1
|
Rabindranath M, Sun Y, Khalili K, Bhat M. Utilizing Machine Learning to Predict Liver Allograft Fibrosis by Leveraging Clinical and Imaging Data. Clin Transplant 2025; 39:e70148. [PMID: 40245174 PMCID: PMC12005582 DOI: 10.1111/ctr.70148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 03/09/2025] [Accepted: 03/21/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND AND AIM Liver transplant (LT) recipients may succumb to graft-related pathologies, contributing to graft fibrosis (GF). Current methods to diagnose GF are limited, ranging from procedural-related complications to low accuracy. With recent advances in machine learning (ML), we aimed to develop a noninvasive tool using demographic, clinical, laboratory, and B-mode ultrasound (US) features to predict significant fibrosis (METAVIR≥F2). METHODS We used a nested 10-fold cross-validation approach with grid-search for hyperparameter fine-tuning to train an artificial neural network (ANN) and a support vector machine (SVM) to classify mild fibrosis (F0-F1) and significant fibrosis (F2-F4) on 1131 patients. We calculated Shapley values to identify top-ranked features, determining the contribution of each feature to model predictions. For the imaging-based model, we used 4819 images with 892 studies trained on the residual network 18 (ResNet18) model to classify F0-F1 versus F3-F4. RESULTS We determined the ANN performed the best when compared to the SVM and standard biomarkers, with an AUC ranging from 0.77 to 0.81. The ResNet18 model was unable to diagnose advanced GF, leading to the training AUCs ranging from 0.89 to 0.97, while the validation and testing AUCs were 0.43-0.63. Shapley analysis highlighted the following top-ranked features associated with significant GF: hepatitis C at transplant, recipient age, recipient sex, and certain blood markers such as creatinine and hemoglobin. CONCLUSION Noninvasive approaches using ML for predicting significant GF perform well when considering demographic, clinical, and laboratory data; however, this performance is not enhanced with the use of US images.
Collapse
Affiliation(s)
- Madhumitha Rabindranath
- Ajmera Transplant ProgramUniversity Health NetworkTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Toronto General Hospital Research Institute, University Health NetworkTorontoOntarioCanada
| | - Yingji Sun
- Ajmera Transplant ProgramUniversity Health NetworkTorontoOntarioCanada
| | - Korosh Khalili
- Department of Medical ImagingPrincess Margaret HospitalTorontoOntarioCanada
| | - Mamatha Bhat
- Ajmera Transplant ProgramUniversity Health NetworkTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Toronto General Hospital Research Institute, University Health NetworkTorontoOntarioCanada
- Division of Gastroenterology & HepatologyDepartment of MedicineUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
2
|
Ali R, Li H, Zhang H, Pan W, Reeder SB, Harris D, Masch W, Aslam A, Shanbhogue K, Bernieh A, Ranganathan S, Parikh N, Dillman JR, He L. Multi-site, multi-vendor development and validation of a deep learning model for liver stiffness prediction using abdominal biparametric MRI. Eur Radiol 2025:10.1007/s00330-024-11312-3. [PMID: 39779515 DOI: 10.1007/s00330-024-11312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/04/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Chronic liver disease (CLD) is a substantial cause of morbidity and mortality worldwide. Liver stiffness, as measured by MR elastography (MRE), is well-accepted as a surrogate marker of liver fibrosis. PURPOSE To develop and validate deep learning (DL) models for predicting MRE-derived liver stiffness using routine clinical non-contrast abdominal T1-weighted (T1w) and T2-weighted (T2w) data from multiple institutions/system manufacturers in pediatric and adult patients. MATERIALS AND METHODS We identified pediatric and adult patients with known or suspected CLD from four institutions, who underwent clinical MRI with MRE from 2011 to 2022. We used T1w and T2w data to train DL models for liver stiffness classification. Patients were categorized into two groups for binary classification using liver stiffness thresholds (≥ 2.5 kPa, ≥ 3.0 kPa, ≥ 3.5 kPa, ≥ 4 kPa, or ≥ 5 kPa), reflecting various degrees of liver stiffening. RESULTS We identified 4695 MRI examinations from 4295 patients (mean ± SD age, 47.6 ± 18.7 years; 428 (10.0%) pediatric; 2159 males [50.2%]). With a primary liver stiffness threshold of 3.0 kPa, our model correctly classified patients into no/minimal (< 3.0 kPa) vs moderate/severe (≥ 3.0 kPa) liver stiffness with AUROCs of 0.83 (95% CI: 0.82, 0.84) in our internal multi-site cross-validation (CV) experiment, 0.82 (95% CI: 0.80, 0.84) in our temporal hold-out validation experiment, and 0.79 (95% CI: 0.75, 0.81) in our external leave-one-site-out CV experiment. The developed model is publicly available ( https://github.com/almahdir1/Multi-channel-DeepLiverNet2.0.git ). CONCLUSION Our DL models exhibited reasonable diagnostic performance for categorical classification of liver stiffness on a large diverse dataset using T1w and T2w MRI data. KEY POINTS Question Can DL models accurately predict liver stiffness using routine clinical biparametric MRI in pediatric and adult patients with CLD? Findings DeepLiverNet2.0 used biparametric MRI data to classify liver stiffness, achieving AUROCs of 0.83, 0.82, and 0.79 for multi-site CV, hold-out validation, and external CV. Clinical relevance Our DeepLiverNet2.0 AI model can categorically classify the severity of liver stiffening using anatomic biparametric MR images in children and young adults. Model refinements and incorporation of clinical features may decrease the need for MRE.
Collapse
Affiliation(s)
- Redha Ali
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hailong Li
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Artificial Intelligence Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Huixian Zhang
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Wen Pan
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Scott B Reeder
- Department of Radiology, University of Wisconsin, Madison, WI, USA
- Department of Medical Physics, Biomedical Engineering, Medicine, Emergency Medicine, University of Wisconsin, Madison, WI, USA
| | - David Harris
- Department of Radiology, University of Wisconsin, Madison, WI, USA
| | - William Masch
- Department of Radiology, Michigan Medicine, Ann Arbor, MI, USA
| | - Anum Aslam
- Department of Radiology, Michigan Medicine, Ann Arbor, MI, USA
| | | | - Anas Bernieh
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Nehal Parikh
- Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jonathan R Dillman
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Artificial Intelligence Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Lili He
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Artificial Intelligence Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Computer Science, Biomedical Engineering, Biomedical Informatics, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
3
|
Papachristou K, Katsakiori PF, Papadimitroulas P, Strigari L, Kagadis GC. Digital Twins' Advancements and Applications in Healthcare, Towards Precision Medicine. J Pers Med 2024; 14:1101. [PMID: 39590593 PMCID: PMC11595921 DOI: 10.3390/jpm14111101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
This review examines the significant influence of Digital Twins (DTs) and their variant, Digital Human Twins (DHTs), on the healthcare field. DTs represent virtual replicas that encapsulate both medical and physiological characteristics-such as tissues, organs, and biokinetic data-of patients. These virtual models facilitate a deeper understanding of disease progression and enhance the customization and optimization of treatment plans by modeling complex interactions between genetic factors and environmental influences. By establishing dynamic, bidirectional connections between the DTs of physical objects and their digital counterparts, these technologies enable real-time data exchange, thereby transforming electronic health records. Leveraging the increasing availability of extensive historical datasets from clinical trials and real-world sources, AI models can now generate comprehensive predictions of future health outcomes for specific patients in the form of AI-generated DTs. Such models can also offer insights into potential diagnoses, disease progression, and treatment responses. This remarkable progression in healthcare paves the way for precision medicine and personalized health, allowing for high-level individualized medical interventions and therapies. However, the integration of DTs into healthcare faces several challenges, including data security, accessibility, bias, and quality. Addressing these obstacles is crucial to realizing the full potential of DHTs, heralding a new era of personalized, precise, and accurate medicine.
Collapse
Affiliation(s)
- Konstantinos Papachristou
- 3dmi Research Group, Department of Medical Physics, School of Medicine, University of Patras, 26504 Rion, Greece; (K.P.); (P.F.K.); (P.P.)
| | - Paraskevi F. Katsakiori
- 3dmi Research Group, Department of Medical Physics, School of Medicine, University of Patras, 26504 Rion, Greece; (K.P.); (P.F.K.); (P.P.)
| | - Panagiotis Papadimitroulas
- 3dmi Research Group, Department of Medical Physics, School of Medicine, University of Patras, 26504 Rion, Greece; (K.P.); (P.F.K.); (P.P.)
- Bioemission Technology Solutions, BIOEMTECH, 15344 Athens, Greece
| | - Lidia Strigari
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - George C. Kagadis
- 3dmi Research Group, Department of Medical Physics, School of Medicine, University of Patras, 26504 Rion, Greece; (K.P.); (P.F.K.); (P.P.)
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
4
|
Juneja D. Artificial intelligence: Applications in critical care gastroenterology. Artif Intell Gastrointest Endosc 2024; 5:89138. [DOI: 10.37126/aige.v5.i1.89138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/07/2023] [Accepted: 12/26/2023] [Indexed: 02/20/2024] Open
Abstract
Gastrointestinal (GI) complications frequently necessitate intensive care unit (ICU) admission. Additionally, critically ill patients also develop GI complications requiring further diagnostic and therapeutic interventions. However, these patients form a vulnerable group, who are at risk for developing side effects and complications. Every effort must be made to reduce invasiveness and ensure safety of interventions in ICU patients. Artificial intelligence (AI) is a rapidly evolving technology with several potential applications in healthcare settings. ICUs produce a large amount of data, which may be employed for creation of AI algorithms, and provide a lucrative opportunity for application of AI. However, the current role of AI in these patients remains limited due to lack of large-scale trials comparing the efficacy of AI with the accepted standards of care.
Collapse
Affiliation(s)
- Deven Juneja
- Department of Critical Care Medicine, Max Super Speciality Hospital, New Delhi 110017, India
| |
Collapse
|
5
|
Liu H, Fu Y, Guo D, Li S, Jin Y, Zhang A, Wu C. TMM: A comprehensive CAD system for hepatic fibrosis 5-grade METAVIR staging based on liver MRI. Med Phys 2024; 51:2032-2043. [PMID: 37734071 DOI: 10.1002/mp.16700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Precise staging of hepatic fibrosis with MRI is necessary as it can assist precision medicine. Computer aided diagnosis (CAD) system with distinguishing radiomics features and radiologists domain knowledge is expected to obtain 5-grade meta-analysis of histological data in viral hepatitis (METAVIR) staging. PURPOSE This study aims to obtain the precise staging of hepatic fibrosis based on MRI as it predicts the risk of future liver-related morbidity and the need for treatment, monitoring and surveillance. Based on METAVIR score, fibrosis can be divided into five stages. Most previous researches focus on binary classification, such as cirrhosis versus non-cirrhosis, early versus advanced fibrosis, and substantial fibrosis or not. In this paper, a comprehensive CAD system TMM is proposed to precisely class hepatic fibrosis into five stages for precision medicine instead of the common binary classification. METHODS We propose a novel hepatic fibrosis staging CAD system TMM which includes three modules, Two-level Image Statistical Radiomics Feature (TISRF), Monotonic Error Correcting Output Codes (MECOC) and Monotone Multiclassification with Deep Forest (MMDF). TISRF extracts radiomics features for distinguishing different hepatic fibrosis stages. MECOC is proposed to encode monotonic multiclass by making full use of the progressive severity of hepatic fibrosis and increase the fault tolerance and error correction ability. MMDF combines multiple Deep Forest network to ensure the final five-class classification, which can achieve more precise classification than the common binary classification. The performance of the proposed hepatic fibrosis CAD system is tested on the hepatic data collected from our rabbits models of fibrosis. RESULTS A total of 140 regions of interest (ROI) are selected from MRI T1W of liver fibrosis models in 35 rabbits with F0(n = 16), F1(n = 28), F2(n = 29), F3(n = 44) and F4(n = 23). The performance is evaluated by five-fold cross-validation. TMM can achieve the highest total accuracy of 72.14% for five fibrosis stages compared with other popular classifications. To make a comprehensive comparison, a binary classification experiment have been carried out. CONCLUSIONS T1WI can obtain precise staging of hepatic fibrosis with the help of comprehensive CAD including radiomics features extraction inspired by radiologists, monotonic multiclass according to the severity of hepatic fibrosis, and deep learning classification.
Collapse
Affiliation(s)
- Hui Liu
- School of Biomedical Engineering, Dalian University of Technology & Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, Dalian, China
| | - Yaqing Fu
- School of Biomedical Engineering, Dalian University of Technology & Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, Dalian, China
| | - Dongmei Guo
- Department of Radiology Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Shuo Li
- Department of Radiology Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yilin Jin
- School of Biomedical Engineering, Dalian University of Technology & Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, Dalian, China
| | - Aoran Zhang
- School of Biomedical Engineering, Dalian University of Technology & Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, Dalian, China
| | - Chengjun Wu
- School of Biomedical Engineering, Dalian University of Technology & Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, Dalian, China
| |
Collapse
|
6
|
Ahn JC, Shah VH. Artificial intelligence in gastroenterology and hepatology. ARTIFICIAL INTELLIGENCE IN CLINICAL PRACTICE 2024:443-464. [DOI: 10.1016/b978-0-443-15688-5.00016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Wang HP, Zheng PC, Wang XM, Sang L. Artifacts in two-dimensional shear wave elastography of liver. World J Gastroenterol 2023; 29:3318-3327. [PMID: 37377588 PMCID: PMC10292141 DOI: 10.3748/wjg.v29.i21.3318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 05/06/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Artifacts are common when using two-dimensional shear wave elastography (2-D SWE) to measure liver stiffness (LS), but they are poorly recognized.
AIM To investigate the presence and influence of artifacts in 2-D SWE of liver.
METHODS We included 158 patients with chronic liver disease, who underwent 2-D SWE examination by a novice and an expert. A cross line at the center of the elastogram was drawn and was divided it into four locations: top-left, top-right, bottom-left, and bottom-right. The occurrence frequency of artifacts in different locations was compared. The influence of artifacts on the LS measurements was evaluated by comparing the elastogram with the most artifacts (EMA) and the elastogram with the least artifacts (ELA).
RESULTS The percentage of elastograms with artifacts in the novice (51.7%) was significantly higher than that of the expert (19.6%) (P < 0.001). It was found that both operators had the highest frequency of artifacts at bottom-left, followed by top-left and bottom-right, and top-right had the lowest frequency. The LS values (LSVs) and standard deviation values of EMAs were significantly higher than those of ELAs for both operators. An intraclass correlation coefficient value of 0.96 was found in the LSVs of EMAs of the two operators, and it increased to 0.98 when the LSVs of the ELAs were used. Both operators had lower stability index values for EMAs than ELAs, but the difference was only statistically significant for the novice.
CONCLUSION Artifacts are common when using 2-D SWE to measure LS, especially for the novice. Artifacts may lead to the overestimation of LS and reduce the repeatability and reliability of LS measurements.
Collapse
Affiliation(s)
- Hui-Peng Wang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Peng-Chao Zheng
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Xue-Mei Wang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Liang Sang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
8
|
Zhang XY, Wei Q, Wu GG, Tang Q, Pan XF, Chen GQ, Zhang D, Dietrich CF, Cui XW. Artificial intelligence - based ultrasound elastography for disease evaluation - a narrative review. Front Oncol 2023; 13:1197447. [PMID: 37333814 PMCID: PMC10272784 DOI: 10.3389/fonc.2023.1197447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Ultrasound elastography (USE) provides complementary information of tissue stiffness and elasticity to conventional ultrasound imaging. It is noninvasive and free of radiation, and has become a valuable tool to improve diagnostic performance with conventional ultrasound imaging. However, the diagnostic accuracy will be reduced due to high operator-dependence and intra- and inter-observer variability in visual observations of radiologists. Artificial intelligence (AI) has great potential to perform automatic medical image analysis tasks to provide a more objective, accurate and intelligent diagnosis. More recently, the enhanced diagnostic performance of AI applied to USE have been demonstrated for various disease evaluations. This review provides an overview of the basic concepts of USE and AI techniques for clinical radiologists and then introduces the applications of AI in USE imaging that focus on the following anatomical sites: liver, breast, thyroid and other organs for lesion detection and segmentation, machine learning (ML) - assisted classification and prognosis prediction. In addition, the existing challenges and future trends of AI in USE are also discussed.
Collapse
Affiliation(s)
- Xian-Ya Zhang
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Wei
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ge-Ge Wu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Tang
- Department of Ultrasonography, The First Hospital of Changsha, Changsha, China
| | - Xiao-Fang Pan
- Health Medical Department, Dalian Municipal Central Hospital, Dalian, China
| | - Gong-Quan Chen
- Department of Medical Ultrasound, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Di Zhang
- Department of Medical Ultrasound, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | | | - Xin-Wu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Lei P, Hu N, Wu Y, Tang M, Lin C, Kong L, Zhang L, Luo P, Chan LW. Radiobioinformatics: A novel bridge between basic research and clinical practice for clinical decision support in diffuse liver diseases. IRADIOLOGY 2023; 1:167-189. [DOI: 10.1002/ird3.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/18/2023] [Indexed: 01/04/2025]
Abstract
AbstractThe liver is a multifaceted organ that is responsible for many critical functions encompassing amino acid, carbohydrate, and lipid metabolism, all of which make a healthy liver essential for the human body. Contemporary imaging methodologies have remarkable diagnostic accuracy in discerning focal liver lesions; however, a comprehensive understanding of diffuse liver diseases is a requisite for radiologists to accurately diagnose or predict the progression of such lesions within clinical contexts. Nonetheless, the conventional attributes of radiological features, including morphology, size, margin, density, signal intensity, and echoes, limit their clinical utility. Radiomics is a widely used approach that is characterized by the extraction of copious image features from radiographic depictions, which gives it considerable potential in addressing this limitation. It is worth noting that functional or molecular alterations occur significantly prior to the morphological shifts discernible by imaging modalities. Consequently, the explication of potential mechanisms by multiomics analyses (encompassing genomics, epigenomics, transcriptomics, proteomics, and metabolomics) is essential for investigating putative signal pathway regulations from a radiological viewpoint. In this review, we elaborate on the principal pathological categorizations of diffuse liver diseases, the evaluation of multiomics approaches pertaining to diffuse liver diseases, and the prospective value of predictive models. Accordingly, the overarching objective of this review is to scrutinize the interrelations between radiological features and bioinformatics as well as to consider the development of prediction models predicated on radiobioinformatics as integral components of clinical decision support systems for diffuse liver diseases.
Collapse
Affiliation(s)
- Pinggui Lei
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Kowloon Hong Kong SAR China
- Department of Radiology The Affiliated Hospital of Guizhou Medical University Guiyang Guizhou China
- School of Public Health Guizhou Medical University Guiyang Guizhou China
| | - Na Hu
- Department of Radiology The Affiliated Hospital of Guizhou Medical University Guiyang Guizhou China
| | - Yuhui Wu
- Department of Radiology The Affiliated Hospital of Guizhou Medical University Guiyang Guizhou China
| | - Maowen Tang
- Department of Radiology The Affiliated Hospital of Guizhou Medical University Guiyang Guizhou China
| | - Chong Lin
- Department of Radiology The Affiliated Hospital of Guizhou Medical University Guiyang Guizhou China
| | - Luoyi Kong
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Kowloon Hong Kong SAR China
| | - Lingfeng Zhang
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Kowloon Hong Kong SAR China
| | - Peng Luo
- School of Public Health Guizhou Medical University Guiyang Guizhou China
| | - Lawrence Wing‐Chi Chan
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Kowloon Hong Kong SAR China
| |
Collapse
|
10
|
An P, Wang W, Chen X, Zhuang Z, Cui L. Machine learning brings new insights for reducing salinization disaster. FRONTIERS IN EARTH SCIENCE 2023; 11. [DOI: 10.3389/feart.2023.1130070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
This study constructs a machine learning system to examine the predictors of soil salinity in deserts. We conclude that soil humidity and subterranean CO2 concentration are two leading controls of soil salinity—respectively explain 71.33%, 13.83% in the data. The (R2, root-mean-square error, RPD) values at the training stage, validation stage and testing stage are (0.9924, 0.0123, and 8.282), (0.9931, 0.0872, and 7.0918), (0.9826, 0.1079, and 6.0418), respectively. Based on the underlining mechanisms, we conjecture that subterranean CO2 sequestration could reduce salinization disaster in deserts.
Collapse
|
11
|
Gatos I, Yarmenitis S, Theotokas I, Koskinas J, Manesis E, Zoumpoulis SP, Zoumpoulis PS. Comparison of Visual Transient Elastography, Vibration Controlled Transient Elastography, Shear Wave Elastography and Sound Touch Elastography in Chronic liver Disease assessment using liver biopsy as 'Gold Standard'. Eur J Radiol 2022; 157:110557. [PMID: 36274360 DOI: 10.1016/j.ejrad.2022.110557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/15/2022] [Accepted: 10/10/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Chronic liver disease (CLD) is considered one of the main causes of death. Ultrasound Elastography (USE) is a CLD assessment imaging method. This study aims to evaluate a recently introduced commercial alternative of USE, Visual Transient Elastography (ViTE), and to compare it with three established USE methods, Vibration Controlled Transient Elastography (VCTE), Shear Wave Elastography (SWE) and Sound Touch Elastography (STE), using Liver Biopsy (LB) as 'Gold Standard'. METHOD 152 consecutive subjects underwent a liver ViTE, VCTE, SWE and STE examination. A Receiver Operator Characteristic (ROC) analysis was performed on the measured stiffness values of each method. An inter- intra-observer analysis was also performed. RESULTS The ViTE, VCTE, SWE and STE ROC analysis resulted in an AUC of 0.9481, 0.9900, 0.9621 and 0.9683 for F ≥ F1, 0.9698, 0.9767, 0.9931 and 0.9834 for F ≥ F2, 0.9846, 0.9651, 0.9835 and 0.9763 for F ≥ F3, and 0.9524, 0.9645, 0.9656, and 0.9509 for F = F4, respectively. ICC scores were 0.98 for Inter-observer and 0.97 for Intra-observer variability analysis. CONCLUSION ViTE performance in CLD stage differentiation is comparable to the performance of VCTE, SWE and STE.
Collapse
Affiliation(s)
- Ilias Gatos
- Diagnostic Echotomography SA, 317C Kifissias Ave., GR 14561, Kifissia, Greece; Department of Medical Physics, School of Medicine, University of Patras, Rion, GR 26504, Greece.
| | - Spyros Yarmenitis
- Diagnostic Echotomography SA, 317C Kifissias Ave., GR 14561, Kifissia, Greece.
| | - Ioannis Theotokas
- Diagnostic Echotomography SA, 317C Kifissias Ave., GR 14561, Kifissia, Greece.
| | - John Koskinas
- 2(nd) Academic Department of Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Mikras Asias 75, Athens, GR 115 27, Greece; Hippokrateion General Hospital, Vasilissis Sofias 114, Athens, GR 115 27, Greece.
| | | | - Spyros P Zoumpoulis
- Diagnostic Echotomography SA, 317C Kifissias Ave., GR 14561, Kifissia, Greece.
| | - Pavlos S Zoumpoulis
- Diagnostic Echotomography SA, 317C Kifissias Ave., GR 14561, Kifissia, Greece.
| |
Collapse
|
12
|
Ma L, Wang R, He Q, Huang L, Wei X, Lu X, Du Y, Luo J, Liao H. Artificial intelligence-based ultrasound imaging technologies for hepatic diseases. ILIVER 2022; 1:252-264. [DOI: 10.1016/j.iliver.2022.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
13
|
Fujita Y, Ishihara K, Nakata K, Hamamoto Y, Segawa M, Sakaida I, Mitani Y, Terai S. Weakly Supervised Multiple Instance Learning for Liver Cirrhosis Classification using Ultrasound Images. 2022 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATICS AND BIOMEDICAL SCIENCE (ICIIBMS) 2022:225-229. [DOI: 10.1109/iciibms55689.2022.9971604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
14
|
Liu JQ, Ren JY, Xu XL, Xiong LY, Peng YX, Pan XF, Dietrich CF, Cui XW. Ultrasound-based artificial intelligence in gastroenterology and hepatology. World J Gastroenterol 2022; 28:5530-5546. [PMID: 36304086 PMCID: PMC9594013 DOI: 10.3748/wjg.v28.i38.5530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/12/2022] [Accepted: 09/22/2022] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI), especially deep learning, is gaining extensive attention for its excellent performance in medical image analysis. It can automatically make a quantitative assessment of complex medical images and help doctors to make more accurate diagnoses. In recent years, AI based on ultrasound has been shown to be very helpful in diffuse liver diseases and focal liver lesions, such as analyzing the severity of nonalcoholic fatty liver and the stage of liver fibrosis, identifying benign and malignant liver lesions, predicting the microvascular invasion of hepatocellular carcinoma, curative transarterial chemoembolization effect, and prognoses after thermal ablation. Moreover, AI based on endoscopic ultrasonography has been applied in some gastrointestinal diseases, such as distinguishing gastric mesenchymal tumors, detection of pancreatic cancer and intraductal papillary mucinous neoplasms, and predicting the preoperative tumor deposits in rectal cancer. This review focused on the basic technical knowledge about AI and the clinical application of AI in ultrasound of liver and gastroenterology diseases. Lastly, we discuss the challenges and future perspectives of AI.
Collapse
Affiliation(s)
- Ji-Qiao Liu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Jia-Yu Ren
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Xiao-Lan Xu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Li-Yan Xiong
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yue-Xiang Peng
- Department of Ultrasound, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan 430030, Hubei Province, China
| | - Xiao-Fang Pan
- Health Medical Department, Dalian Municipal Central Hospital, Dalian 116000, Liaoning Province, China
| | - Christoph F Dietrich
- Department Allgemeine Innere Medizin, Kliniken Hirslanden Beau Site, Salem und Permanence, Bern 3003, Switzerland
| | - Xin-Wu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
15
|
Ozturk A, Olson MC, Samir AE, Venkatesh SK. Liver fibrosis assessment: MR and US elastography. Abdom Radiol (NY) 2022; 47:3037-3050. [PMID: 34687329 PMCID: PMC9033887 DOI: 10.1007/s00261-021-03269-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 01/18/2023]
Abstract
Elastography has emerged as a preferred non-invasive imaging technique for the clinical assessment of liver fibrosis. Elastography methods provide liver stiffness measurement (LSM) as a surrogate quantitative biomarker for fibrosis burden in chronic liver disease (CLD). Elastography can be performed either with ultrasound or MRI. Currently available ultrasound-based methods include strain elastography, two-dimensional shear wave elastography (2D-SWE), point shear wave elastography (pSWE), and vibration-controlled transient elastography (VCTE). MR Elastography (MRE) is widely available as two-dimensional gradient echo MRE (2D-GRE-MRE) technique. US-based methods provide estimated Young's modulus (eYM) and MRE provides magnitude of the complex shear modulus. MRE and ultrasound methods have proven to be accurate methods for detection of advanced liver fibrosis and cirrhosis. Other clinical applications of elastography include liver decompensation prediction, and differentiation of non-alcoholic steatohepatitis (NASH) from simple steatosis (SS). In this review, we briefly describe the different elastography methods, discuss current clinical applications, and provide an overview of advances in the field of liver elastography.
Collapse
Affiliation(s)
- Arinc Ozturk
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Michael C Olson
- Division of Abdominal Imaging, Radiology, Mayo Clinic Rochester, 200, First Street SW, Rochester, MN, 55905, USA
| | - Anthony E Samir
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Sudhakar K Venkatesh
- Division of Abdominal Imaging, Radiology, Mayo Clinic Rochester, 200, First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
16
|
Li H, Bhatt M, Qu Z, Zhang S, Hartel MC, Khademhosseini A, Cloutier G. Deep learning in ultrasound elastography imaging: A review. Med Phys 2022; 49:5993-6018. [PMID: 35842833 DOI: 10.1002/mp.15856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 02/04/2022] [Accepted: 07/06/2022] [Indexed: 11/11/2022] Open
Abstract
It is known that changes in the mechanical properties of tissues are associated with the onset and progression of certain diseases. Ultrasound elastography is a technique to characterize tissue stiffness using ultrasound imaging either by measuring tissue strain using quasi-static elastography or natural organ pulsation elastography, or by tracing a propagated shear wave induced by a source or a natural vibration using dynamic elastography. In recent years, deep learning has begun to emerge in ultrasound elastography research. In this review, several common deep learning frameworks in the computer vision community, such as multilayer perceptron, convolutional neural network, and recurrent neural network are described. Then, recent advances in ultrasound elastography using such deep learning techniques are revisited in terms of algorithm development and clinical diagnosis. Finally, the current challenges and future developments of deep learning in ultrasound elastography are prospected. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hongliang Li
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montréal, Québec, Canada.,Institute of Biomedical Engineering, University of Montreal, Montréal, Québec, Canada
| | - Manish Bhatt
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montréal, Québec, Canada
| | - Zhen Qu
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montréal, Québec, Canada
| | - Shiming Zhang
- California Nanosystems Institute, University of California, Los Angeles, California, USA
| | - Martin C Hartel
- California Nanosystems Institute, University of California, Los Angeles, California, USA
| | - Ali Khademhosseini
- California Nanosystems Institute, University of California, Los Angeles, California, USA
| | - Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center, Montréal, Québec, Canada.,Institute of Biomedical Engineering, University of Montreal, Montréal, Québec, Canada.,Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, Montréal, Québec, Canada
| |
Collapse
|
17
|
Zhou B, Yang X, Curran WJ, Liu T. Artificial Intelligence in Quantitative Ultrasound Imaging: A Survey. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2022; 41:1329-1342. [PMID: 34467542 DOI: 10.1002/jum.15819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 08/01/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Quantitative ultrasound (QUS) imaging is a safe, reliable, inexpensive, and real-time technique to extract physically descriptive parameters for assessing pathologies. Compared with other major imaging modalities such as computed tomography and magnetic resonance imaging, QUS suffers from several major drawbacks: poor image quality and inter- and intra-observer variability. Therefore, there is a great need to develop automated methods to improve the image quality of QUS. In recent years, there has been increasing interest in artificial intelligence (AI) applications in medical imaging, and a large number of research studies in AI in QUS have been conducted. The purpose of this review is to describe and categorize recent research into AI applications in QUS. We first introduce the AI workflow and then discuss the various AI applications in QUS. Finally, challenges and future potential AI applications in QUS are discussed.
Collapse
Affiliation(s)
- Boran Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Walter J Curran
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
18
|
Balsano C, Alisi A, Brunetto MR, Invernizzi P, Burra P, Piscaglia F. The application of artificial intelligence in hepatology: A systematic review. Dig Liver Dis 2022; 54:299-308. [PMID: 34266794 DOI: 10.1016/j.dld.2021.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
The integration of human and artificial intelligence (AI) in medicine has only recently begun but it has already become obvious that intelligent systems can dramatically improve the management of liver diseases. Big data made it possible to envisage transformative developments of the use of AI for diagnosing, predicting prognosis and treating liver diseases, but there is still a lot of work to do. If we want to achieve the 21st century digital revolution, there is an urgent need for specific national and international rules, and to adhere to bioethical parameters when collecting data. Avoiding misleading results is essential for the effective use of AI. A crucial question is whether it is possible to sustain, technically and morally, the process of integration between man and machine. We present a systematic review on the applications of AI to hepatology, highlighting the current challenges and crucial issues related to the use of such technologies.
Collapse
Affiliation(s)
- Clara Balsano
- Dept. of Life, Health and Environmental Sciences MESVA, University of L'Aquila, Piazza S. Salvatore Tommasi 1, 67100, Coppito, L'Aquila. Italy; Francesco Balsano Foundation, Via Giovanni Battista Martini 6, 00198, Rome, Italy.
| | - Anna Alisi
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maurizia R Brunetto
- Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, University Hospital of Pisa, Pisa, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology and Center of Autoimmune Liver Diseases, Department of Medicine and Surgery, San Gerardo Hospital, University of Milano, Bicocca, Italy
| | - Patrizia Burra
- Multivisceral Transplant Unit, Department of Surgery, Oncology, Gastroenterology, Padua University Hospital, Padua, Italy
| | - Fabio Piscaglia
- Division of Internal Medicine, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
19
|
Destrempes F, Gesnik M, Chayer B, Roy-Cardinal MH, Olivié D, Giard JM, Sebastiani G, Nguyen BN, Cloutier G, Tang A. Quantitative ultrasound, elastography, and machine learning for assessment of steatosis, inflammation, and fibrosis in chronic liver disease. PLoS One 2022; 17:e0262291. [PMID: 35085294 PMCID: PMC8794185 DOI: 10.1371/journal.pone.0262291] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Objective To develop a quantitative ultrasound (QUS)- and elastography-based model to improve classification of steatosis grade, inflammation grade, and fibrosis stage in patients with chronic liver disease in comparison with shear wave elastography alone, using histopathology as the reference standard. Methods This ancillary study to a prospective institutional review-board approved study included 82 patients with non-alcoholic fatty liver disease, chronic hepatitis B or C virus, or autoimmune hepatitis. Elastography measurements, homodyned K-distribution parametric maps, and total attenuation coefficient slope were recorded. Random forests classification and bootstrapping were used to identify combinations of parameters that provided the highest diagnostic accuracy. Receiver operating characteristic (ROC) curves were computed. Results For classification of steatosis grade S0 vs. S1-3, S0-1 vs. S2-3, S0-2 vs. S3, area under the receiver operating characteristic curve (AUC) were respectively 0.60, 0.63, and 0.62 with elasticity alone, and 0.90, 0.81, and 0.78 with the best tested model combining QUS and elastography features. For classification of inflammation grade A0 vs. A1-3, A0-1 vs. A2-3, A0-2 vs. A3, AUCs were respectively 0.56, 0.62, and 0.64 with elasticity alone, and 0.75, 0.68, and 0.69 with the best model. For classification of liver fibrosis stage F0 vs. F1-4, F0-1 vs. F2-4, F0-2 vs. F3-4, F0-3 vs. F4, AUCs were respectively 0.66, 0.77, 0.72, and 0.74 with elasticity alone, and 0.72, 0.77, 0.77, and 0.75 with the best model. Conclusion Random forest models incorporating QUS and shear wave elastography increased the classification accuracy of liver steatosis, inflammation, and fibrosis when compared to shear wave elastography alone.
Collapse
Affiliation(s)
- François Destrempes
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, Québec, Canada
| | - Marc Gesnik
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, Québec, Canada
| | - Boris Chayer
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, Québec, Canada
| | - Marie-Hélène Roy-Cardinal
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, Québec, Canada
| | - Damien Olivié
- Department of Radiology, Radiation oncology and Nuclear Medicine, Université de Montréal, Montréal, Québec, Canada
- Department of Radiology, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Jeanne-Marie Giard
- Department of Medicine, Division of Hepatology and Liver Transplantation, Université de Montréal, Montréal, Québec, Canada
| | - Giada Sebastiani
- Department of Medicine, Division of Gastroenterology and Hepatology, McGill University Health Centre (MUHC), Montréal, Québec, Canada
| | - Bich N. Nguyen
- Department of Pathology, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Québec, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, Montréal, Québec, Canada
| | - Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, Québec, Canada
- Department of Radiology, Radiation oncology and Nuclear Medicine, Université de Montréal, Montréal, Québec, Canada
- Institute of Biomedical Engineering, University of Montreal, Montréal, Québec, Canada
- * E-mail: (GC); (AT)
| | - An Tang
- Department of Radiology, Radiation oncology and Nuclear Medicine, Université de Montréal, Montréal, Québec, Canada
- Department of Radiology, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Québec, Canada
- Laboratory of Medical Image Analysis, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
- * E-mail: (GC); (AT)
| |
Collapse
|
20
|
Zhang Y, Zhang Y, Zhang Y, Wang D, Peng F, Cui S, Yang Z. Ultrasonic image fibrosis staging based on machine learning for chronic liver disease. 2021 IEEE INTERNATIONAL CONFERENCE ON MEDICAL IMAGING PHYSICS AND ENGINEERING (ICMIPE) 2021:1-5. [DOI: 10.1109/icmipe53131.2021.9698912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Affiliation(s)
- Yumeng Zhang
- School of Biomedical Engineering, Capital Medical University,Beijing,China
| | - Yao Zhang
- Capital Medical University,Beijing Ditan Hospital,Department of Ultrasound,Beijing,China
| | - Yunxian Zhang
- School of Biomedical Engineering, Capital Medical University,Beijing,China
| | - Dan Wang
- School of Biomedical Engineering, Capital Medical University,Beijing,China
| | - Fan Peng
- School of Biomedical Engineering, Capital Medical University,Beijing,China
| | - Shangqi Cui
- School of Biomedical Engineering, Capital Medical University,Beijing,China
| | - Zhi Yang
- School of Biomedical Engineering, Capital Medical University,Beijing,China
| |
Collapse
|
21
|
Wang H, Zheng P, Wang X, Sang L. Effect of Q-Box size on liver stiffness measurement by two-dimensional shear wave elastography. JOURNAL OF CLINICAL ULTRASOUND : JCU 2021; 49:978-983. [PMID: 34609006 DOI: 10.1002/jcu.23075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
PURPOSE To investigate the effect of the Q-Box size on liver stiffness (LS) measurement by two-dimensional shear wave elastography (2D SWE). METHODS Ninety-eight patients with chronic liver disease were enrolled. Each patient was continuously measured five times. The Q-Box diameter was adjusted to 10, 20, and 30 mm each time. The liver stiffness values (LSVs) at different diameters were compared in the following groups: LSVs ≤6.2 kPa, 6.2 kPa < LSVs ≤11 kPa, LSVs >11 kPa. The reliability and repeatability of LS measurement at different diameters were evaluated. RESULTS The differences in LSVs at different Q-Box diameters were statistically significant only when LSV ≤6.2 kPa (p = 0.004). There were no statistically significant differences in standard deviation (SD), SD/median, coefficient of variation (CV), and interquartile range (IQR)/median at different Q-Box diameters (p > 0.05). There were statistical differences in minimum LSVs and percentage of minimum LSVs ≤0.2 kPa as well as in stability index (SI) and percentage of SI <90% at different Q-Box diameters (p < 0.05). The intraclass correlation coefficients (ICCs) were up to 0.98 at Q-Box diameters of 10, 20, and 30 mm. CONCLUSIONS Our study showed that Q-Box size may lead to significant differences in LSVs, especially when LSVs ≤6.2 kPa. The Q-Box size had a large effect on the reliability of a single LS measurement but did not affect the repeatability of multiple measurements.
Collapse
Affiliation(s)
- Huipeng Wang
- Department of Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Pengchao Zheng
- Department of Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xuemei Wang
- Department of Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Liang Sang
- Department of Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
22
|
Kröner PT, Engels MML, Glicksberg BS, Johnson KW, Mzaik O, van Hooft JE, Wallace MB, El-Serag HB, Krittanawong C. Artificial intelligence in gastroenterology: A state-of-the-art review. World J Gastroenterol 2021; 27:6794-6824. [PMID: 34790008 PMCID: PMC8567482 DOI: 10.3748/wjg.v27.i40.6794] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
The development of artificial intelligence (AI) has increased dramatically in the last 20 years, with clinical applications progressively being explored for most of the medical specialties. The field of gastroenterology and hepatology, substantially reliant on vast amounts of imaging studies, is not an exception. The clinical applications of AI systems in this field include the identification of premalignant or malignant lesions (e.g., identification of dysplasia or esophageal adenocarcinoma in Barrett’s esophagus, pancreatic malignancies), detection of lesions (e.g., polyp identification and classification, small-bowel bleeding lesion on capsule endoscopy, pancreatic cystic lesions), development of objective scoring systems for risk stratification, predicting disease prognosis or treatment response [e.g., determining survival in patients post-resection of hepatocellular carcinoma), determining which patients with inflammatory bowel disease (IBD) will benefit from biologic therapy], or evaluation of metrics such as bowel preparation score or quality of endoscopic examination. The objective of this comprehensive review is to analyze the available AI-related studies pertaining to the entirety of the gastrointestinal tract, including the upper, middle and lower tracts; IBD; the hepatobiliary system; and the pancreas, discussing the findings and clinical applications, as well as outlining the current limitations and future directions in this field.
Collapse
Affiliation(s)
- Paul T Kröner
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Megan ML Engels
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
- Cancer Center Amsterdam, Department of Gastroenterology and Hepatology, Amsterdam UMC, Location AMC, Amsterdam 1105, The Netherlands
| | - Benjamin S Glicksberg
- The Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Kipp W Johnson
- The Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Obaie Mzaik
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Jeanin E van Hooft
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Amsterdam 2300, The Netherlands
| | - Michael B Wallace
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
- Division of Gastroenterology and Hepatology, Sheikh Shakhbout Medical City, Abu Dhabi 11001, United Arab Emirates
| | - Hashem B El-Serag
- Section of Gastroenterology and Hepatology, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
- Section of Health Services Research, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
| | - Chayakrit Krittanawong
- Section of Health Services Research, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
- Section of Cardiology, Michael E. DeBakey VA Medical Center, Houston, TX 77030, United States
| |
Collapse
|
23
|
Cheng MQ, Xian MF, Tian WS, Li MD, Hu HT, Li W, Zhang JC, Huang Y, Xie XY, Lu MD, Kuang M, Wang W, Ruan SM, Chen LD. RGB Three-Channel SWE-Based Ultrasomics Model: Improving the Efficiency in Differentiating Focal Liver Lesions. Front Oncol 2021; 11:704218. [PMID: 34646763 PMCID: PMC8504873 DOI: 10.3389/fonc.2021.704218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Objective To explore a new method for color image analysis of ultrasomics and investigate the efficiency in differentiating focal liver lesions (FLLs) by Red, Green, and Blue (RGB) three-channel SWE-based ultrasomics model. Methods One hundred thirty FLLs were randomly divided into training set (n = 65) and validation set (n = 65). The RGB three-channel and direct conversion methods were applied to the same color SWE images. Ultrasomics features were extracted from the preprocessing images establishing two feature data sets. The least absolute shrinkage and selection operator (LASSO) logistic regression model was applied for feature selection and model construction. Two models, named RGB model (based on RGB three-channel conversion) and direct model (based on direct conversion), were used to differentiate FLLs. The diagnosis performance of the two models was evaluated by area under the curve (AUC), calibration curves, decision curves, and net reclassification index (NRI). Results In the validation cohort, the AUC of the direct model and RGB model in characterization on FLLs were 0.813 and 0.926, respectively (p = 0.038). Calibration curves and decision curves indicated that the RGB model had better calibration efficiency and provided greater clinical benefits. NRI revealed that the RGB model correctly reclassified 7% of malignant cases and 25% of benign cases compared to the direct model (p = 0.01). Conclusion The RGB model generated by RGB three-channel method yielded better diagnostic efficiency than the direct model established by direct conversion method. The RGB three-channel method may be promising on ultrasomics analysis of color images in clinical application.
Collapse
Affiliation(s)
- Mei-Qing Cheng
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, Ultrasomics Artificial Intelligence X-Lab, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Meng-Fei Xian
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, Ultrasomics Artificial Intelligence X-Lab, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wen-Shuo Tian
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, Ultrasomics Artificial Intelligence X-Lab, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ming-De Li
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, Ultrasomics Artificial Intelligence X-Lab, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hang-Tong Hu
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, Ultrasomics Artificial Intelligence X-Lab, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wei Li
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, Ultrasomics Artificial Intelligence X-Lab, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jian-Chao Zhang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, Ultrasomics Artificial Intelligence X-Lab, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yang Huang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, Ultrasomics Artificial Intelligence X-Lab, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Yan Xie
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, Ultrasomics Artificial Intelligence X-Lab, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ming-De Lu
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, Ultrasomics Artificial Intelligence X-Lab, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ming Kuang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, Ultrasomics Artificial Intelligence X-Lab, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wei Wang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, Ultrasomics Artificial Intelligence X-Lab, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Si-Min Ruan
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, Ultrasomics Artificial Intelligence X-Lab, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Li-Da Chen
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, Ultrasomics Artificial Intelligence X-Lab, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
24
|
Plachouris D, Tzolas I, Gatos I, Papadimitroulas P, Spyridonidis T, Apostolopoulos D, Papathanasiou N, Visvikis D, Plachouri KM, Hazle JD, Kagadis GC. A deep-learning-based prediction model for the biodistribution of 90 Y microspheres in liver radioembolization. Med Phys 2021; 48:7427-7438. [PMID: 34628667 DOI: 10.1002/mp.15270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Radioembolization with 90 Y microspheres is a treatment approach for liver cancer. Currently, employed dosimetric calculations exhibit low accuracy, lacking consideration of individual patient, and tissue characteristics. PURPOSE The purpose of the present study was to employ deep learning (DL) algorithms to differentiate patterns of pretreatment distribution of 99m Tc-macroaggregated albumin on SPECT/CT and post-treatment distribution of 90 Y microspheres on PET/CT and to accurately predict how the 90 Y-microspheres will be distributed in the liver tissue by radioembolization therapy. METHODS Data for 19 patients with liver cancer (10 with hepatocellular carcinoma, 5 with intrahepatic cholangiocarcinoma, 4 with liver metastases) who underwent radioembolization with 90 Y microspheres were used for the DL training. We developed a 3D voxel-based variation of the Pix2Pix model, which is a special type of conditional GANs designed to perform image-to-image translation. SPECT and CT scans along with the clinical target volume for each patient were used as inputs, as were their corresponding post-treatment PET scans. The real and predicted absorbed PET doses for the tumor and the whole liver area were compared. Our model was evaluated using the leave-one-out method, and the dose calculations were measured using a tissue-specific dose voxel kernel. RESULTS The comparison of the real and predicted PET/CT scans showed an average absorbed dose difference of 5.42% ± 19.31% and 0.44% ± 1.64% for the tumor and the liver area, respectively. The average absorbed dose differences were 7.98 ± 31.39 Gy and 0.03 ± 0.25 Gy for the tumor and the non-tumor liver parenchyma, respectively. Our model had a general tendency to underpredict the dosimetric results; the largest differences were noticed in one case, where the model underestimated the dose to the tumor area by 56.75% or 72.82 Gy. CONCLUSIONS The proposed deep-learning-based pretreatment planning method for liver radioembolization accurately predicted 90 Y microsphere biodistribution. Its combination with a rapid and accurate 3D dosimetry method will render it clinically suitable and could improve patient-specific pretreatment planning.
Collapse
Affiliation(s)
- Dimitris Plachouris
- Department of Medical Physics, School of Medicine, University of Patras, Rion, Greece
| | - Ioannis Tzolas
- School of Electrical and Computer Engineering, University of Patras, Rion, Greece
| | - Ilias Gatos
- Department of Medical Physics, School of Medicine, University of Patras, Rion, Greece
| | - Panagiotis Papadimitroulas
- Department of Medical Physics, School of Medicine, University of Patras, Rion, Greece.,R&D Department, Bioemission Technology Solutions, Athens, Greece
| | - Trifon Spyridonidis
- Department of Nuclear Medicine, School of Medicine, University of Patras, Rion, Greece
| | | | | | | | | | - John D Hazle
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - George C Kagadis
- Department of Medical Physics, School of Medicine, University of Patras, Rion, Greece.,Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
25
|
Anteby R, Klang E, Horesh N, Nachmany I, Shimon O, Barash Y, Kopylov U, Soffer S. Deep learning for noninvasive liver fibrosis classification: A systematic review. Liver Int 2021; 41:2269-2278. [PMID: 34008300 DOI: 10.1111/liv.14966] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/23/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS While biopsy is the gold standard for liver fibrosis staging, it poses significant risks. Noninvasive assessment of liver fibrosis is a growing field. Recently, deep learning (DL) technology has revolutionized medical image analysis. This technology has the potential to enhance noninvasive fibrosis assessment. We systematically examined the application of DL in noninvasive liver fibrosis imaging. METHODS Embase, MEDLINE, Web of Science, and IEEE Xplore databases were used to identify studies that reported on the accuracy of DL for classification of liver fibrosis on noninvasive imaging. The search keywords were "liver or hepatic," "fibrosis or cirrhosis," and "neural or DL networks." Risk of bias and applicability were evaluated using the QUADAS-2 tool. RESULTS Sixteen studies were retrieved. Imaging modalities included ultrasound (n = 10), computed tomography (n = 3), and magnetic resonance imaging (n = 3). The studies analyzed a total of 40 405 radiological images from 15 853 patients. All but two of the studies were retrospective. In most studies the "ground truth" reference was the METAVIR score for pathological staging (n = 9.56%). The majority of the studies reported an accuracy >85% when compared to histopathology. Fourteen studies (87.5%) had a high risk of bias and concerns regarding applicability. CONCLUSIONS Deep learning has the potential to play an emerging role in liver fibrosis classification. Yet, it is still limited by a relatively small number of retrospective studies. Clinicians should facilitate the use of this technology by sharing databases and standardized reports. This may optimize the noninvasive evaluation of liver fibrosis on a large scale.
Collapse
Affiliation(s)
- Roi Anteby
- School of Public Health, Harvard University, Boston, MA, USA
| | - Eyal Klang
- Department of Population Health Science and Policy, Institute for Healthcare Delivery Science, New York, NY, USA.,Sackler Medical School, Tel Aviv University, Tel Aviv, Israel.,Deep Vision Lab, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Israel
| | - Nir Horesh
- Sackler Medical School, Tel Aviv University, Tel Aviv, Israel.,Department of Surgery and Transplantation B, Sheba Medical Center, Tel Hashomer, Israel
| | - Ido Nachmany
- Sackler Medical School, Tel Aviv University, Tel Aviv, Israel.,Department of Surgery and Transplantation B, Sheba Medical Center, Tel Hashomer, Israel
| | - Orit Shimon
- Sackler Medical School, Tel Aviv University, Tel Aviv, Israel.,Department of Anesthesia, Rabin Medical Center, Beilinson Hospital, Petach Tikvah, Israel
| | - Yiftach Barash
- Sackler Medical School, Tel Aviv University, Tel Aviv, Israel.,Deep Vision Lab, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Israel
| | - Uri Kopylov
- Sackler Medical School, Tel Aviv University, Tel Aviv, Israel.,Department of Gastroenterology, Sheba Medical Center, Tel Hashomer, Israel
| | - Shelly Soffer
- Deep Vision Lab, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Internal Medicine B, Assuta Medical Center, Ashdod, Israel.,Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
26
|
Sabottke CF, Spieler BM, Moawad AW, Elsayes KM. Artificial Intelligence in Imaging of Chronic Liver Diseases: Current Update and Future Perspectives. Magn Reson Imaging Clin N Am 2021; 29:451-463. [PMID: 34243929 DOI: 10.1016/j.mric.2021.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Here we review artificial intelligence (AI) models which aim to assess various aspects of chronic liver disease. Despite the clinical importance of hepatocellular carcinoma in the setting of chronic liver disease, we focus this review on AI models which are not lesion-specific and instead review models developed for liver parenchyma segmentation, evaluation of portal circulation, assessment of hepatic fibrosis, and identification of hepatic steatosis. Optimization of these models offers the opportunity to potentially reduce the need for invasive procedures such as catheterization to measure hepatic venous pressure gradient or biopsy to assess fibrosis and steatosis. We compare the performance of these AI models amongst themselves as well as to radiomics approaches and alternate modality assessments. We conclude that these models show promising performance and merit larger-scale evaluation. We review artificial intelligence models that aim to assess various aspects of chronic liver disease aside from hepatocellular carcinoma. We focus this review on models for liver parenchyma segmentation, evaluation of portal circulation, assessment of hepatic fibrosis, and identification of hepatic steatosis. We conclude that these models show promising performance and merit a larger scale evaluation.
Collapse
Affiliation(s)
- Carl F Sabottke
- Department of Medical Imaging, University of Arizona College of Medicine, 1501 N. Campbell, P.O. Box 245067, Tucson, AZ 85724-5067, USA.
| | - Bradley M Spieler
- Department of Radiology, Louisiana State University Health Sciences Center, 1542 Tulane Avenue, Rm 343, New Orleans, LA 70112, USA
| | - Ahmed W Moawad
- Department of Imaging Physics, The University of Texas, MD Anderson Cancer Center, Unit 1472, P.O. Box 301402, Houston, TX 77230-1402, USA
| | - Khaled M Elsayes
- Department of Abdominal Imaging, The University of Texas, MD Anderson Cancer Center, 1400 Pressler St, Houston, TX 77030, USA
| |
Collapse
|
27
|
Xiang K, Jiang B, Shang D. The overview of the deep learning integrated into the medical imaging of liver: a review. Hepatol Int 2021; 15:868-880. [PMID: 34264509 DOI: 10.1007/s12072-021-10229-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
Deep learning (DL) is a recently developed artificial intelligent method that can be integrated into numerous fields. For the imaging diagnosis of liver disease, several remarkable outcomes have been achieved with the application of DL currently. This advanced algorithm takes part in various sections of imaging processing such as liver segmentation, lesion delineation, disease classification, process optimization, etc. The DL optimized imaging diagnosis shows a broad prospect instead of the pathological biopsy for the advantages of convenience, safety, and inexpensiveness. In this paper, we reviewed the published representative DL-related hepatic imaging works, described the general situation of this new-rising technology in medical liver imaging and explored the future direction of DL development.
Collapse
Affiliation(s)
- Kailai Xiang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.,Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Baihui Jiang
- Department of Ophthalmology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Dong Shang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China. .,Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.
| |
Collapse
|
28
|
Utility of convolutional neural network-based algorithm in medical images for liver fibrosis assessment. Chin Med J (Engl) 2021; 134:2255-2257. [PMID: 34553704 PMCID: PMC8478382 DOI: 10.1097/cm9.0000000000001536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
29
|
Ahn JC, Connell A, Simonetto DA, Hughes C, Shah VH. Application of Artificial Intelligence for the Diagnosis and Treatment of Liver Diseases. Hepatology 2021; 73:2546-2563. [PMID: 33098140 DOI: 10.1002/hep.31603] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/15/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
Modern medical care produces large volumes of multimodal patient data, which many clinicians struggle to process and synthesize into actionable knowledge. In recent years, artificial intelligence (AI) has emerged as an effective tool in this regard. The field of hepatology is no exception, with a growing number of studies published that apply AI techniques to the diagnosis and treatment of liver diseases. These have included machine-learning algorithms (such as regression models, Bayesian networks, and support vector machines) to predict disease progression, the presence of complications, and mortality; deep-learning algorithms to enable rapid, automated interpretation of radiologic and pathologic images; and natural-language processing to extract clinically meaningful concepts from vast quantities of unstructured data in electronic health records. This review article will provide a comprehensive overview of hepatology-focused AI research, discuss some of the barriers to clinical implementation and adoption, and suggest future directions for the field.
Collapse
Affiliation(s)
- Joseph C Ahn
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | | | | | | | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| |
Collapse
|
30
|
Cao JS, Lu ZY, Chen MY, Zhang B, Juengpanich S, Hu JH, Li SJ, Topatana W, Zhou XY, Feng X, Shen JL, Liu Y, Cai XJ. Artificial intelligence in gastroenterology and hepatology: Status and challenges. World J Gastroenterol 2021; 27:1664-1690. [PMID: 33967550 PMCID: PMC8072192 DOI: 10.3748/wjg.v27.i16.1664] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/11/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Originally proposed by John McCarthy in 1955, artificial intelligence (AI) has achieved a breakthrough and revolutionized the processing methods of clinical medicine with the increasing workloads of medical records and digital images. Doctors are paying attention to AI technologies for various diseases in the fields of gastroenterology and hepatology. This review will illustrate AI technology procedures for medical image analysis, including data processing, model establishment, and model validation. Furthermore, we will summarize AI applications in endoscopy, radiology, and pathology, such as detecting and evaluating lesions, facilitating treatment, and predicting treatment response and prognosis with excellent model performance. The current challenges for AI in clinical application include potential inherent bias in retrospective studies that requires larger samples for validation, ethics and legal concerns, and the incomprehensibility of the output results. Therefore, doctors and researchers should cooperate to address the current challenges and carry out further investigations to develop more accurate AI tools for improved clinical applications.
Collapse
Affiliation(s)
- Jia-Sheng Cao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Zi-Yi Lu
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Ming-Yu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Bin Zhang
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Sarun Juengpanich
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Jia-Hao Hu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Shi-Jie Li
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Win Topatana
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Xue-Yin Zhou
- School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Xu Feng
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Ji-Liang Shen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Xiu-Jun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| |
Collapse
|
31
|
Borro P, Ziola S, Pasta A, Trombini M, Labanca S, Marenco S, Solarna D, Pisciotta L, Baldissarro I, Picciotto A, Dellepiane S. Hepatic Elastometry and Glissonian Line in the Assessment of Liver Fibrosis. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:947-959. [PMID: 33451815 DOI: 10.1016/j.ultrasmedbio.2020.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
The aim of this study was to identify a method for staging hepatic fibrosis using a non-invasive, rapid and inexpensive technique based on ultrasound morphologic hepatic features. A total of 215 patients with different liver diseases underwent B-mode (2-D brightness mode) ultrasonography, vibration-controlled transient elastography, 2-D shear wave elastography and measurement of the controlled attenuation parameter with transient elastography. B-Mode images of the anterior margin of the left lobe were obtained and processed with automatic Genoa Line Quantification (GLQ) software based on a neural network for staging liver fibrosis. The accuracy of GLQ was 90.6% during model training and 78.9% in 38 different patients with concordant elastometric measures. Receiver operating characteristic curve analysis of GLQ performance using vibration-controlled transient elastography as a reference yielded areas under the curves of 0.851 for F ≥ F1, 0.793 for F ≥ F2, 0.784 for F ≥ F3 and 0.789 for F ≥ F4. GLQ has the potential to be a rapid, easy-to-perform and tolerable method in the staging of liver fibrosis.
Collapse
Affiliation(s)
- Paolo Borro
- Gastroenterology Unit, Department of Internal Medicine, IRCCS Ospedale Policlinico San Martino, University of Genoa, Genoa, Italy.
| | - Sebastiano Ziola
- Gastroenterology Unit, Department of Internal Medicine, IRCCS Ospedale Policlinico San Martino, University of Genoa, Genoa, Italy
| | - Andrea Pasta
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Marco Trombini
- Department of Electrical, Electronics and Telecommunication Engineering and Naval Architecture (DITEN), University of Genoa, Genoa, Italy
| | - Sara Labanca
- Gastroenterology Unit, Department of Internal Medicine, IRCCS Ospedale Policlinico San Martino, University of Genoa, Genoa, Italy
| | - Simona Marenco
- Gastroenterology Unit, Department of Internal Medicine, IRCCS Ospedale Policlinico San Martino, University of Genoa, Genoa, Italy
| | - David Solarna
- Department of Electrical, Electronics and Telecommunication Engineering and Naval Architecture (DITEN), University of Genoa, Genoa, Italy
| | - Livia Pisciotta
- Department of Internal Medicine, University of Genoa, Genoa, Italy; Dietetics and Clinical Nutrition Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Antonino Picciotto
- Gastroenterology Unit, Department of Internal Medicine, IRCCS Ospedale Policlinico San Martino, University of Genoa, Genoa, Italy
| | - Silvana Dellepiane
- Department of Electrical, Electronics and Telecommunication Engineering and Naval Architecture (DITEN), University of Genoa, Genoa, Italy
| |
Collapse
|
32
|
Artificial intelligence: Deep learning in oncological radiomics and challenges of interpretability and data harmonization. Phys Med 2021; 83:108-121. [PMID: 33765601 DOI: 10.1016/j.ejmp.2021.03.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
|
33
|
Barragán-Montero A, Javaid U, Valdés G, Nguyen D, Desbordes P, Macq B, Willems S, Vandewinckele L, Holmström M, Löfman F, Michiels S, Souris K, Sterpin E, Lee JA. Artificial intelligence and machine learning for medical imaging: A technology review. Phys Med 2021; 83:242-256. [PMID: 33979715 PMCID: PMC8184621 DOI: 10.1016/j.ejmp.2021.04.016] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 02/08/2023] Open
Abstract
Artificial intelligence (AI) has recently become a very popular buzzword, as a consequence of disruptive technical advances and impressive experimental results, notably in the field of image analysis and processing. In medicine, specialties where images are central, like radiology, pathology or oncology, have seized the opportunity and considerable efforts in research and development have been deployed to transfer the potential of AI to clinical applications. With AI becoming a more mainstream tool for typical medical imaging analysis tasks, such as diagnosis, segmentation, or classification, the key for a safe and efficient use of clinical AI applications relies, in part, on informed practitioners. The aim of this review is to present the basic technological pillars of AI, together with the state-of-the-art machine learning methods and their application to medical imaging. In addition, we discuss the new trends and future research directions. This will help the reader to understand how AI methods are now becoming an ubiquitous tool in any medical image analysis workflow and pave the way for the clinical implementation of AI-based solutions.
Collapse
Affiliation(s)
- Ana Barragán-Montero
- Molecular Imaging, Radiation and Oncology (MIRO) Laboratory, UCLouvain, Belgium.
| | - Umair Javaid
- Molecular Imaging, Radiation and Oncology (MIRO) Laboratory, UCLouvain, Belgium
| | - Gilmer Valdés
- Department of Radiation Oncology, Department of Epidemiology and Biostatistics, University of California, San Francisco, USA
| | - Dan Nguyen
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, USA
| | - Paul Desbordes
- Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), UCLouvain, Belgium
| | - Benoit Macq
- Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), UCLouvain, Belgium
| | - Siri Willems
- ESAT/PSI, KU Leuven Belgium & MIRC, UZ Leuven, Belgium
| | | | | | | | - Steven Michiels
- Molecular Imaging, Radiation and Oncology (MIRO) Laboratory, UCLouvain, Belgium
| | - Kevin Souris
- Molecular Imaging, Radiation and Oncology (MIRO) Laboratory, UCLouvain, Belgium
| | - Edmond Sterpin
- Molecular Imaging, Radiation and Oncology (MIRO) Laboratory, UCLouvain, Belgium; KU Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, Belgium
| | - John A Lee
- Molecular Imaging, Radiation and Oncology (MIRO) Laboratory, UCLouvain, Belgium
| |
Collapse
|
34
|
Nishida N, Kudo M. Artificial Intelligence in Medical Imaging and Its Application in Sonography for the Management of Liver Tumor. Front Oncol 2020; 10:594580. [PMID: 33409151 PMCID: PMC7779763 DOI: 10.3389/fonc.2020.594580] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Recent advancement in artificial intelligence (AI) facilitate the development of AI-powered medical imaging including ultrasonography (US). However, overlooking or misdiagnosis of malignant lesions may result in serious consequences; the introduction of AI to the imaging modalities may be an ideal solution to prevent human error. For the development of AI for medical imaging, it is necessary to understand the characteristics of modalities on the context of task setting, required data sets, suitable AI algorism, and expected performance with clinical impact. Regarding the AI-aided US diagnosis, several attempts have been made to construct an image database and develop an AI-aided diagnosis system in the field of oncology. Regarding the diagnosis of liver tumors using US images, 4- or 5-class classifications, including the discrimination of hepatocellular carcinoma (HCC), metastatic tumors, hemangiomas, liver cysts, and focal nodular hyperplasia, have been reported using AI. Combination of radiomic approach with AI is also becoming a powerful tool for predicting the outcome in patients with HCC after treatment, indicating the potential of AI for applying personalized medical care. However, US images show high heterogeneity because of differences in conditions during the examination, and a variety of imaging parameters may affect the quality of images; such conditions may hamper the development of US-based AI. In this review, we summarized the development of AI in medical images with challenges to task setting, data curation, and focus on the application of AI for the managements of liver tumor, especially for US diagnosis.
Collapse
Affiliation(s)
- Naoshi Nishida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| |
Collapse
|
35
|
Nishida N, Kudo M. Application of artificial intelligence in medical imaging and AI-aided US diagnosis. KANZO 2020; 61:623-636. [DOI: 10.2957/kanzo.61.623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Affiliation(s)
- Naoshi Nishida
- Department of Gastroenterolgy and Hepatology, Kindai University Faculty of Medicine
| | - Masatoshi Kudo
- Department of Gastroenterolgy and Hepatology, Kindai University Faculty of Medicine
| |
Collapse
|
36
|
Kagadis GC, Drazinos P, Gatos I, Tsantis S, Papadimitroulas P, Spiliopoulos S, Karnabatidis D, Theotokas I, Zoumpoulis P, Hazle JD. Deep learning networks on chronic liver disease assessment with fine-tuning of shear wave elastography image sequences. Phys Med Biol 2020; 65:215027. [PMID: 32998480 DOI: 10.1088/1361-6560/abae06] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic liver disease (CLD) is currently one of the major causes of death worldwide. If not treated, it may lead to cirrhosis, hepatic carcinoma and death. Ultrasound (US) shear wave elastography (SWE) is a relatively new, popular, non-invasive technique among radiologists. Although many studies have been published validating the SWE technique either in a clinical setting, or by applying machine learning on SWE elastograms, minimal work has been done on comparing the performance of popular pre-trained deep learning networks on CLD assessment. Currently available literature reports suggest technical advancements on specific deep learning structures, with specific inputs and usually on a limited CLD fibrosis stage class group, with limited comparison on competitive deep learning schemes fed with different input types. The aim of the present study is to compare some popular deep learning pre-trained networks using temporally stable and full elastograms, with or without augmentation as well as propose suitable deep learning schemes for CLD diagnosis and progress assessment. 200 liver biopsy validated patients with CLD, underwent US SWE examination. Four images from the same liver area were saved to extract elastograms and processed to exclude areas that were temporally unstable. Then, full and temporally stable masked elastograms for each patient were separately fed into GoogLeNet, AlexNet, VGG16, ResNet50 and DenseNet201 with and without augmentation. The networks were tested for differentiation of CLD stages in seven classification schemes over 30 repetitions using liver biopsy as the reference. All networks achieved maximum mean accuracies ranging from 87.2%-97.4% and area under the receiver operating characteristic curves (AUCs) ranging from 0.979-0.990 while the radiologists had AUCs ranging from 0.800-0.870. ResNet50 and DenseNet201 had better average performance than the other networks. The use of the temporal stability mask led to improved performance on about 50% of inputs and network combinations while augmentation led to lower performance for all networks. These findings can provide potential networks with higher accuracy and better setting in the CLD diagnosis and progress assessment. A larger data set would help identify the best network and settings for CLD assessment in clinical practice.
Collapse
Affiliation(s)
- George C Kagadis
- 3DMI Research Group, Department of Medical Physics, School of Medicine, University of Patras, Rion GR 26504, Greece. Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Fang C, Sidhu PS. Ultrasound-based liver elastography: current results and future perspectives. Abdom Radiol (NY) 2020; 45:3463-3472. [PMID: 32918106 PMCID: PMC7593307 DOI: 10.1007/s00261-020-02717-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/03/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
Chronic liver disease affects 185 million population worldwide. It encompasses a heterogenous disease spectrum, but all can lead to the development of liver fibrosis. The degree of liver fibrosis is not only a prognosticator, but has also been used to guide the treatment strategy and to evaluate treatment response. Traditionally, staging of liver fibrosis is determined on histological analysis using samples obtained from an invasive liver biopsy. Ultrasound-based liver elastography is a non-invasive method of assessing diffuse liver disease in patients with known chronic liver disease. The use of liver elastography has led to a significant reduction in the number of liver biopsies performed to assess the severity of liver fibrosis and a liver biopsy is now reserved for only select sub-groups of patients. The aim of this review article is to discuss the key findings and current evidence for ultrasound-based elastography in diffuse liver disease as well as the technical challenges and to evaluate the potential research direction.
Collapse
|
38
|
Pasyar P, Masjoodi S, Montazeriani Z, Makkiabadi B. A digital viscoelastic liver phantom for investigation of elastographic measurements. Comput Biol Med 2020; 127:104078. [PMID: 33126121 DOI: 10.1016/j.compbiomed.2020.104078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022]
Abstract
To develop elastography imaging technologies and implement image reconstruction algorithms, testing is done with phantoms. Although the validation step is usually taken using real data and physical phantoms, their geometry as well as composition, biomechanical parameters, and details of applying stress cannot be modified readily. Such considerations have gained increasing importance with the growth of elastography techniques as one of the non-invasive medical imaging modalities, which can map the elastic properties and stiffness of soft tissues. In this article, we develop a digital viscoelastic phantom using computed tomography (CT) imaging data and several application software tools based on illustrations of normal liver anatomy so as to investigate the biomechanics of elastography via finite element modeling (FEM). Here we discuss how to create this phantom step by step, demonstrate typical shear wave elastography (SWE) experiments of applying transient stress to the liver model, and calculate quantitative measurements. In particular, shear wave velocities are investigated through a parametric study designed based on tissue stiffness and distance from the applied stress. According to the results of FEM analysis, low errors were obtained for shear wave velocity estimation for both mechanical stress (~2-5%) and acoustic radiation force (~3-7%). Results show that our model is a powerful framework and benchmark for simulating and implementing different algorithms in shear wave elastography, which can serve as a guide for upcoming researches and assist scientists to optimize their subsequent experiments in terms of design.
Collapse
Affiliation(s)
- Pezhman Pasyar
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sadegh Masjoodi
- Institute for Cognitive and Brain Science, Shahid Beheshti University, Tehran, Iran
| | - Zahra Montazeriani
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahador Makkiabadi
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Jana A, Qu H, Rattan P, Minacapelli CD, Rustgi V, Metaxas D. Deep Learning based NAS Score and Fibrosis Stage Prediction from CT and Pathology Data. 2020 IEEE 20TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE) 2020:981-986. [DOI: 10.1109/bibe50027.2020.00166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
40
|
Gatos I, Drazinos P, Yarmenitis S, Theotokas I, Zoumpoulis PS. Comparison of Sound Touch Elastography, Shear Wave Elastography and Vibration-Controlled Transient Elastography in Chronic Liver Disease Assessment using Liver Biopsy as the "Reference Standard". ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:959-971. [PMID: 31983484 DOI: 10.1016/j.ultrasmedbio.2019.12.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Chronic liver disease (CLD) is currently a major cause of death. Ultrasound elastography (USE) is an imaging method that has been developed for CLD assessment. Our aim in the study described here was to evaluate and compare a new commercial variant of USE, sound touch elastography (STE), with already established USE methods, shear wave elastography (SWE) and vibration-controlled transient elastography (VCTE), using liver biopsy as the "reference standard." For our study, 139 consecutive patients underwent standard liver STE, SWE and VCTE examinations with the corresponding ultrasound devices. A receiver operator characteristic (ROC) curve analysis was performed on the stiffness values measured with each method. ROC analysis revealed, for SWE, STE and VCTE, areas under the ROC curve of 0.9397, 0.9224 and 0.9348 for fibrosis stage (F), F ≥ F1; 0.9481, 0.9346 and 0.9415 for F ≥ F2; 0.9623, 0.9591 and 0.9631 for F ≥ F3; and 0.9581, 0.9541 and 0.9632 for F = F4, respectively. In conclusion, STE performs similarly to SWE and VCTE in CLD stage differentiation.
Collapse
Affiliation(s)
- Ilias Gatos
- Diagnostic Echotomography SA, Kifissia, Greece; Department of Medical Physics, School of Medicine, University of Patras, Rion, Greece
| | | | | | | | | |
Collapse
|
41
|
Cao Z, Yang G, Chen Q, Chen X, Lv F. Breast tumor classification through learning from noisy labeled ultrasound images. Med Phys 2019; 47:1048-1057. [PMID: 31837239 DOI: 10.1002/mp.13966] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/11/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To train deep learning models to differentiate benign and malignant breast tumors in ultrasound images, we need to collect many training samples with clear labels. In general, biopsy results can be used as benign/malignant labels. However, most clinical samples generally do not have biopsy results. Previous works have proposed generating benign/malignant labels according to Breast Imaging, Reporting and Data System (BI-RADS) ratings. However, this approach will cause noisy labels, which means that the benign/malignant labels produced from BI-RADS diagnoses may be inconsistent with the ground truths. Consequently, deep models will overfit the noisy labels and hence obtain poor generalization performance. In this work, we mainly focus on how to reduce the negative effect of noisy labels when they are used to train breast tumor classification models. METHODS We propose an effective approach called noise filter network (NF-Net) to address the problem of noisy labels when training breast tumor classification models. Specifically, to prevent deep models from overfitting the noisy labels, we propose incorporating two softmax layers for classification. Additionally, to strengthen the effect of clean labels, we design a teacher-student module for distilling the knowledge of clean labels. RESULTS We conduct extensive comparisons with the existing works on addressing noisy labels. Our method achieves a classification accuracy of 73%, with a precision of 69%, recall of 80%, and F1-score of 0.74. This result is significantly better than those of the existing state-of-the-art works on addressing noisy labels. CONCLUSIONS This work provides a means to overcome the label shortage problem in training breast tumor classification models. Specifically, we can generate benign/malignant labels according to the BI-RADS ratings. Although this approach will cause noisy labels, the design of NF-Net can effectively reduce the negative effect of such labels.
Collapse
Affiliation(s)
- Zhantao Cao
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Guowu Yang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qin Chen
- Sichuan Provincial Peoples's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Xiaolong Chen
- Center of Statistical Research and School of Statistics, Southwestern University of Finance and Economics, Chengdu, 611130, China
| | - Fengmao Lv
- Center of Statistical Research and School of Statistics, Southwestern University of Finance and Economics, Chengdu, 611130, China
| |
Collapse
|
42
|
Wang Y, Cao Y. Human peripheral blood leukocyte classification method based on convolutional neural network and data augmentation. Med Phys 2019; 47:142-151. [PMID: 31691975 DOI: 10.1002/mp.13904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 09/12/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Human peripheral blood leukocytes' classification is important for diagnosing blood diseases. Many microscopic leukocyte image automatic detection methods are proposed. In recent years, convolutional neural networks (CNNs) are applied to microscopic leukocyte image automatic classification. But when a CNN is used for microscopic leukocyte image classification, the dataset's scarcity and imbalance will lead to low classification accuracy. To improve classification accuracy, a data augmentation method is proposed, and a resampling method is adopted when using a CNN method. METHODS First, a deep CNN model for microscopic leukocyte image classification is designed. Then, a new data augmentation method based on feature concentration is proposed to enrich the dataset and overcome the problem of dataset scarcity. To make the CNN model focus on the leukocyte region, many images are generated by putting a segmented leukocyte into images with different microscopic surroundings using an image processing method. Finally, taking the imbalance of the five kinds of leukocytes in the dataset into consideration, a resampling method is adopted. The resampling method iteratively feeds the leukocyte images with a low proportion to the CNN model within an epoch to ensure that images of each of the five kinds of leukocytes are represented in relatively equal numbers in each batch. RESULTS The experimental results demonstrate that the proposed classification method can achieve 97.6% average testing accuracy. Classification precision for the five kinds of leukocytes is above 93.4%, while sensitivity is above 92.5%. Both the proposed data augmentation and the resampling methods improve classification accuracy. CONCLUSIONS A human peripheral blood leukocyte classification method based on a CNN and data augmentation is proposed. The problem of dataset scarcity is solved by the proposed data augmentation method, and the dataset imbalance is solved by a resampling method.
Collapse
Affiliation(s)
- Yapin Wang
- Department of Opto-electronics, SichuanUniversity, Chengdu, 610064, China
| | - Yiping Cao
- Department of Opto-electronics, SichuanUniversity, Chengdu, 610064, China
| |
Collapse
|