1
|
Chen J, Lu R, Ye S, Guang M, Tassew TM, Jing B, Zhang G, Chen G, Shen D. Image Recovery Matters: A Recovery-Extraction Framework for Robust Fetal Brain Extraction From MR Images. IEEE J Biomed Health Inform 2024; 28:823-834. [PMID: 37995170 DOI: 10.1109/jbhi.2023.3333953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The extraction of the fetal brain from magnetic resonance (MR) images is a challenging task. In particular, fetal MR images suffer from different kinds of artifacts introduced during the image acquisition. Among those artifacts, intensity inhomogeneity is a common one affecting brain extraction. In this work, we propose a deep learning-based recovery-extraction framework for fetal brain extraction, which is particularly effective in handling fetal MR images with intensity inhomogeneity. Our framework involves two stages. First, the artifact-corrupted images are recovered with the proposed generative adversarial learning-based image recovery network with a novel region-of-darkness discriminator that enforces the network focusing on artifacts of the images. Second, we propose a brain extraction network for more effective fetal brain segmentation by strengthening the association between lower- and higher-level features as well as suppressing task-irrelevant features. Thanks to the proposed recovery-extraction strategy, our framework is able to accurately segment fetal brains from artifact-corrupted MR images. The experiments show that our framework achieves promising performance in both quantitative and qualitative evaluations, and outperforms state-of-the-art methods in both image recovery and fetal brain extraction.
Collapse
|
2
|
Vahedifard F, Adepoju JO, Supanich M, Ai HA, Liu X, Kocak M, Marathu KK, Byrd SE. Review of deep learning and artificial intelligence models in fetal brain magnetic resonance imaging. World J Clin Cases 2023; 11:3725-3735. [PMID: 37383127 PMCID: PMC10294149 DOI: 10.12998/wjcc.v11.i16.3725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/30/2023] [Accepted: 05/06/2023] [Indexed: 06/02/2023] Open
Abstract
Central nervous system abnormalities in fetuses are fairly common, happening in 0.1% to 0.2% of live births and in 3% to 6% of stillbirths. So initial detection and categorization of fetal Brain abnormalities are critical. Manually detecting and segmenting fetal brain magnetic resonance imaging (MRI) could be time-consuming, and susceptible to interpreter experience. Artificial intelligence (AI) algorithms and machine learning approaches have a high potential for assisting in the early detection of these problems, improving the diagnosis process and follow-up procedures. The use of AI and machine learning techniques in fetal brain MRI was the subject of this narrative review paper. Using AI, anatomic fetal brain MRI processing has investigated models to predict specific landmarks and segmentation automatically. All gestation age weeks (17-38 wk) and different AI models (mainly Convolutional Neural Network and U-Net) have been used. Some models' accuracy achieved 95% and more. AI could help preprocess and post-process fetal images and reconstruct images. Also, AI can be used for gestational age prediction (with one-week accuracy), fetal brain extraction, fetal brain segmentation, and placenta detection. Some fetal brain linear measurements, such as Cerebral and Bone Biparietal Diameter, have been suggested. Classification of brain pathology was studied using diagonal quadratic discriminates analysis, K-nearest neighbor, random forest, naive Bayes, and radial basis function neural network classifiers. Deep learning methods will become more powerful as more large-scale, labeled datasets become available. Having shared fetal brain MRI datasets is crucial because there aren not many fetal brain pictures available. Also, physicians should be aware of AI's function in fetal brain MRI, particularly neuroradiologists, general radiologists, and perinatologists.
Collapse
Affiliation(s)
- Farzan Vahedifard
- Department of Diagnostic Radiology and Nuclear Medicine, Rush Medical College, Chicago, IL 606012, United States
| | - Jubril O Adepoju
- Department of Diagnostic Radiology and Nuclear Medicine, Rush Medical College, Chicago, IL 606012, United States
| | - Mark Supanich
- Division for Diagnostic Medical Physics, Department of Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL 606012, United States
| | - Hua Asher Ai
- Division for Diagnostic Medical Physics, Department of Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL 606012, United States
| | - Xuchu Liu
- Department of Diagnostic Radiology and Nuclear Medicine, Rush Medical College, Chicago, IL 606012, United States
| | - Mehmet Kocak
- Department of Diagnostic Radiology and Nuclear Medicine, Rush Medical College, Chicago, IL 606012, United States
| | - Kranthi K Marathu
- Department of Diagnostic Radiology and Nuclear Medicine, Rush Medical College, Chicago, IL 606012, United States
| | - Sharon E Byrd
- Department of Diagnostic Radiology and Nuclear Medicine, Rush Medical College, Chicago, IL 606012, United States
| |
Collapse
|