxygenation dynamics resulting on cellular reoxygenation. RESULTS A three-fractions SBRT treatment delivering 41.9 Gy (SD 2.8) and 26.5 Gy (SD 0.1) achieved only 21% (SD 12) and 48% (SD 17) control in the hypoxic and normoxic subvolumes, respectively whereas fast reoxygenation improved the control by 30% to 50%. TCP values for the individual tumours with similar characteristics, however, might differ substantially, highlighting the crucial role of the magnitude and time evolution of hypoxia at the microscale. CONCLUSION The results show that local microvascular heterogeneities may affect the predicted outcome in the hypoxic core despite escalated doses, emphasizing the role of theoretical modelling in understanding of and accounting for the dominant factors of the tumour microenvironment.
Collapse
Affiliation(s)
- Filippo Schiavo
- Department of Physics, Stockholm University, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Iuliana Toma-Dasu
- Department of Physics, Stockholm University, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Emely Kjellsson Lindblom
- Department of Physics, Stockholm University, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Abstract
Hypoxia (oxygen deprivation) occurs in most solid malignancies, albeit with considerable heterogeneity. Hypoxia is associated with an aggressive cancer phenotype by promotion of genomic instability, evasion of anti-cancer therapies including radiotherapy and enhancement of metastatic risk. Therefore, hypoxia results in poor cancer outcomes. Targeting hypoxia to improve cancer outcomes is an attractive therapeutic strategy. Hypoxia-targeted dose painting escalates radiotherapy dose to hypoxic sub-volumes, as quantified and spatially mapped using hypoxia imaging. This therapeutic approach could overcome hypoxia-induced radioresistance and improve patient outcomes without the need for hypoxia-targeted drugs. This article will review the premise and underpinning evidence for personalized hypoxia-targeted dose painting. It will present data on relevant hypoxia imaging biomarkers, highlight the challenges and potential benefit of this approach and provide recommendations for future research priorities in this field. Personalized hypoxia-based radiotherapy de-escalation strategies will also be addressed.
Collapse
Affiliation(s)
- Ahmed Salem
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, Hashemite University, Zarqa, Jordan; Division of Cancer Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
5
|
Krarup MMK, Fischer BM, Christensen TN. New PET Tracers: Current Knowledge and Perspectives in Lung Cancer. Semin Nucl Med 2022; 52:781-796. [PMID: 35752465 DOI: 10.1053/j.semnuclmed.2022.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 11/11/2022]
Abstract
PET/CT with the tracer 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) has improved diagnostic imaging in cancer and is routinely used for diagnosing, staging and treatment planning in lung cancer patients. However, pitfalls of [18F]FDG-PET/CT limit the use in specific settings. Additionally, lung cancer is still the leading cause of cancer associated death and has high risk of recurrence after curative treatment. These circumstances have led to the continuous search for more sensitive and specific PET tracers to optimize lung cancer diagnosis, staging, treatment planning and evaluation. The objective of this review is to present and discuss current knowledge and perspectives of new PET tracers for use in lung cancer. A literature search was performed on PubMed and clinicaltrials.gov, limited to the past decade, excluding case reports, preclinical studies and studies on established tracers such as [18F]FDG and DOTATE. The most relevant papers from the search were evaluated. Several tracers have been developed targeting specific tumor characteristics and hallmarks of cancer. A small number of tracers have been studied extensively and evaluated head-to-head with [18F]FDG-PET/CT, whereas others need further investigation and validation in larger clinical trials. At this moment, none of the tracers can replace [18F]FDG-PET/CT. However, they might serve as supplementary imaging methods to provide more knowledge about biological tumor characteristics and visualize intra- and inter-tumoral heterogeneity.
Collapse
Affiliation(s)
- Marie M K Krarup
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet Copehagen University Hospital, Copenhagen, Denmark.
| | - Barbara M Fischer
- Department of Clinical Medicine, Faculty of Health, Univeristy of Copenhagen (UCPH), Copenhagen, Denmark; School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Tine N Christensen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet Copehagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
6
|
Brand DH, Kirby AM, Yarnold JR, Somaiah N. How Low Can You Go? The Radiobiology of Hypofractionation. Clin Oncol (R Coll Radiol) 2022; 34:280-287. [PMID: 35260319 DOI: 10.1016/j.clon.2022.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/25/2022] [Accepted: 02/11/2022] [Indexed: 12/25/2022]
Abstract
Hypofractionated radical radiotherapy is now an accepted standard of care for tumour sites such as prostate and breast cancer. Much research effort is being directed towards more profoundly hypofractionated (ultrahypofractionated) schedules, with some reaching UK standard of care (e.g. adjuvant breast). Hypofractionation exerts varying influences on each of the major clinical end points of radiotherapy studies: acute toxicity, late toxicity and local control. This review will discuss these effects from the viewpoint of the traditional 5 Rs of radiobiology, before considering non-canonical radiobiological effects that may be relevant to ultrahypofractionated radiotherapy. The principles outlined here may assist the reader in their interpretation of the wealth of clinical data presented in the tumour site-specific articles in this special issue.
Collapse
Affiliation(s)
- D H Brand
- The Institute of Cancer Research, London, UK
| | - A M Kirby
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK
| | - J R Yarnold
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK
| | - N Somaiah
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK.
| |
Collapse
|
7
|
Quantification of Tumor Hypoxia through Unsupervised Modelling of Consumption and Supply Hypoxia MR Imaging in Breast Cancer. Cancers (Basel) 2022; 14:cancers14051326. [PMID: 35267636 PMCID: PMC8909402 DOI: 10.3390/cancers14051326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Hypoxia in solid tumors is common in most solid cancers and is associated with treatment resistance to both chemo- and radiation-therapy. There is also reason to believe that hypoxia is an important determinant of metastic disease. Identifying hypoxia in solid tumors is important in treatment planning and decision making. In 2018 Hompland et al. proposed a method, based on quantifying consumption and supply of oxygen from diffusion weighted magnetic resonance imaging, to estimate the hypoxic fraction of a solid tumor. The method was based on training model parameters on a known hypoxia state in prostate cancer. In the present study we verified the validity of the consumption and supply concept in breast cancer. Furthermore, we developed and validated a new approach to the concept that does not require a ground truth to train the parameters. Abstract The purpose of the present study is to investigate if consumption and supply hypoxia (CSH) MR-imaging can depict breast cancer hypoxia, using the CSH-method initially developed for prostate cancer. Furthermore, to develop a generalized pan-cancer application of the CSH-method that doesn’t require a hypoxia reference standard for training the CSH-parameters. In a cohort of 69 breast cancer patients, we generated, based on the principles of intravoxel incoherent motion modelling, images reflecting cellular density (apparent diffusion coefficient; ADC) and vascular density (perfusion fraction; fp). Combinations of the information in these images were compared to a molecular hypoxia score made from gene expression data, aiming to identify a way to apply the CSH-methodology in breast cancer. Attempts to adapt previously proposed models for prostate cancer included direct transfers and model parameter rescaling. A novel approach, based on rescaling ADC and fp data to give more nuanced response in the relevant physiologic range, was also introduced. The new CSH-method was validated in a prostate cancer cohort with known hypoxia status. The proposed CSH-method gave estimates of hypoxia that was strongly correlated to the molecular hypoxia score in breast cancer, and hypoxia as measured in pathology slices stained with pimonidazole in prostate cancer. The generalized approach to CSH-imaging depicted hypoxia in both breast and prostate cancers and requires no model training. It is easy to implement using readily available technology and encourages further investigation of CSH-imaging in other cancer entities and in other settings, with the goal being to overcome hypoxia-induced resistance to treatment.
Collapse
|
8
|
Davis L, Recktenwald M, Hutt E, Fuller S, Briggs M, Goel A, Daringer N. Targeting HIF-2α in the Tumor Microenvironment: Redefining the Role of HIF-2α for Solid Cancer Therapy. Cancers (Basel) 2022; 14:1259. [PMID: 35267567 PMCID: PMC8909461 DOI: 10.3390/cancers14051259] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/26/2022] [Accepted: 02/26/2022] [Indexed: 02/06/2023] Open
Abstract
Inadequate oxygen supply, or hypoxia, is characteristic of the tumor microenvironment and correlates with poor prognosis and therapeutic resistance. Hypoxia leads to the activation of the hypoxia-inducible factor (HIF) signaling pathway and stabilization of the HIF-α subunit, driving tumor progression. The homologous alpha subunits, HIF-1α and HIF-2α, are responsible for mediating the transcription of a multitude of critical proteins that control proliferation, angiogenic signaling, metastasis, and other oncogenic factors, both differentially and sequentially regulating the hypoxic response. Post-translational modifications of HIF play a central role in its behavior as a mediator of transcription, as well as the temporal transition from HIF-1α to HIF-2α that occurs in response to chronic hypoxia. While it is evident that HIF-α is highly dynamic, HIF-2α remains vastly under-considered. HIF-2α can intensify the behaviors of the most aggressive tumors by adapting the cell to oxidative stress, thereby promoting metastasis, tissue remodeling, angiogenesis, and upregulating cancer stem cell factors. The structure, function, hypoxic response, spatiotemporal dynamics, and roles in the progression and persistence of cancer of this HIF-2α molecule and its EPAS1 gene are highlighted in this review, alongside a discussion of current therapeutics and future directions.
Collapse
Affiliation(s)
- Leah Davis
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Matthias Recktenwald
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Evan Hutt
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Schuyler Fuller
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Madison Briggs
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Arnav Goel
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Nichole Daringer
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| |
Collapse
|
9
|
Elamir AM, Stanescu T, Shessel A, Tadic T, Yeung I, Letourneau D, Kim J, Lukovic J, Dawson LA, Wong R, Barry A, Brierley J, Gallinger S, Knox J, O'Kane G, Dhani N, Hosni A, Taylor E. Simulated dose painting of hypoxic sub-volumes in pancreatic cancer stereotactic body radiotherapy. Phys Med Biol 2021; 66. [PMID: 34438383 DOI: 10.1088/1361-6560/ac215c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/26/2021] [Indexed: 12/26/2022]
Abstract
Dose painting of hypoxic tumour sub-volumes using positron-emission tomography (PET) has been shown to improve tumour controlin silicoin several sites, predominantly head and neck and lung cancers. Pancreatic cancer presents a more stringent challenge, given its proximity to critical gastro-intestinal organs-at-risk (OARs), anatomic motion, and impediments to reliable PET hypoxia quantification. A radiobiological model was developed to estimate clonogen survival fraction (SF), using18F-fluoroazomycin arabinoside PET (FAZA PET) images from ten patients with unresectable pancreatic ductal adenocarcinoma to quantify oxygen enhancement effects. For each patient, four simulated five-fraction stereotactic body radiotherapy (SBRT) plans were generated: (1) a standard SBRT plan aiming to cover the planning target volume with 40 Gy, (2) dose painting plans delivering escalated doses to a maximum of three FAZA-avid hypoxic sub-volumes, (3) dose painting plans with simulated spacer separating the duodenum and pancreatic head, and (4), plans with integrated boosts to geometric contractions of the gross tumour volume (GTV). All plans saturated at least one OAR dose limit. SF was calculated for each plan and sensitivity of SF to simulated hypoxia quantification errors was evaluated. Dose painting resulted in a 55% reduction in SF as compared to standard SBRT; 78% with spacer. Integrated boosts to hypoxia-blind geometric contractions resulted in a 41% reduction in SF. The reduction in SF for dose-painting plans persisted for all hypoxia quantification parameters studied, including registration and rigid motion errors that resulted in shifts and rotations of the GTV and hypoxic sub-volumes by as much as 1 cm and 10 degrees. Although proximity to OARs ultimately limited dose escalation, with estimated SFs (∼10-5) well above levels required to completely ablate a ∼10 cm3tumour, dose painting robustly reduced clonogen survival when accounting for expected treatment and imaging uncertainties and thus, may improve local response and associated morbidity.
Collapse
Affiliation(s)
- Ahmed M Elamir
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Teodor Stanescu
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Andrea Shessel
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada
| | - Tony Tadic
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Ivan Yeung
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Stronach Regional Cancer Centre, Southlake Regional Health Centre, Newmarket, Canada
| | - Daniel Letourneau
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - John Kim
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Jelena Lukovic
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Laura A Dawson
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Rebecca Wong
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Aisling Barry
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - James Brierley
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Steven Gallinger
- Ontario Institute for Cancer Research, PanCuRx Translational Research Initiative, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada
| | - Jennifer Knox
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | - Grainne O'Kane
- Ontario Institute for Cancer Research, PanCuRx Translational Research Initiative, Toronto, Canada.,Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | - Neesha Dhani
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | - Ali Hosni
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Edward Taylor
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| |
Collapse
|
10
|
Tomaszewski MR, Gillies RJ. The Biological Meaning of Radiomic Features. Radiology 2021; 298:505-516. [PMID: 33399513 PMCID: PMC7924519 DOI: 10.1148/radiol.2021202553] [Citation(s) in RCA: 329] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/30/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
An earlier incorrect version appeared online. This article was corrected on February 10, 2021.
Collapse
Affiliation(s)
- Michal R. Tomaszewski
- From the Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL 33612
| | - Robert J. Gillies
- From the Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL 33612
| |
Collapse
|
11
|
Virani NA, Kelada OJ, Kunjachan S, Detappe A, Kwon J, Hayashi J, Vazquez-Pagan A, Biancur DE, Ireland T, Kumar R, Sridhar S, Makrigiorgos GM, Berbeco RI. Noninvasive imaging of tumor hypoxia after nanoparticle-mediated tumor vascular disruption. PLoS One 2020; 15:e0236245. [PMID: 32706818 PMCID: PMC7380644 DOI: 10.1371/journal.pone.0236245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/01/2020] [Indexed: 01/09/2023] Open
Abstract
We have previously demonstrated that endothelial targeting of gold nanoparticles followed by external beam irradiation can cause specific tumor vascular disruption in mouse models of cancer. The induced vascular damage may lead to changes in tumor physiology, including tumor hypoxia, thereby compromising future therapeutic interventions. In this study, we investigate the dynamic changes in tumor hypoxia mediated by targeted gold nanoparticles and clinical radiation therapy (RT). By using noninvasive whole-body fluorescence imaging, tumor hypoxia was measured at baseline, on day 2 and day 13, post-tumor vascular disruption. A 2.5-fold increase (P<0.05) in tumor hypoxia was measured two days after combined therapy, resolving by day 13. In addition, the combination of vascular-targeted gold nanoparticles and radiation therapy resulted in a significant (P<0.05) suppression of tumor growth. This is the first study to demonstrate the tumor hypoxic physiological response and recovery after delivery of vascular-targeted gold nanoparticles followed by clinical radiation therapy in a human non-small cell lung cancer athymic Foxn1nu mouse model.
Collapse
Affiliation(s)
- Needa A. Virani
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Olivia J. Kelada
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sijumon Kunjachan
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alexandre Detappe
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston Massachusetts, United States of America
| | - Jihun Kwon
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Radiation Oncology, Hokkaido University, Sapporo, Japan
| | - Jennifer Hayashi
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- Nanomedicine Innovation Center and Department of Physics, Northeastern University, Boston, Massachusetts, United States of America
| | - Ana Vazquez-Pagan
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- Nanomedicine Innovation Center and Department of Physics, Northeastern University, Boston, Massachusetts, United States of America
| | - Douglas E. Biancur
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston Massachusetts, United States of America
| | - Thomas Ireland
- LA-ICP-MS and ICP-ES Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Rajiv Kumar
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- Nanomedicine Innovation Center and Department of Physics, Northeastern University, Boston, Massachusetts, United States of America
| | - Srinivas Sridhar
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- Nanomedicine Innovation Center and Department of Physics, Northeastern University, Boston, Massachusetts, United States of America
| | - G. Mike Makrigiorgos
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ross I. Berbeco
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
12
|
Dahle TJ, Rusten E, Stokkevåg CH, Silvoniemi A, Mairani A, Fjæra LF, Rørvik E, Henjum H, Wright P, Boer CG, Forsback S, Minn H, Malinen E, Ytre-Hauge KS. The FLUKA Monte Carlo code coupled with an OER model for biologically weighted dose calculations in proton therapy of hypoxic tumors. Phys Med 2020; 76:166-172. [PMID: 32683269 DOI: 10.1016/j.ejmp.2020.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/25/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION The increased radioresistance of hypoxic cells compared to well-oxygenated cells is quantified by the oxygen enhancement ratio (OER). In this study we created a FLUKA Monte Carlo based tool for inclusion of both OER and relative biological effectiveness (RBE) in biologically weighted dose (ROWD) calculations in proton therapy and applied this to explore the impact of hypoxia. METHODS The RBE-weighted dose was adapted for hypoxia by making RBE model parameters dependent on the OER, in addition to the linear energy transfer (LET). The OER depends on the partial oxygen pressure (pO2) and LET. To demonstrate model performance, calculations were done with spread-out Bragg peaks (SOBP) in water phantoms with pO2 ranging from strongly hypoxic to normoxic (0.01-30 mmHg) and with a head and neck cancer proton plan optimized with an RBE of 1.1 and pO2 estimated voxel-by-voxel using [18F]-EF5 PET. An RBE of 1.1 and the Rørvik RBE model were used for the ROWD calculations. RESULTS The SOBP in water had decreasing ROWD with decreasing pO2. In the plans accounting for oxygenation, the median target doses were approximately a factor 1.1 lower than the corresponding plans which did not consider the OER. Hypoxia adapted target ROWDs were considerably more heterogeneous than the RBE1.1-weighted doses. CONCLUSION We realized a Monte Carlo based tool for calculating the ROWD. Read-in of patient pO2 and estimation of ROWD with flexibility in choice of RBE model was achieved, giving a tool that may be useful in future clinical applications of hypoxia-guided particle therapy.
Collapse
Affiliation(s)
- Tordis Johnsen Dahle
- Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway.
| | - Espen Rusten
- Department of Physics, University of Oslo, P.O. Box 1048 Blindern, 0316 Oslo, Norway; Department of Medical Physics, Oslo University Hospital, P.O. Box 4953 Nydalen, 0424 Oslo, Norway
| | - Camilla Hanquist Stokkevåg
- Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway; Department of Oncology and Medical Physics, Haukeland University Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
| | - Antti Silvoniemi
- Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital, P.O. Box 52, 20521 Turku, Finland; Turku PET Centre, University of Turku, P.O. Box 52, 20521 Turku, Finland
| | - Andrea Mairani
- Centro Nazionale di Adroterapia Oncologica (CNAO Foundation), Str. Campeggi, 53, 27100 Pavia, Italy; Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
| | - Lars Fredrik Fjæra
- Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway
| | - Eivind Rørvik
- Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway; Department of Medical Physics, Oslo University Hospital, P.O. Box 4953 Nydalen, 0424 Oslo, Norway
| | - Helge Henjum
- Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway
| | - Pauliina Wright
- Department of Oncology and Radiotherapy, Turku University Hospital, P.O. Box 52, 20521 Turku, Finland; Department of Medical Physics, Turku University Hospital, P.O. Box 52, 20521 Turku, Finland
| | - Camilla Grindeland Boer
- Department of Oncology and Medical Physics, Haukeland University Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
| | - Sarita Forsback
- Turku PET Centre, University of Turku, P.O. Box 52, 20521 Turku, Finland
| | - Heikki Minn
- Turku PET Centre, University of Turku, P.O. Box 52, 20521 Turku, Finland; Department of Oncology and Radiotherapy, Turku University Hospital, P.O. Box 52, 20521 Turku, Finland
| | - Eirik Malinen
- Department of Physics, University of Oslo, P.O. Box 1048 Blindern, 0316 Oslo, Norway; Department of Medical Physics, Oslo University Hospital, P.O. Box 4953 Nydalen, 0424 Oslo, Norway
| | | |
Collapse
|
13
|
Huang J, Li JJ. Multiple Dynamics in Tumor Microenvironment Under Radiotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1263:175-202. [PMID: 32588328 DOI: 10.1007/978-3-030-44518-8_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tumor microenvironment (TME) is an evolutionally low-level and embryonically featured tissue comprising heterogenic populations of malignant and stromal cells as well as noncellular components. Under radiotherapy (RT), the major modality for the treatment of malignant diseases [1], TME shows an adaptive response in multiple aspects that affect the efficacy of RT. With the potential clinical benefits, interests in RT combined with immunotherapy (IT) are intensified with a large scale of clinical trials underway for an array of cancer types. A better understanding of the multiple molecular aspects, especially the cross talks of RT-mediated energy reprogramming and immunoregulation in the irradiated TME (ITME), will be necessary for further enhancing the benefit of RT-IT modality. Coming studies should further reveal more mechanistic insights of radiation-induced instant or permanent consequence in tumor and stromal cells. Results from these studies will help to identify critical molecular pathways including cancer stem cell repopulation, metabolic rewiring, and specific communication between radioresistant cancer cells and the infiltrated immune active lymphocytes. In this chapter, we will focus on the following aspects: radiation-repopulated cancer stem cells (CSCs), hypoxia and re-oxygenation, reprogramming metabolism, and radiation-induced immune regulation, in which we summarize the current literature to illustrate an integrated image of the ITME. We hope that the contents in this chapter will be informative for physicians and translational researchers in cancer radiotherapy or immunotherapy.
Collapse
Affiliation(s)
- Jie Huang
- Department of Radiation Oncology, University of California Davis, Sacramento, CA, USA
| | - Jian Jian Li
- Department of Radiation Oncology, University of California Davis, Sacramento, CA, USA. .,NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
14
|
Abdollahi H. Radiotherapy dose painting by circadian rhythm based radiomics. Med Hypotheses 2019; 133:109415. [PMID: 31586813 DOI: 10.1016/j.mehy.2019.109415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022]
Abstract
Radiotherapy dose painting is a new dose delivery technique to achieve higher treatment outcome. In this approach, does is escalated to high progressive regions which are heterogeneous and determined by advanced medical imaging. Radiomics is issued as a feasible image quantification method to reveal tumor heterogeneity by extraction of high throughput mineable texture features. On the other hand, circadian rhythm is a given biological process that studied as a critical factor to obtain more effective treatment outcome. In this study, we hypothesized that radiotherapy dose painting could be enhanced by using circadian rhythm that is determined on the radiomics maps obtained from medical images. This hypothesis is based on the idea which circadian rhythm could change the tumor heterogeneity and therefore image features.
Collapse
Affiliation(s)
- Hamid Abdollahi
- Department of Radiologic Sciences and Medical Physics, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran; Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|