1
|
Wei R, Song Z, Pan Z, Cao Y, Song Y, Dai J. Non-coplanar CBCT image reconstruction using a generative adversarial network for non-coplanar radiotherapy. J Appl Clin Med Phys 2024; 25:e14487. [PMID: 39186746 PMCID: PMC11466471 DOI: 10.1002/acm2.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/12/2024] [Accepted: 07/11/2024] [Indexed: 08/28/2024] Open
Abstract
PURPOSE To develop a non-coplanar cone-beam computed tomography (CBCT) image reconstruction method using projections within a limited angle range for non-coplanar radiotherapy. METHODS A generative adversarial network (GAN) was utilized to reconstruct non-coplanar CBCT images. Data from 40 patients with brain tumors and two head phantoms were used in this study. In the training stage, the generator of the GAN used coplanar CBCT and non-coplanar projections as the input, and an encoder with a dual-branch structure was utilized to extract features from the coplanar CBCT and non-coplanar projections separately. Non-coplanar CBCT images were then reconstructed using a decoder by combining the extracted features. To improve the reconstruction accuracy of the image details, the generator was adversarially trained using a patch-based convolutional neural network as the discriminator. A newly designed joint loss was used to improve the global structure consistency rather than the conventional GAN loss. The proposed model was evaluated using data from eight patients and two phantoms at four couch angles (±45°, ±90°) that are most commonly used for brain non-coplanar radiotherapy in our department. The reconstructed accuracy was evaluated by calculating the root mean square error (RMSE) and an overall registration error ε, computed by integrating the rigid transformation parameters. RESULTS In both patient data and phantom data studies, the qualitative and quantitative metrics results indicated that ± 45° couch angle models performed better than ±90° couch angle models and had statistical differences. In the patient data study, the mean RMSE and ε values of couch angle at 45°, -45°, 90°, and -90° were 58.5 HU and 0.42 mm, 56.8 HU and 0.41 mm, 73.6 HU and 0.48 mm, and 65.3 HU and 0.46 mm, respectively. In the phantom data study, the mean RMSE and ε values of couch angle at 45°, -45°, 90°, and -90° were 91.2 HU and 0.46 mm, 95.0 HU and 0.45 mm, 114.6 HU and 0.58 mm, and 102.9 HU and 0.52 mm, respectively. CONCLUSIONS The results show that the reconstructed non-coplanar CBCT images can potentially enable intra-treatment three-dimensional position verification for non-coplanar radiotherapy.
Collapse
Affiliation(s)
- Ran Wei
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhiyue Song
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ziqi Pan
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ying Cao
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yongli Song
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jianrong Dai
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
2
|
Liu Y, Chen M, Fang J, Xiao L, Liu S, Li Q, Qiu B, Huang R, Zhang J, Peng Y. A novel evaluation model of image registration for cone-beam computed tomography guided lung cancer radiotherapy. Thorac Cancer 2024; 15:1333-1342. [PMID: 38686543 PMCID: PMC11168913 DOI: 10.1111/1759-7714.15320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND The aim of the study was to establish a weighted comprehensive evaluation model (WCEM) of image registration for cone-beam computed tomography (CBCT) guided lung cancer radiotherapy that considers the geometric accuracy of gross target volume (GTV) and organs at risk (OARs), and assess the registration accuracy of different image registration methods to provide clinical references. METHODS The planning CT and CBCT images of 20 lung cancer patients were registered using diverse algorithms (bony and grayscale) and regions of interest (target, ipsilateral, and body). We compared the coverage ratio (CR) of the planning target volume (PTVCT) to GTVCBCT, as well as the dice similarity coefficient (DSC) of the GTV and OARs, considering the treatment position across various registration methods. Furthermore, we developed a mathematical model to assess registration results comprehensively. This model was evaluated and validated using CRFs across four automatic registration methods. RESULTS The grayscale registration method, coupled with the registration of the ipsilateral structure, exhibited the highest level of automatic registration accuracy, the DSC were 0.87 ± 0.09 (GTV), 0.71 ± 0.09 (esophagus), 0.74 ± 0.09 (spinal cord), and 0.91 ± 0.05 (heart), respectively. Our proposed WCEM proved to be both practical and effective. The results clearly indicated that the grayscale registration method, when applied to the ipsilateral structure, achieved the highest CRF score. The average CRF scores, excellent rates, good rate and qualification rates were 58 ± 26, 40%, 75%, and 85%, respectively. CONCLUSIONS This study successfully developed a clinically relevant weighted evaluation model for CBCT-guided lung cancer radiotherapy. Validation confirmed the grayscale method's optimal performance in ipsilateral structure registration.
Collapse
Affiliation(s)
- Yimei Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Meining Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jianlan Fang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Liangjie Xiao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Songran Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Qiwen Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Bo Qiu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Runda Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jun Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yinglin Peng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Radiation Oncology, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
3
|
Song Z, Li T, Zuo L, Song Y, Wei R, Dai J. A grayscale compression method to segment bone structures for 2D-3D registration of setup images in non-coplanar radiotherapy. Biomed Phys Eng Express 2024; 10:035014. [PMID: 38442730 DOI: 10.1088/2057-1976/ad3050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/05/2024] [Indexed: 03/07/2024]
Abstract
Purpose. To evaluate the performance of an automated 2D-3D bone registration algorithm incorporating a grayscale compression method for quantifying patient position errors in non-coplanar radiotherapy.Methods. An automated 2D-3D registration incorporating a grayscale compression method to segment bone structures was proposed. Portal images containing only bone structures (Portalbone) and digitally reconstructed radiographs containing only bone structures (DRRbone) were used for registration. First, the portal image was filtered by a high-pass finite impulse response (FIR) filter. Then the grayscale range of the filtered portal image was compressed. Thresholds were determined based on the difference in gray values of bone structures in the filtered and compressed portal image to obtainPortalbone.Another threshold was applied to generateDRRbonewhen the CT image uses the ray-casting algorithm to generate DRR images. The compression performance was assessed by registering theDRRbonewith thePortalboneobtained by compressing the portal image into various grayscale ranges. The proposed registration method was quantitatively and visually validated using (1) a CT image of an anthropomorphic head phantom and its portal images obtained in different poses and (2) CT images and pre-treatment portal images of 20 patients treated with non-coplanar radiotherapy.Results. Mean absolute registration errors for the best compression grayscale range test were 0.642 mm, 0.574 mm, and 0.643 mm, with calculation times of 50.6 min, 42.2 min, and 49.6 min for grayscale ranges of 0-127, 0-63 and 0-31, respectively. For the accuracy validation (1), the mean absolute registration errors for couch angles 0°, 45°, 90°, 270°, and 315° were 0.694 mm, 0.839 mm, 0.726 mm, 0.833 mm, and 0.873 mm, respectively. Among the six transformation parameters, the translation error in the vertical direction contributed the most to the registration errors. Visual inspection of the patient registration results revealed success in every instance.Conclusions. The implemented grayscale compression method successfully enhances and segments bone structures in portal images, allowing for accurate determination of patient setup errors in non-coplanar radiotherapy.
Collapse
Affiliation(s)
- Zhiyue Song
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Tantan Li
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Lijing Zuo
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Yongli Song
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Ran Wei
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Jianrong Dai
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| |
Collapse
|
4
|
Fan Q, Pham H, Li X, Zhang P, Zhang L, Fu Y, Huang B, Li C, Cuaron J, Cerviño L, Moran JM, Li T. Toward quantitative intrafractional monitoring in paraspinal SBRT using a proprietary software application: clinical implementation and patient results. Phys Med Biol 2024; 69:045015. [PMID: 38241714 DOI: 10.1088/1361-6560/ad2099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
Objective.We report on paraspinal motion and the clinical implementation of our proprietary software that leverages Varian's intrafraction motion review (IMR) capability for quantitative tracking of the spine during paraspinal SBRT. The work is based on our prior development and analysis on phantoms.Approach.To address complexities in patient anatomy, digitally reconstructed radiographs (DRR's) that highlight only the spine or hardware were constructed as tracking reference. Moreover, a high-pass filter and first-pass coarse search were implemented to enhance registration accuracy and stability. For evaluation, 84 paraspinal SBRT patients with sites spanning across the entire vertebral column were enrolled with prescriptions ranging from 24 to 40 Gy in one to five fractions. Treatments were planned and delivered with 9 IMRT beams roughly equally distributed posteriorly. IMR was triggered every 200 or 500 MU for each beam. During treatment, the software grabbed the IMR image, registered it with the corresponding DRR, and displayed the motion result in near real-time on auto-pilot mode. Four independent experts completed offline manual registrations as ground truth for tracking accuracy evaluation.Main results.Our software detected ≥1.5 mm and ≥2 mm motions among 17.1% and 6.6% of 1371 patient images, respectively, in either lateral or longitudinal direction. In the validation set of 637 patient images, 91.9% of the tracking errors compared to manual registration fell within ±0.5 mm in either direction. Given a motion threshold of 2 mm, the software accomplished a 98.7% specificity and a 93.9% sensitivity in deciding whether to interrupt treatment for patient re-setup.Significance.Significant intrafractional motion exists in certain paraspinal SBRT patients, supporting the need for quantitative motion monitoring during treatment. Our improved software achieves high motion tracking accuracy clinically and provides reliable guidance for treatment intervention. It offers a practical solution to ensure accurate delivery of paraspinal SBRT on a conventional Linac platform.
Collapse
Affiliation(s)
- Qiyong Fan
- Memorial Sloan Kettering Cancer Center, Department of Medical Physics, 1275 York Avenue, NY 10065, United States of America
| | - Hai Pham
- Memorial Sloan Kettering Cancer Center, Department of Medical Physics, 1275 York Avenue, NY 10065, United States of America
| | - Xiang Li
- Memorial Sloan Kettering Cancer Center, Department of Medical Physics, 1275 York Avenue, NY 10065, United States of America
| | - Pengpeng Zhang
- Memorial Sloan Kettering Cancer Center, Department of Medical Physics, 1275 York Avenue, NY 10065, United States of America
| | - Lei Zhang
- Memorial Sloan Kettering Cancer Center, Department of Medical Physics, 1275 York Avenue, NY 10065, United States of America
| | - Yabo Fu
- Memorial Sloan Kettering Cancer Center, Department of Medical Physics, 1275 York Avenue, NY 10065, United States of America
| | - Bohong Huang
- Stony Brook University, Department of Applied Mathematics and Statistics, 100 Nicolls Rd, Stony Brook, NY 11794, United States of America
| | - Cindy Li
- Carnegie Mellon University, Mellon College of Science, 5000 Forbes Ave, Pittsburgh, PA 15213, United States of America
| | - John Cuaron
- Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology, 1275 York Avenue, NY 10065, United States of America
| | - Laura Cerviño
- Memorial Sloan Kettering Cancer Center, Department of Medical Physics, 1275 York Avenue, NY 10065, United States of America
| | - Jean M Moran
- Memorial Sloan Kettering Cancer Center, Department of Medical Physics, 1275 York Avenue, NY 10065, United States of America
| | - Tianfang Li
- Memorial Sloan Kettering Cancer Center, Department of Medical Physics, 1275 York Avenue, NY 10065, United States of America
| |
Collapse
|
5
|
Sarkar B, Manikandan A, Munshi A, Krishnankutty S, Ganesh T, Mohanti B, Manikandan S, Anirudh P, Chandrasekharan S. Calculation of set-up margin in frameless stereotactic radiotherapy accounting for translational and rotational patient positing error. J Cancer Res Ther 2022. [DOI: 10.4103/jcrt.jcrt_359_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
6
|
Sarkar B, Ganesh T, Munshi A, Manikandan A, Choudhari S, Jassal K, Mohanti BK, Pradhan A. Compatibility assessment of Varian and Elekta robotic couch‐assisted six‐dimensional patient positioning correction systems with external independent imaging modalities. PRECISION RADIATION ONCOLOGY 2021. [DOI: 10.1002/pro6.1136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Biplab Sarkar
- Department of Radiation Oncology, Apollo Multispeciality Hospitals Kolkata West Bengal India
- GLA University Mathura Uttar Pradesh India
| | | | - Anusheel Munshi
- Department of Radiation Oncology, Manipal Hospitals New Delhi India
| | | | | | - Kanan Jassal
- Department of Radiation Oncology, Fortis Memorial Research Institute Gurugram Haryana India
| | | | | |
Collapse
|
7
|
Munshi A, Sarkar B, Paul S, Chaudhari BB, Chauhan RS, Ganesh T, Mohanti BK. A mathematical formulation for volume expansions in contouring for radiotherapy planning. J Cancer Res Ther 2021; 17:1125-1131. [PMID: 34528577 DOI: 10.4103/jcrt.jcrt_614_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Context This research describe the characteristic volume expansion of a moving target as a function of differential margins. Aim We aimed to ascertain the volume change after giving margin for clinical and set up uncertainties including generating internal target volume (ITV) for moving target. Materials and Methods Settings and Design - Spheres of diameter (0.5-10 cm) with differential expansion of 1-15 mm were generated using a mathematical formula. Moving targets of radius 1-5 cm were generated, and the resultant volume envelopes with incremental motion from 1 to 20 mm were obtained. All relative volume change results were fitted with mathematical functions to obtain a generalized mathematical formula. Statistical Analysis Used None. Results The percentage increase in volume (%ΔVp) was much more pronounced for smaller radius target. For moving target with relatively smaller radius, %ΔVp is predominant over the absolute volume change and vice versa in case of larger radius. Mathematical formulae were obtained for %ΔVp as a function of radius and expansion and for %ΔVp in ITV volume as a function of radius and tumor movement. Conclusions This study provides an idea of volume change for various expansions for various size targets and/or moving target for different range of movements. It establishes a correlation of these volume changes with the changing target size and range of movements. Finally, a clinically useful mathematical formulation on volume expansion has been developed for rapid understanding of the consequence of volume expansion.
Collapse
Affiliation(s)
- Anusheel Munshi
- Department of Radiation Oncology, Manipal Hospitals, New Delhi, India
| | - Biplab Sarkar
- Department of Radiation Oncology, Manipal Hospitals, New Delhi, India
| | - Sayan Paul
- Department of Radiation Oncology, Fortis Memorial Research Institute, Guragon, Haryana, India
| | | | | | | | | |
Collapse
|
8
|
Sun J, Kong L, Chen Z, You D, Mao J, Guan X, Wu X, Sheng Y. Clinical Implementation of a 6D Treatment Chair for Fixed Ion Beam Lines. Front Oncol 2021; 11:694749. [PMID: 34249751 PMCID: PMC8260974 DOI: 10.3389/fonc.2021.694749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose To verify the practicality and safety of a treatment chair with six degrees of freedom (6DTC) through demonstrating the efficacy of the workflow in clinical settings and analyzing the obtained technical data, including intra-fraction patient movement during the use of the 6DTC. Materials and Methods A clinical study was designed and conducted to test the clinical treatment workflow and the safety of the 6DTC. Based on the demonstrated dosimetric advantages, fifteen patients with head and neck tumors were selected and treated with the 6DTC. The positional error at the first beam position (PE-B1) and the second beam position (PE-B2) were analyzed and compared with the results from daily quality assurance (QA) procedures of the 6DTC and imaging system performed each day before clinical treatment. The intra-fraction patient movement was derived from the total patient alignment positional error and the QA data based on a Gaussian distribution formulism. Results The QA results showed sub-millimeter mechanical accuracy of the 6DTC over the course of the clinical study. For 150 patient treatment fractions, the mean deviations between PE-B1 and PE-B2 were 0.13mm (SD 0.88mm), 0.25mm (SD 1.17mm), -0.57mm (SD 0.85mm), 0.02° (SD 0.35°), 0.00° (SD 0.37°), and -0.02° (SD 0.37°) in the x, y, z (translational), and u, v, w (rotational) directions, respectively. The calculated intra-fraction patient movement was -0.08mm (SD 0.56mm), 0.71mm (SD 1.12mm), -0.52mm (SD 0.84mm), 0.10° (SD 0.32°), 0.09° (SD 0.36°), and -0.04° (SD 0.36°) in the x, y, z, u, v, w directions, respectively. Conclusions The performance stability of the 6DTC was satisfactory. The position accuracy and intra-fraction patient movement in an upright posture with the 6DTC were verified and found adequate for clinical implementation.
Collapse
Affiliation(s)
- Jiayao Sun
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Lin Kong
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Zhi Chen
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Dan You
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Jingfang Mao
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Xiyin Guan
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Xiaodong Wu
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Yinxiangzi Sheng
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| |
Collapse
|
9
|
A Sentence Classification Framework to Identify Geometric Errors in Radiation Therapy from Relevant Literature. INFORMATION 2021. [DOI: 10.3390/info12040139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The objective of systematic reviews is to address a research question by summarizing relevant studies following a detailed, comprehensive, and transparent plan and search protocol to reduce bias. Systematic reviews are very useful in the biomedical and healthcare domain; however, the data extraction phase of the systematic review process necessitates substantive expertise and is labour-intensive and time-consuming. The aim of this work is to partially automate the process of building systematic radiotherapy treatment literature reviews by summarizing the required data elements of geometric errors of radiotherapy from relevant literature using machine learning and natural language processing (NLP) approaches. A framework is developed in this study that initially builds a training corpus by extracting sentences containing different types of geometric errors of radiotherapy from relevant publications. The publications are retrieved from PubMed following a given set of rules defined by a domain expert. Subsequently, the method develops a training corpus by extracting relevant sentences using a sentence similarity measure. A support vector machine (SVM) classifier is then trained on this training corpus to extract the sentences from new publications which contain relevant geometric errors. To demonstrate the proposed approach, we have used 60 publications containing geometric errors in radiotherapy to automatically extract the sentences stating the mean and standard deviation of different types of errors between planned and executed radiotherapy. The experimental results show that the recall and precision of the proposed framework are, respectively, 97% and 72%. The results clearly show that the framework is able to extract almost all sentences containing required data of geometric errors.
Collapse
|
10
|
Positioning accuracy of a single-isocenter multiple targets SRS treatment: A comparison between Varian TrueBeam CBCT and Brainlab ExacTrac. Phys Med 2020; 80:267-273. [PMID: 33221708 DOI: 10.1016/j.ejmp.2020.10.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 11/21/2022] Open
Abstract
PURPOSE This study compared the positioning accuracy between cone-beam CT (CBCT) and ExacTrac (ETX) for a single-isocenter multiple target stereotactic radiosurgery (SRS) on two TrueBeam STx systems. METHODS A single-isocenter treatment plan was simulated on an anthropomorphic head phantom with six spherical steel ball bearings (BBs). One of the BBs was chosen to be the isocenter. The five off-isocenter targets were located at various distances from the isocenter. MV portal images were generated to evaluate the deviations between the expected and the real center of the targets after CBCT and ETX positioning, respectively. RESULTS The evaluation of the positioning accuracy for the isocenter target showed that CBCT and ETX positioning provided comparable, sub-millimetric results. Deviations in positioning accuracy were also calculated for all other targets, also showing comparable results for CBCT and ETX. Moreover, our study showed that the deviation between CBCT and ETX positioning were in better agreement for TBSTx1 and deviated slightly higher on TBSTx2 (maximum: 1.23 mm at S/I direction), due to a less perfect alignment between the CBCT coordinate system and the ETX coordinate system on TBSTx2 compared to TBSTx1. This study also showed a correlation between the target positioning accuracy and the distance to the isocenter. CONCLUSION The positioning accuracy of ETX and CBCT for targets located at isocenter and off-isocenter locations was compared on two treatment machines and found comparable. Our study highlights the importance of a proper calibration procedure, to ensure correct alignment between the CBCT, ETX and machine coordinate systems.
Collapse
|