1
|
Yoshida E, Yamaya T. PET detectors with depth-of-interaction and time-of-flight capabilities. Radiol Phys Technol 2024; 17:596-609. [PMID: 38888821 DOI: 10.1007/s12194-024-00821-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/09/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
In positron emission tomography (PET), measurements of depth-of-interaction (DOI) information and time-of-flight (TOF) information are important. DOI information reduces the parallax error, and TOF information reduces noise by measuring the arrival time difference of the annihilation photons. Historically, these have been studied independently, and there has been less implementation of both DOI and TOF capabilities because previous DOI detectors did not have good TOF resolution. However, recent improvements in PET detector performance have resulted in commercial PET scanners achieving a coincidence resolving time of around 200 ps, which result in an effect even for small objects. This means that TOF information can now be utilized even for a brain PET scanner, which also requires DOI information. Therefore, various methods have been proposed to obtain better DOI and TOF information. In addition, the cost of PET detectors is also an important factor to consider, since several hundred detectors are used per PET scanner. In this paper, we review the latest DOI-TOF detectors including the history of detector development. When put into practical use, these DOI-TOF detectors are expected to contribute to the improvement of imaging performance in brain PET scanners.
Collapse
Affiliation(s)
- Eiji Yoshida
- National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.
| | - Taiga Yamaya
- National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| |
Collapse
|
2
|
Liu Z, Shi D, Cai Y, Li A, Lan G, Sun P, Liu L, Zhu Y, Yang J, Zhou Y, Guo L, Zhang L, Deng S, Chen S, Yu X, Chen X, Zhao R, Wang Q, Ran P, Xu L, Zhou L, Sun K, Wang X, Peng Q, Han Y, Guo T. Pathophysiology characterization of Alzheimer's disease in South China's aging population: for the Greater-Bay-Area Healthy Aging Brain Study (GHABS). Alzheimers Res Ther 2024; 16:84. [PMID: 38627753 PMCID: PMC11020808 DOI: 10.1186/s13195-024-01458-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
INTRODUCTION The Guangdong-Hong Kong-Macao Greater-Bay-Area of South China has an 86 million population and faces a significant challenge of Alzheimer's disease (AD). However, the characteristics and prevalence of AD in this area are still unclear due to the rarely available community-based neuroimaging AD cohort. METHODS Following the standard protocols of the Alzheimer's Disease Neuroimaging Initiative, the Greater-Bay-Area Healthy Aging Brain Study (GHABS) was initiated in 2021. GHABS participants completed clinical assessments, plasma biomarkers, genotyping, magnetic resonance imaging (MRI), β-amyloid (Aβ) positron emission tomography (PET) imaging, and tau PET imaging. The GHABS cohort focuses on pathophysiology characterization and early AD detection in the Guangdong-Hong Kong-Macao Greater Bay Area. In this study, we analyzed plasma Aβ42/Aβ40 (A), p-Tau181 (T), neurofilament light, and GFAP by Simoa in 470 Chinese older adults, and 301, 195, and 70 had MRI, Aβ PET, and tau PET, respectively. Plasma biomarkers, Aβ PET, tau PET, hippocampal volume, and temporal-metaROI cortical thickness were compared between normal control (NC), subjective cognitive decline (SCD), mild cognitive impairment (MCI), and dementia groups, controlling for age, sex, and APOE-ε4. The prevalence of plasma A/T profiles and Aβ PET positivity were also determined in different diagnostic groups. RESULTS The aims, study design, data collection, and potential applications of GHABS are summarized. SCD individuals had significantly higher plasma p-Tau181 and plasma GFAP than the NC individuals. MCI and dementia patients showed more abnormal changes in all the plasma and neuroimaging biomarkers than NC and SCD individuals. The frequencies of plasma A+/T+ (NC; 5.9%, SCD: 8.2%, MCI: 25.3%, dementia: 64.9%) and Aβ PET positivity (NC: 25.6%, SCD: 22.5%, MCI: 47.7%, dementia: 89.3%) were reported. DISCUSSION The GHABS cohort may provide helpful guidance toward designing standard AD community cohorts in South China. This study, for the first time, reported the pathophysiology characterization of plasma biomarkers, Aβ PET, tau PET, hippocampal atrophy, and AD-signature cortical thinning, as well as the prevalence of Aβ PET positivity in the Guangdong-Hong Kong-Macao Greater Bay Area of China. These findings provide novel insights into understanding the characteristics of abnormal AD pathological changes in South China's older population.
Collapse
Affiliation(s)
- Zhen Liu
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
| | - Dai Shi
- Neurology Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Yue Cai
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
| | - Anqi Li
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
| | - Guoyu Lan
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
| | - Pan Sun
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
| | - Lin Liu
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
| | - Yalin Zhu
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
| | - Jie Yang
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
| | - Yajing Zhou
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
| | - Lizhi Guo
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
| | - Laihong Zhang
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
| | - Shuqing Deng
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
| | - Shuda Chen
- Neurology Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Xianfeng Yu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Xuhui Chen
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Ruiyue Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, China
| | - Qingyong Wang
- Department of Neurology, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, 518107, China
| | - Pengcheng Ran
- Department of Nuclear Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China
| | - Linsen Xu
- Department of Medical Imaging, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, 518106, China
| | - Liemin Zhou
- Neurology Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Kun Sun
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Xinlu Wang
- Department of Nuclear Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, China
| | - Qiyu Peng
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
| | - Ying Han
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Tengfei Guo
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China.
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Liu Y, Li A, Cheng R, Li B, Xie Q, Wang X, Qiu B, Chen X, Xiao P. A depth-of-interaction rebinning method based on both geometric and activity weights. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107703. [PMID: 37531688 DOI: 10.1016/j.cmpb.2023.107703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND AND OBJECTIVE For positron emission tomography (PET) scanners with depth-of-interaction (DOI) measurement, the DOI rebinning method that utilizes DOI information to process the projection data is critical to image quality. Current DOI rebinning methods map coincidence events onto the rebinned sinogram based on the correlation of lines of response (LOR). This study aims to incorporate prior radioactivity distribution of the imaging object into DOI rebinning to obtain better image quality. METHODS A DOI rebinning method based on both geometric and activity weights was proposed to assign coincidence events to the rebinned sinogram defined by a virtual ring. The geometric weights, representing the correlation between LORs, were calculated based on the areas of intersection. The activity weights, reflecting the activity distribution of the imaging object, were derived from the previous reconstructed image. RESULTS Monte Carlo simulation data from four phantoms, including the image quality phantom, Derenzo phantom, and two rat-like ROBY phantoms, was used to evaluate the proposed method. The recovery coefficient (RC), contrast recovery coefficient (CRC), structural similarity index measure (SSIM), and peak signal-to-noise ratio (PSNR) were used as image quality metrics. Compared to other DOI rebinning methods, the proposed method achieved the highest RC (maximum improvement of 32%) and CRC at the same noise level and was also optimal in terms of the SSIM and PSNR. Meanwhile, incorporating the prior activity distribution into DOI rebinning also improved the image reconstruction speed. CONCLUSIONS This work developed a new DOI rebinning method combining the correlation of LORs with the prior activity distribution, achieving relatively optimal image quality and reconstruction speed. Furthermore, it still needs to be evaluated on the actual equipment.
Collapse
Affiliation(s)
- Yu Liu
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ang Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ran Cheng
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bingxuan Li
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230026, China
| | - Qingguo Xie
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230026, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230026, China
| | - Xiaoping Wang
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bensheng Qiu
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230026, China
| | - Xun Chen
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230026, China
| | - Peng Xiao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230026, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230026, China.
| |
Collapse
|
4
|
Development and Evaluation of a Dual-Layer-Offset PET Detector Constructed with Different Reflectors. CRYSTALS 2022. [DOI: 10.3390/cryst12010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dual-layer-offset or multi-layer-offset design of a PET detector can improve spatial resolution while maintaining high sensitivity. In this study, three dual-layer-offset LYSO detectors with three different reflectors (ESR, Toray, and BaSO4) were developed. The top layer consisted of a 17 × 17 array of crystals 1 × 1 × 6.5 mm3 in size and the bottom layer consisted of an 18 × 18 array of crystals 1 × 1 × 9.5 mm3 in size. Neither light guides nor optical glue were used between the two layers of crystals. A custom-designed electronics system, composed of a 6 × 6 SiPM array, two FPC cables, and a custom-designed data processing module, was used to read out signals. An optimized interaction-decoding algorithm using the center of gravity to determine the position and threshold of analog signals for timing methods was applied to generate decoding flood histograms. The detector performances, in terms of peak to valley ratio of the flood histograms and energy resolutions, were calculated and compared. The dual-layer-offset PET detector constructed with BaSO4 reflectors performed much better than the other two reflectors in both crystal identification and energy resolution. The average peak-to-valley ratio and the energy resolution were approximately 7 and 11%, respectively. In addition, the crystals in the bottom layer showed better performance at crystal identification than those in the top layer. This study can act as a reference providing guidance in choosing scintillator reflectors for multi-layer dedicated DOI detectors designed for small-animal PET imaging.
Collapse
|
5
|
Zhang X, Yu H, Xie Q, Xie S, Ye B, Guo M, Zhao Z, Huang Q, Xu J, Peng Q. Design study of a PET detector with 0.5 mm crystal pitch for high-resolution preclinical imaging. Phys Med Biol 2021; 66. [PMID: 34130263 DOI: 10.1088/1361-6560/ac0b82] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/15/2021] [Indexed: 11/12/2022]
Abstract
Preclinical positron emission tomography (PET) is a sensitive and quantitative molecule imaging modality widely used in characterizing the biological processes and diseases in small animals. The purpose of this study is to investigate the methods to optimize a PET detector for high-resolution preclinical imaging. The PET detector proposed in this study consists of a 28 × 28 array of LYSO crystals 0.5 × 0.5 × 6.25 mm3in size, a wedged lightguide, and a 6 × 6 array of SiPMs 3 × 3 mm2in size. The simulation results showed that the most uniform flood map was achieved when the thickness of the lightguide was 2.35 mm. The quality of the flood map was significantly improved by suppressing the electronics noises using the simple threshold method with a best threshold. The peak-to-valley ratio of flood map improved 25.4% when the algorithm of ICS rejection was applied. An energy resolution (12.96% ± 1.03%) was measured on the prototype scanner constructed with 12 proposed detectors. Lastly, a prototype preclinic PET imager was constructed with 12 optimized detectors. The point source experiment was performed and an excellent spatial resolution (axial: 0.56 mm, tangential: 0.46 mm, radial: 0.42 mm) was achieved with the proposed high-performance PET detectors.
Collapse
Affiliation(s)
- Xi Zhang
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, People's Republic of China
| | - Hongsen Yu
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, People's Republic of China
| | - Qiangqiang Xie
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, People's Republic of China
| | - Siwei Xie
- Institute of Biomedical Engineering Shenzhen Bay Laboratory, Shenzhen, 518132, People's Republic of China
| | - Baihezi Ye
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, People's Republic of China
| | - Minghao Guo
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, People's Republic of China
| | - Zhixiang Zhao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, People's Republic of China
| | - Qiu Huang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, People's Republic of China
| | - Jianfeng Xu
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, People's Republic of China
| | - Qiyu Peng
- Institute of Biomedical Engineering Shenzhen Bay Laboratory, Shenzhen, 518132, People's Republic of China
| |
Collapse
|
6
|
Zhang X, Xie Q, Xie S, Yu X, Xu J, Peng Q. A Novel Portable Gamma Radiation Sensor Based on a Monolithic Lutetium-Yttrium Oxyorthosilicate Ring. SENSORS 2021; 21:s21103376. [PMID: 34066224 PMCID: PMC8150370 DOI: 10.3390/s21103376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 11/21/2022]
Abstract
Portable radiation detectors are widely used in environmental radiation detection and medical imaging due to their portability feature, high detection efficiency, and large field of view. Lutetium-yttrium oxyorthosilicate (LYSO) is a widely used scintillator in gamma radiation detection. However, the structure and the arrangement of scintillators limit the sensitivity and detection accuracy of these radiation detectors. In this study, a novel portable sensor based on a monolithic LYSO ring was developed for the detection of environmental radiation through simulation, followed by construction and assessments. Monte Carlo simulations were utilized to prove the detection of gamma rays at 511 keV by the developed sensor. The simulations data, including energy resolutions, decoding errors, and sensitivity, showed good potential for the detection of gamma rays by the as-obtained sensor. The experimental results using the VA method revealed decoding errors in the energy window width of 50 keV less than 2°. The average error was estimated at 0.67°, a sufficient value for the detection of gamma radiation. In sum, the proposed radiation sensor appears promising for the construction of high-performance radiation detectors and systems.
Collapse
Affiliation(s)
- Xi Zhang
- The School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (X.Z.); (Q.X.); (X.Y.)
| | - Qiangqiang Xie
- The School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (X.Z.); (Q.X.); (X.Y.)
| | - Siwei Xie
- Shenzhen Bay Laboratory, The Institute of Biomedical Engineering, Shenzhen 518132, China; (S.X.); (Q.P.)
| | - Xin Yu
- The School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (X.Z.); (Q.X.); (X.Y.)
| | - Jianfeng Xu
- The School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (X.Z.); (Q.X.); (X.Y.)
- Correspondence:
| | - Qiyu Peng
- Shenzhen Bay Laboratory, The Institute of Biomedical Engineering, Shenzhen 518132, China; (S.X.); (Q.P.)
| |
Collapse
|
7
|
Zhang X, Ye B, Yu H, Zhang Y, Xie S, Xu J, Peng Q. Depth of Interaction Measurements Based on Rectangular Light Sharing Window Technology and Nine-Crystals-to-One-SiPM Coupling Method. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3023073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Li M, Wang Y, Abbaszadeh S. Development and initial characterization of a high-resolution PET detector module with DOI. Biomed Phys Eng Express 2020; 6:065020. [PMID: 34234961 PMCID: PMC8260077 DOI: 10.1088/2057-1976/abbd4f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Organ-dedicated PET scanners are becoming more prevalent because of their advantages in higher sensitivity, improved image quality, and lower cost. Detectors utilized in these scanners have finer pixel size with depth of interaction (DOI) capability. This work presents a LYSO(Ce) detector module with DOI capability which has the potential to be scaled up to a high-resolution small animal or organ-dedicated PET system. For DOI capability, a submodule with one LYSO block detector utilizing PETsys TOFPET2 application-specific integrated circuit (ASIC) was previously developed in our lab. We scaled up the submodule and optimized the configuration to allow for a compact housing of the dual-readout boards in one side of the blocks by designing a high-speed dual-readout cable to maintain the original pin-to-pin relationship between the Samtec connectors. The module size is 53.8 × 57.8 mm2. Each module has 2 × 2 LYSO blocks, each LYSO block consists of 4 × 4 LYSO units, and each LYSO unit contains a 6 × 6 array of 1 × 1 × 20 mm3 LYSO crystals. The four lateral surfaces of LYSO crystal were mechanically ground to W14, and the two end surfaces were polished. Two ends of the LYSO crystal are optically connected to SiPM for DOI measurement. Eight LYSO blocks performance including energy, timing, and DOI resolution is characterized with a single LYSO slab. The in-panel and orthogonal-panel spatial resolution of the two modules with 107.4 mm distance between each other are measured at 9 positions within the field of view (FOV) with a 22Na source. Results show that the average energy, timing, and DOI resolution of all LYSO blocks are 16.13% ± 1.01% at 511 keV, 658.03 ± 15.18 ps, and 2.62 ± 0.06 mm, respectively. The energy and timing resolution of two modules are 16.35% and 0.86 ns, respectively. The in-panel and orthogonal-panel spatial resolution of the two modules at the FOV center are 1.9 and 4.4 mm respectively.
Collapse
Affiliation(s)
- Mohan Li
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
| | - Yuli Wang
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, 95064, United States of America
| | - Shiva Abbaszadeh
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, 95064, United States of America
| |
Collapse
|
9
|
Walrand S, Hesse M, Jamar F. Achieving sub-100 ps time-of-flight resolution in thick LSO positron emission tomography while reducing system cost: a Monte Carlo study. Phys Med Biol 2020; 65:205009. [DOI: 10.1088/1361-6560/abb02a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
Purpose. Evaluating the time-of-flight (TOF) resolution improvement that could be obtained using an easy crystal block modification which enables depth of interaction (DOI) assessment and simplifies the detector assembling process. Method. A fast optical Monte Carlo (MC) code was developed. The code was evaluated versus measurements of the energy resolution, number of detected scintillation photons and TOF resolution (TOFr) reported for different crystal photodetector setups. Then, MC simulations were performed for a modified crystal block section of 8 × 8 mm2 in which two partial saw cuts allow light sharing between four detector pixels with a strong dependence on the DOI. Results. Relative differences between MC simulations and reported measurements were always below 10% for any quantities. The simulations showed that the best TOFr was obtained by leaving the partial saw cuts empty. This feature results from the fact that for a slant angle lower than 56 degrees, the scintillation photons undergo a lossless total reflection at the L[Y]SO → air boundary, which is hardly achievable using a reflector material. According to the simulations, this approach allows a TOFr improvement from 163 ps to 90 ps full width at half-maximum using a 22 mm thick LSO 0.2%Ca:Ce crystal coupled to a FBK-NUV-HD silicon photomultiplier. Conclusion. Sub-100 ps TOFr using thick LSO crystal appears achievable using this simple crystal block modification. The method reduces by a factor of 4 the number of crystal pixels to be covered by a reflective material and afterwards joined together. As clinical positron emission tomography contains about 60 000 crystal pixels, this benefit would reduce the assembling cost.
Collapse
|
10
|
Yoshida E, Obata F, Kamada K, Yamaya T. Development of Single-Ended Readout DOI Detector With Quadrisected Crystals. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2020.2990788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|