1
|
Cervantes Y, Lambert-Girard S, Billas I, Therriault-Proulx F, Bouchard H, Archambault L, Beaulieu L. A systematic characterization of plastic scintillation dosimeters response in magnetic fields: I. Experimental measurements. Phys Med Biol 2025; 70:105005. [PMID: 40294624 DOI: 10.1088/1361-6560/add1a7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 04/28/2025] [Indexed: 04/30/2025]
Abstract
Objective.This study aims to evaluate the performance of five distinct plastic scintillation dosimeters (PSDs) in magnetic fields, as well as to validate the accuracy of the hyperspectral approach for stem-effect correction. The effect of the magnetic field on different base core materials and components within the PSDs was also investigated, as well as the effect of field size and orientation.Approach.Each PSD was placed at 5 cm depth in a water tank inside an electromagnet gap. Magnetic fields, between 0 and 1.5 T, were set to be perpendicular to the 6 MeV photon beam and to the PSD axis. The detector axis was either parallel or perpendicular to the photon beam. Different field sizes were used. The hyperspectral technique was validated and used to determine the scintillation, fluorescence and Cherenkov components at different magnetic fields.Main results.The hyperspectral method accurately removes stem effects in magnetic fields, even when calibration is performed at 0 T. The stem light yield shows good agreement with clear fiber measurements, with relative differences within 2.0%. In the parallel orientation, the corrected PSD response is highly symmetric relative to magnetic field polarity, with a maximum variation of only 0.2% from unity. Scintillation light yield increases with magnetic field by 3.6%-6.25% depending on PSD properties. Cherenkov light yield varies up to 230% and down to 0.30% of the 0 T value, depending on magnetic field polarity. The impact of magnetic fields depends primarily on the properties of the scintillator itself, with polyvinyltoluene-based probes showing greater sensitivity than polystyrene-based probes. The inclusion of a wavelength shifter has minimal on the magnetic field's effect on scintillation light yield. Normalized scintillation light yield decreases with smaller field sizes.Significance.PSDs are well-suited for accurate dosimetry in magnetic fields, provided that accurate stem-effect correction techniques are applied. The scintillator properties play a significant role in determining the PSD's sensitivity to magnetic fields. The hyperspectral method is a robust approach for accurate stem-effect removal in such conditions.
Collapse
Affiliation(s)
- Yunuen Cervantes
- Département de Physique, de Génie Physique et d'Optique, et Centre de Recherche sur le Cancer, Université Laval, Québec, Québec, Canada
- Service de physique médicale et de radioprotection, Centre intégré de cancérologie, CHU de Québec-Université Laval et Centre de Recherche du CHU de Québec, Québec, Québec, Canada
| | | | - Ilias Billas
- National Physical Laboratory, Teddington, United Kingdom
| | | | - Hugo Bouchard
- Département de Physique, Université de Montréal, Complexe des Sciences, Montréal, Québec, Canada
- Centre de Recherche du Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Département de Radio-Oncologie, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Louis Archambault
- Département de Physique, de Génie Physique et d'Optique, et Centre de Recherche sur le Cancer, Université Laval, Québec, Québec, Canada
- Service de physique médicale et de radioprotection, Centre intégré de cancérologie, CHU de Québec-Université Laval et Centre de Recherche du CHU de Québec, Québec, Québec, Canada
| | - Luc Beaulieu
- Département de Physique, de Génie Physique et d'Optique, et Centre de Recherche sur le Cancer, Université Laval, Québec, Québec, Canada
- Service de physique médicale et de radioprotection, Centre intégré de cancérologie, CHU de Québec-Université Laval et Centre de Recherche du CHU de Québec, Québec, Québec, Canada
| |
Collapse
|
2
|
Moradi F, Oresegun A, Khodaei A, Bradley DA, Taheri A, Khandaker MU, Abdul-Rashid HA. Coupled ionizing-radiation/optical-photon transport Monte Carlo simulations for characterisation of light signal in an optical fiber radioluminescence dosimetry system. Biomed Phys Eng Express 2025; 11:025050. [PMID: 40009884 DOI: 10.1088/2057-1976/adba65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/26/2025] [Indexed: 02/28/2025]
Abstract
Optical fiber radioluminescence (RL) dosimetry has gained prominence in modern radiation therapy, offering real-time measurement and high spatial resolution. Our research group has developed a system utilizing a polymethyl methacrylate (PMMA) transmission fiber coupled with a photodetector and various scintillators, including doped silica fibers. A critical challenge in RL dosimetry lies in distinguishing the stem signal, generated by the transmission optical fiber, from the primary light signal produced by the RL sensor. To address this issue, we employed the Geant4 simulation tool, allowing for the simultaneous tracking of ionizing radiation and optical photons. In this study, the Geant4-based code, TOPAS, was utilized to conduct Monte Carlo simulations, aiming to gain insights into the radioluminescence signal in an optical fiber RL dosimeter and specifically characterize the stem signal for enhanced measurement accuracy. The simulations encompassed interactions of a medical photon beam from an Elekta linac within a solid water phantom, subsequent energy deposition within the RL sensor, and the generation and transmission of light signals within the optical fiber. Our emphasis was placed on detailed characterization of the light signals originating from both the Ge-doped silica fiber and PMMA transmission fiber. The primary focus was not only to discern the stem signal from the main signal but also to differentiate between the fluorescence and Cerenkov signals. Importantly, our study showcases how Monte Carlo simulations can be used to spectrally distinguish the stem signal from the scintillation signal of the sensor. This provides valuable information, especially in scenarios where spectrometry is unavailable, contributing to the understanding and refinement of optical fiber RL dosimetry systems.
Collapse
Affiliation(s)
- F Moradi
- Fiber Optics Research Center, Faculty of Engineering, Multimedia University, Cyberjaya, Malaysia
| | - A Oresegun
- Fiber Optics Research Center, Faculty of Engineering, Multimedia University, Cyberjaya, Malaysia
| | - A Khodaei
- Fiber Optics Research Center, Faculty of Engineering, Multimedia University, Cyberjaya, Malaysia
| | - D A Bradley
- Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia
- School of Mathematics and Physics, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - A Taheri
- Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia
| | - M U Khandaker
- Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia
- Faculty of Graduate Studies, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka-1216, Bangladesh
- Department of Physics, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - H A Abdul-Rashid
- Fiber Optics Research Center, Faculty of Engineering, Multimedia University, Cyberjaya, Malaysia
- Faculty of Engineering Technology, University College TATI (UC TATI), 24000 Kemaman Terengganu, Malaysia
| |
Collapse
|
3
|
Koprivec D, Belanger C, Beaulieu L, Chatigny PY, Rosenfeld A, Cutajar D, Petasecca M, Howie A, Bucci J, Poder J. Impact of robust optimization on patient specific error thresholds for high dose rate prostate brachytherapy source tracking. Brachytherapy 2025; 24:281-292. [PMID: 39690005 DOI: 10.1016/j.brachy.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/12/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024]
Abstract
PURPOSE The purpose of this study was to compare the effect of catheter shift errors and determine patient specific error thresholds (PSETs) for different high dose rate prostate brachytherapy (HDRPBT) plans generated by different forms of inverse optimization. METHODS Three plans were generated for 50 HDRPBT patients and PSETs were determined for each of the 3 plans. Plan 1 was the original Oncentra Prostate (v4.2.2.4, Elekta Brachytherapy, Veenendaal, The Netherlands) plan, the second plan used the graphical processor unit multi-criteria optimization (gMCO) algorithm, and plan 3 used gMCO but had a robustness parameter as an additional optimization criterion (gMCOr). gMCO and gMCOr plans were selected from a pool of 2000 pareto optimal plans. gMCO plan selection involved increasing prostate V100% and reducing rectum Dmax/urethra D01.cc progressively until only 1 plan remained. The gMCOr plan was the most robust plan (using robustness parameter) that met the clinical DVH criteria (V100% ≥ 95%, rectum Dmax ≤ 80%, urethra D0.1cc ≤ 118%). PSETs were determined using catheter shift software. RESULTS The initial dose volume histogram (DVH) characteristics showed all 50 patient plans met a prostate V100% > 95% and resulted in significant reduction in rectum Dmax and urethra D0.1cc for gMCO and gMCOr plans. No single plan showed benefits in PSETs for all shift directions compared to the other plans, however gMCO and gMCOr plans exhibit the best initial DVH characteristics assuming no errors occur. The robustness parameter showed no significant impact when considered in plan optimization. CONCLUSIONS PSETs were found to be equivalent regardless of optimization method. Indicating, no single optimization method can significantly increase the patient specific thresholds.
Collapse
Affiliation(s)
- Dylan Koprivec
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia.
| | - Cedric Belanger
- Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer de l'Université Laval, CHU de Québec, Département de radio-oncologie et Centre de recherche du CHU de Québec, CHU de Québec - Université Laval, Québec city, Québec, Canada
| | - Luc Beaulieu
- Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer de l'Université Laval, CHU de Québec, Département de radio-oncologie et Centre de recherche du CHU de Québec, CHU de Québec - Université Laval, Québec city, Québec, Canada
| | - Philippe Y Chatigny
- Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer de l'Université Laval, CHU de Québec, Département de radio-oncologie et Centre de recherche du CHU de Québec, CHU de Québec - Université Laval, Québec city, Québec, Canada
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
| | - Dean Cutajar
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia; St George Cancer Care Centre, Kogarah, New South Wales, Australia
| | - Marco Petasecca
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
| | - Andrew Howie
- St George Cancer Care Centre, Kogarah, New South Wales, Australia
| | - Joseph Bucci
- St George Cancer Care Centre, Kogarah, New South Wales, Australia
| | - Joel Poder
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia; St George Cancer Care Centre, Kogarah, New South Wales, Australia; School of Physics, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
4
|
Tho D, Bélanger C, Jørgensen EB, Tanguay J, Rosales HML, Beddar S, Johansen JG, Kertzscher G, Lavallée MC, Beaulieu L. Establishing a fingerprinting method for fast catheter identification in HDR brachytherapy in vivo dosimetry. Brachytherapy 2024; 23:165-172. [PMID: 38281894 DOI: 10.1016/j.brachy.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/23/2023] [Accepted: 10/06/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE To use quantities measurable during in vivo dosimetry to build unique channel identifiers, that enable detection of brachytherapy errors. MATERIALS AND METHODS Treatment plan of 360 patients with prostate cancer who underwent high-dose-rate brachytherapy (range, 16-25 catheters; mean, 17) were used. A single point virtual dosimeter was placed at multiple positions within the treatment geometry, and the source-dosimeter distance and dwell time were determined for each dwell position in each catheter. These values were compared across all catheters, dwell position by dwell position, simulating a treatment delivery. A catheter was considered uniquely identified if, for a given dwell position, no other catheters had the same measured values. The minimum number of dwell positions needed to identify a specific catheter and the optimal dosimeter location uniquely were determined. The radial (r) and vertical (z) dimensions of the source-dosimeter distance were also examined for their utility in discriminating catheters. RESULTS Using a virtual dosimeter with no uncertainties, all catheters were identified in 359 of the 360 cases with 9 dwell position measurements. When only the dwell time were measured, all catheters were uniquely identified after 1 dwell position. With a 2-mm spatial accuracy (r,z), all catheters were identified in 94% of the plans. Simultaneous measurement of source-dosimeter distance and dwell time ensured full catheter identification in all plans ranging from 2 to 6 dwell positions. The number of dwell positions needed to uniquely identify all catheters was lower when the distance from the implant center was higher. CONCLUSIONS The most efficient fingerprinting approach involved combining source-dosimeter distance (i.e., source tracking) and dwell time. The further the dosimeter is placed from the center of the implant the better it can uniquely identify catheters.
Collapse
Affiliation(s)
- Daline Tho
- Centre Intégré De Cancérologie, CHU De Québec, Université Laval, Centre De Recherche Chu De Québec, Québec, Canada; Département De Physique, De Génie Physique Et D'optique, Centre De Recherche Sur Le Cancer, Québec, Canada.
| | - Cédric Bélanger
- Centre Intégré De Cancérologie, CHU De Québec, Université Laval, Centre De Recherche Chu De Québec, Québec, Canada; Département De Physique, De Génie Physique Et D'optique, Centre De Recherche Sur Le Cancer, Québec, Canada
| | - Erik B Jørgensen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jérémie Tanguay
- Centre Intégré De Cancérologie, CHU De Québec, Université Laval, Centre De Recherche Chu De Québec, Québec, Canada; Département De Physique, De Génie Physique Et D'optique, Centre De Recherche Sur Le Cancer, Québec, Canada
| | - Haydee M L Rosales
- Centre Intégré De Cancérologie, CHU De Québec, Université Laval, Centre De Recherche Chu De Québec, Québec, Canada; Département De Physique, De Génie Physique Et D'optique, Centre De Recherche Sur Le Cancer, Québec, Canada
| | - Sam Beddar
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jacob G Johansen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Marie-Claude Lavallée
- Centre Intégré De Cancérologie, CHU De Québec, Université Laval, Centre De Recherche Chu De Québec, Québec, Canada; Département De Physique, De Génie Physique Et D'optique, Centre De Recherche Sur Le Cancer, Québec, Canada
| | - Luc Beaulieu
- Centre Intégré De Cancérologie, CHU De Québec, Université Laval, Centre De Recherche Chu De Québec, Québec, Canada; Département De Physique, De Génie Physique Et D'optique, Centre De Recherche Sur Le Cancer, Québec, Canada
| |
Collapse
|
5
|
Koprivec D, Belanger C, Beaulieu L, Chatigny PY, Rosenfeld A, Cutajar D, Petasecca M, Howie A, Bucci J, Poder J. Development of patient and catheter specific error thresholds for high dose rate prostate brachytherapy. Med Phys 2024; 51:2144-2154. [PMID: 38308854 DOI: 10.1002/mp.16971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/21/2023] [Accepted: 01/14/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND In-vivo source tracking has been an active topic of research in the field of high-dose rate brachytherapy in recent years to verify accuracy in treatment delivery. Although detection systems for source tracking are being developed, the allowable threshold of treatment error is still unknown and is likely patient-specific due to anatomy and planning variation. PURPOSE The purpose of this study was to determine patient and catheter-specific shift error thresholds for in-vivo source tracking during high-dose-rate prostate brachytherapy (HDRPBT). METHODS A module was developed in the previously described graphical processor unit multi-criteria optimization (gMCO) algorithm. The module generates systematic catheter shift errors retrospectively into HDRPBT treatment plans, performed on 50 patients. The catheter shift model iterates through the number of catheters shifted in the plan (from 1 to all catheters), the direction of shift (superior, inferior, medial, lateral, cranial, and caudal), and the magnitude of catheter shift (1-6 mm). For each combination of these parameters, 200 error plans were generated, randomly selecting the catheters in the plan to shift. After shifts were applied, dose volume histogram (DVH) parameters were re-calculated. Catheter shift thresholds were then derived based on plans where DVH parameters were clinically unacceptable (prostate V100 < 95%, urethra D0.1cc > 118%, and rectum Dmax > 80%). Catheter thresholds were also Pearson correlated to catheter robustness values. RESULTS Patient-specific thresholds varied between 1 to 6 mm for all organs, in all shift directions. Overall, patient-specific thresholds typically decrease with an increasing number of catheters shifted. Anterior and inferior directions were less sensitive than other directions. Pearson's correlation test showed a strong correlation between catheter robustness and catheter thresholds for the rectum and urethra, with correlation values of -0.81 and -0.74, respectively (p < 0.01), but no correlation was found for the prostate. CONCLUSIONS It was possible to determine thresholds for each patient, with thresholds showing dependence on shift direction, and number of catheters shifted. Not every catheter combination is explorable, however, this study shows the feasibility to determine patient-specific thresholds for clinical application. The correlation of patient-specific thresholds with the equivalent robustness value indicated the need for robustness consideration during plan optimization and treatment planning.
Collapse
Affiliation(s)
- Dylan Koprivec
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Cedric Belanger
- Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer de l'Université Laval, CHU de Québec, Québec, Canada
- Département de radio-oncologie et Centre de recherche du CHU de Québec, CHU de Québec - Université Laval, Québec, Canada
| | - Luc Beaulieu
- Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer de l'Université Laval, CHU de Québec, Québec, Canada
- Département de radio-oncologie et Centre de recherche du CHU de Québec, CHU de Québec - Université Laval, Québec, Canada
| | - Philippe Y Chatigny
- Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer de l'Université Laval, CHU de Québec, Québec, Canada
- Département de radio-oncologie et Centre de recherche du CHU de Québec, CHU de Québec - Université Laval, Québec, Canada
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Dean Cutajar
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
- St George Cancer Care Centre, Kogarah, New South Wales, Australia
| | - Marco Petasecca
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Andrew Howie
- St George Cancer Care Centre, Kogarah, New South Wales, Australia
| | - Joseph Bucci
- St George Cancer Care Centre, Kogarah, New South Wales, Australia
| | - Joel Poder
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
- St George Cancer Care Centre, Kogarah, New South Wales, Australia
- School of Physics, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
6
|
Gonod M, Suarez MA, Avila CC, Karakhanyan V, Eustache C, Laskri S, Crouzilles J, Vinchant JF, Aubignac L, Grosjean T. Six-probe scintillator dosimeter for treatment verification in HDR-brachytherapy. Med Phys 2023; 50:7192-7202. [PMID: 37738612 DOI: 10.1002/mp.16745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND In vivo dosimetry (IVD) is gaining interest for treatment delivery verification in HDR-brachytherapy. Time resolved methods, including source tracking, have the ability both to detect treatment errors in real time and to minimize experimental uncertainties. Multiprobe IVD architectures holds promise for simultaneous dose determinations at the targeted tumor and surrounding healthy tissues while enhancing measurement accuracy. However, most of the multiprobe dosimeters developed so far either suffer from compactness issues or rely on complex data post-treatment. PURPOSE We introduce a novel concept of a compact multiprobe scintillator detector and demonstrate its applicability in HDR-brachytherapy. Our fabricated seven-fiber probing system is sufficiently narrow to be inserted in a brachytherapy needle or in a catheter. METHODS Our multiprobe detection system results from the parallel implementation of six miniaturized inorganic Gd2 O2 S:Tb scintillator detectors at the end of a bundle of seven fibers, one fiber is kept bare to assess the stem effect. The resulting system, which is narrower than 320 microns, is tested with a MicroSelectron 9.14 Ci Ir-192 HDR afterloader, in a water phantom. The detection signals from all six probes are simultaneously read with a sCMOS camera (at a rate of 0.06 s). The camera is coupled to a chromatic filter to cancel Cerenkov signal induced within the fibers upon exposure. By implementing an aperiodic array of six scintillating cells along the bundle axis, we first determine the range of inter-probe spacings leading to optimal source tracking accuracy (first tracking method). Then, three different source tracking algorithms involving all the scintillating probes are tested and compared. In each of these four methods, dwell positions are assessed from dose measurements and compared to the treatment plan. Dwell time is also determined and compared to the treatment plan. RESULTS The optimum inter-probe spacing for an accurate source tracking ranges from 15 to 35 mm. The optimum detection algorithm consists of adding the readout signals from all detector probes. In that case, the error to the planned dwell positions is of 0.01 ± 0.14 mm and 0.02 ± 0.29 mm at spacings between the source and detector axes of 5.5 and 40 mm, respectively. Using this approach, the average deviations to the expected dwell time are of- 0.006 ± 0.009 $-0.006\,\pm \,0.009$ s and- 0.008 ± 0.058 $-0.008\, \pm 0.058$ s, at spacings between source and probe axes of 5.5 and 20 mm, respectively. CONCLUSIONS Our six-probe Gd2 O2 S:Tb dosimeter coupled to a sCMOS camera can perform time-resolved treatment verification in HDR brachytherapy. This detection system of high spatial and temporal resolutions (0.25 mm and 0.06 s, respectively) provides a precise information on the treatment delivery via a dwell time and position verification of unmatched accuracy.
Collapse
Affiliation(s)
- Mathieu Gonod
- Medical Physics Department, Centre Georges François Leclerc (CGFL), Dijon, France
| | | | | | - Vage Karakhanyan
- FEMTO-ST Institute, CNRS, University of Franche-Comté, Besançon, France
| | - Clément Eustache
- FEMTO-ST Institute, CNRS, University of Franche-Comté, Besançon, France
| | - Samir Laskri
- SEDI-ATI Fibres Optiques, Évry-Courcouronnes, France
| | | | | | - Léone Aubignac
- Medical Physics Department, Centre Georges François Leclerc (CGFL), Dijon, France
| | - Thierry Grosjean
- FEMTO-ST Institute, CNRS, University of Franche-Comté, Besançon, France
| |
Collapse
|
7
|
Chacon C, Suarez M, Karakhanyan V, Desjardin K, Menneglier C, Soppera O, Moutarlier V, Grosjean T. Multipixel x ray detection integrated at the end of a narrow multicore fiber. OPTICS LETTERS 2023; 48:2178-2181. [PMID: 37058671 DOI: 10.1364/ol.484887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
We introduce and demonstrate the concept of a multipixel detector integrated at the tip of an individual multicore fiber. A pixel consists here of an aluminum-coated polymer microtip incorporating a scintillating powder. Upon irradiation, the luminescence released by the scintillators is efficiently transferred into the fiber cores owing to the specifically elongated metal-coated tips that ensure efficient luminescence matching to the fiber modes. With each pixel being selectively coupled to one of the cores of the multicore optical fiber, the resulting fiber-integrated x ray detection process is totally free from inter-pixel cross talk. Our approach holds promise for fiber-integrated probes and cameras for remote x and gamma ray analysis and imaging in hard-to-reach environments.
Collapse
|
8
|
Beaulieu L, Rivard MJ. Brachytherapy evolution as seen today. Med Phys 2023. [PMID: 36773303 DOI: 10.1002/mp.16285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
While brachytherapy is the oldest form of radiation therapy, it is also a very exciting field from both physics and clinical perspectives. From the physics standpoint, brachytherapy dosimetry is largely being governed by the inverse-square law, leading to an unparalleled dose deposition kernel (dose emitted by a seed or single dwell position), even compared to proton or heavy-ion beamlets. There is slightly more dose beyond the central deposition point, but comparatively very little prior to it, that is, little or no entrance dose! It is easy to sum multiple dwell positions that cover a tumor, and the intensity can be modulated quite effectively using dwell times. From a clinical perspective, what sets brachytherapy apart from other intraoperative modalities (e.g., laser, radiofrequency, cryogenic) is our ability to precisely calculate the energy deposited across the relevant patient geometry, anticipate the effect from known dose-outcome relationships, and deliver that energy with exquisite control and selectively to the target volume while sparing organs at risks. This targeting ability has improved substantially over the last two decades. It is built upon key foundational elements, many of which stem from the research and development within our medical physics community. This article provides an overview of these elements that combine to make brachytherapy a successful and developing radiotherapy modality.
Collapse
Affiliation(s)
- Luc Beaulieu
- Centre Intrégé de Cancérologie et Axe oncologie du Centre de recherche du CHU de Québec, CHU de Québec, Québec, Québec, Canada.,Département de Physique, de Génie Physique et d'Optique et Centre de Recherche sur le Cancer, Université Laval, Québec, Canada
| | - Mark J Rivard
- Department of Radiation Oncology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA
| |
Collapse
|
9
|
Silvestre Patallo I, Subiel A, Carter R, Flynn S, Schettino G, Nisbet A. Characterization of Inorganic Scintillator Detectors for Dosimetry in Image-Guided Small Animal Radiotherapy Platforms. Cancers (Basel) 2023; 15:987. [PMID: 36765943 PMCID: PMC9913621 DOI: 10.3390/cancers15030987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The purpose of the study was to characterize a detection system based on inorganic scintillators and determine its suitability for dosimetry in preclinical radiation research. Dose rate, linearity, and repeatability of the response (among others) were assessed for medium-energy X-ray beam qualities. The response's variation with temperature and beam angle incidence was also evaluated. Absorbed dose quality-dependent calibration coefficients, based on a cross-calibration against air kerma secondary standard ionization chambers, were determined. Relative output factors (ROF) for small, collimated fields (≤10 mm × 10 mm) were measured and compared with Gafchromic film and to a CMOS imaging sensor. Independently of the beam quality, the scintillator signal repeatability was adequate and linear with dose. Compared with EBT3 films and CMOS, ROF was within 5% (except for smaller circular fields). We demonstrated that when the detector is cross-calibrated in the user's beam, it is a useful tool for dosimetry in medium-energy X-rays with small fields delivered by Image-Guided Small Animal Radiotherapy Platforms. It supports the development of procedures for independent "live" dose verification of complex preclinical radiotherapy plans with the possibility to insert the detectors in phantoms.
Collapse
Affiliation(s)
- Ileana Silvestre Patallo
- Medical Radiation Physics and Science Groups, National Physical Laboratory (NPL), Guilford TW11 0LW, UK
| | - Anna Subiel
- Medical Radiation Physics and Science Groups, National Physical Laboratory (NPL), Guilford TW11 0LW, UK
| | - Rebecca Carter
- Cancer Institute, University College London, London WC1E 6DD, UK
| | - Samuel Flynn
- Medical Radiation Physics and Science Groups, National Physical Laboratory (NPL), Guilford TW11 0LW, UK
- School of Physics and Astronomy, University of Birmingham, Edgbaston Campus, Birmingham B15 2TT, UK
| | - Giuseppe Schettino
- Medical Radiation Physics and Science Groups, National Physical Laboratory (NPL), Guilford TW11 0LW, UK
- Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Andrew Nisbet
- Department of Medical Physics & Biomedical Engineering, University College London, Mallet Place Engineering Building, London WC1E 6BT, UK
| |
Collapse
|
10
|
Gonod M, Suarez MA, Chacon Avila C, Karakhanyan V, Eustache C, Crouzilles J, Laskri S, Vinchant JF, Aubignac L, Grosjean T. Characterization of a miniaturized scintillator detector for time-resolved treatment monitoring in HDR-brachytherapy. Phys Med Biol 2022; 67. [PMID: 36240766 DOI: 10.1088/1361-6560/ac9a9b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Purpose.HDR brachytherapy combines steep dose gradients in space and time, thereby requiring detectors of high spatial and temporal resolution to perform accurate treatment monitoring. We demonstrate a miniaturized fiber-integrated scintillator detector (MSD) of unmatched compactness which fulfills these conditions.Methods.The MSD consists of a 0.28 mm large and 0.43 mm long detection cell (Gd2O2S:Tb) coupled to a 110 micron outer diameter silica optical fiber. The fiber probe is tested in a phantom using a MicroSelectron 9.1 Ci Ir-192 HDR afterloader. The detection signal is acquired at a rate of 0.08 s with a standard sCMOS camera coupled to a chromatic filter (to cancel spurious Cerenkov signal). The dwell position and time monitoring are analyzed over prostate treatment sequences with dwell times spanning from 0.1 to 11 s. The dose rate at the probe position is both evaluated from a direct measurement and by reconstruction from the measured dwell position using the AAPM TG-43 formalism.Results.A total number of 1384 dwell positions are analyzed. In average, the measured dwell positions differ by 0.023 ± 0.077 mm from planned values over a 6-54 mm source-probe distance range. The standard deviation of the measured dwell positions is below 0.8 mm. 94% of the 966 dwell positions occurring at a source-probe inter-catheter spacing below 20 mm are successfully identified, with a 100% detection rate for dwell times exceeding 0.5 s. The average deviation to the planned dwell times is of 0.005 ± 0.060 s. The instant dose retrieval from dwell position monitoring leads to a relative mismatch to planned values of 0.14% ± 0.7%.Conclusion.A miniaturized Gd2O2S:Tb detector coupled to a standard sCMOS camera can be used for time-resolved treatment monitoring in HDR Brachytherapy.
Collapse
Affiliation(s)
- Mathieu Gonod
- Centre Georges François Leclerc (CGFL)-Dijon, France
| | - Miguel Angel Suarez
- FEMTO-ST Institute-Optics Department-UMR 6174-University of Franche-Comté-CNRS-Besançon, France
| | - Carlos Chacon Avila
- FEMTO-ST Institute-Optics Department-UMR 6174-University of Franche-Comté-CNRS-Besançon, France
| | - Vage Karakhanyan
- FEMTO-ST Institute-Optics Department-UMR 6174-University of Franche-Comté-CNRS-Besançon, France
| | - Clément Eustache
- FEMTO-ST Institute-Optics Department-UMR 6174-University of Franche-Comté-CNRS-Besançon, France
| | - Julien Crouzilles
- SEDI-ATI Fibres Optiques, 8 Rue Jean Mermoz, F-91080 Évry-Courcouronnes, France
| | - Samir Laskri
- SEDI-ATI Fibres Optiques, 8 Rue Jean Mermoz, F-91080 Évry-Courcouronnes, France
| | | | | | - Thierry Grosjean
- FEMTO-ST Institute-Optics Department-UMR 6174-University of Franche-Comté-CNRS-Besançon, France
| |
Collapse
|
11
|
Koprivec D, Rosenfeld A, Cutajar D, Petasecca M, Howie A, Bucci J, Poder J. Feasibility of online adaptive HDR prostate brachytherapy: A novel treatment concept. Brachytherapy 2022; 21:943-955. [PMID: 36068155 DOI: 10.1016/j.brachy.2022.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/18/2022] [Accepted: 07/30/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE The purpose of this study was to determine the feasibility of online adaptive transrectal ultrasound (TRUS)-based high-dose-rate prostate brachytherapy (HDRPBT) through retrospective simulation of source positioning and catheter swap errors on patient treatment plans. METHOD Source positioning errors (catheter shifts in 1 mm increments in the cranial/caudal, anterior/posterior, and medial/lateral directions up to ±6 mm) and catheter swap errors (between the most and least heavily weighted) were introduced retrospectively into DICOM treatment plans of 20 patients that previously received TRUS HDRPBT. Dose volume histogram (DVH) indices were monitored as errors were introduced sequentially into individual catheters, simulating potential errors throughout treatment. Whenever DVH indices were outside institution thresholds: prostate V100% <95%, urethra D0.1cc >118% and rectum Dmax >80%, the plan was adapted using remaining catheters (i.e., simulating previous catheters as previously delivered). The final DVH indices were recorded. RESULTS Prostate coverage (V100% >95%) could be maintained for source position errors up to 6 mm through online plan adaptation. The source position error at which the urethra D0.1cc and rectum Dmax was able to return to clinically acceptable levels using online adaptation varied between 6 mm to 1 mm, depending on the direction of the source position error and patient anatomy. After introduction of catheter swap errors to patient plans, prostate V100% was recoverable using online adaptation to near original plan characteristics. Urethra D0.1cc and rectum Dmax showed less recoverability. CONCLUSION Online adaptive HDRPBT maintains the prostate V100% to clinically acceptable values for majority of directional shifts. However, the current online adaptive method may not correct for source position errors near organs at risk.
Collapse
Affiliation(s)
- Dylan Koprivec
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia.
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Dean Cutajar
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia; St George Cancer Care Centre, Kogarah, NSW, Australia
| | - Marco Petasecca
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Andrew Howie
- St George Cancer Care Centre, Kogarah, NSW, Australia
| | - Joseph Bucci
- St George Cancer Care Centre, Kogarah, NSW, Australia
| | - Joel Poder
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia; St George Cancer Care Centre, Kogarah, NSW, Australia
| |
Collapse
|
12
|
Kaveckyte V, Jørgensen EB, Kertzscher G, Johansen JG, Tedgren ÅC. Monte Carlo characterization of high atomic number inorganic scintillators for in vivo dosimetry in 192 Ir brachytherapy. Med Phys 2022; 49:4715-4730. [PMID: 35443079 DOI: 10.1002/mp.15674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/01/2022] [Accepted: 04/06/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND There is increased interest in vivo dosimetry for 192 Ir brachytherapy (BT) treatments using high atomic number (Z) inorganic scintillators. Their high light output enables construction of small detectors with negligible stem effect and simple readout electronics. Experimental determination of absorbed-dose energy dependence of detectors relative to water is prevalent, but it can be prone to high detector positioning uncertainties and does not allow for decoupling of absorbed-dose energy dependence from other factors affecting detector response. PURPOSE To investigate which measurement conditions and detector properties could affect their absorbed-dose energy dependence in BT in vivo dosimetry. METHODS We used a general-purpose MC code penelope for the characterization of high-Z inorganic scintillators with the focus on ZnSe (Z¯=32). Two other promising media CsI (Z¯=54) and Al2 O3 (Z¯=11) were included for comparison in selected scenarios. We determined absorbed-dose energy dependence of crystals relative to water under different scatter conditions (calibration phantom 12 × 12 × 30 cm3 , characterization phantoms 20 × 20 × 20 cm3 , 30 × 30 × 30 cm3 , 40 × 40 × 40 cm3 , and patient-like elliptic phantom 40 × 30 × 25 cm3 ). To mimic irradiation conditions during prostate treatments, we evaluated whether the presence of pelvic bones and calcifications affect ZnSe response. ZnSe detector design influence was also investigated. RESULTS In contrast to low-Z organic and medium-Z inorganic scintillators, ZnSe and CsI media have substantially greater absorbed-dose energy dependence relative to water. The response was phantom-size dependent and changed by 11 % between limited- and full-scatter conditions for ZnSe, but not for Al2 O3 . For a given phantom size, a part of the absorbed-dose energy dependence of ZnSe is caused not due to in-phantom scatter but due to source anisotropy. Thus, the absorbed-dose energy dependence of high-Z scintillators is a function of not only the radial distance but also the polar angle. Pelvic bones did not affect ZnSe response, whereas large and intermediate size calcifications reduced it by 9 % and 5 %, respectively, when placed midway between the source and the detector. CONCLUSIONS Unlike currently prevalent low- and medium-Z scintillators, high-Z crystals are sensitive to characterization and in vivo measurement conditions. However, good agreement between MC data for ZnSe in the present study and experimental data for ZnSe:O by Jørgensen et al (2021) suggest that detector signal is proportional to the average absorbed dose to the detector cavity. This enables an easy correction for non-TG43-like scenarios (e.g., patient sizes and calcifications) through MC simulations. Information that should be provided to the clinic by the detector vendors. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vaiva Kaveckyte
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, SE-581 85, Sweden
| | - Erik B Jørgensen
- Department of Clinical Medicine, Aarhus University, Aarhus, DK-8000, Denmark.,Department of Oncology, Aarhus University Hospital, Aarhus, DK-8000, Denmark
| | - Gustavo Kertzscher
- Department of Oncology, Aarhus University Hospital, Aarhus, DK-8000, Denmark
| | - Jacob G Johansen
- Department of Clinical Medicine, Aarhus University, Aarhus, DK-8000, Denmark.,Department of Oncology, Aarhus University Hospital, Aarhus, DK-8000, Denmark
| | - Åsa Carlsson Tedgren
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, SE-581 85, Sweden.,Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, SE-171 76, Sweden.,Department of Oncology-Pathology, Karolinska Institute, Stockholm, SE-171 76, Sweden
| |
Collapse
|
13
|
Poder J, Koprivec D, Dookie Y, Howie A, Cutajar D, Damato AL, Côté N, Petasecca M, Bucci J, Rosenfeld A. HDR prostate brachytherapy plan robustness and its effect on in-vivo source tracking error thresholds: A multi-institutional study. Med Phys 2022; 49:3529-3537. [PMID: 35388456 PMCID: PMC9322430 DOI: 10.1002/mp.15658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The purpose of this study was to examine the effect of departmental planning techniques on appropriate in-vivo source tracking error thresholds for high dose rate (HDR) prostate brachytherapy (BT) treatments, and to determine if a single in-vivo source tracking error threshold would be appropriate for the same patient anatomy. METHOD The prostate, rectum, and urethra, was contoured on a single patient trans-rectal ultrasound (TRUS) dataset. Anonymised DICOM files were disseminated to 16 departments who created an HDR prostate BT treatment plan on the dataset with a prescription dose of 15 Gy in a single fraction. Departments were asked to follow their own local treatment planning guidelines. Source positioning errors were then simulated in the 16 treatment plans and the effect on dose-volume histogram (DVH) indices calculated. Change in DVH indices were used to determine appropriate in-vivo source tracking error thresholds. Plans were considered to require intervention if the following DVH conditions occurred: prostate V100% < 90%, urethra D0.1cc > 118%, and rectum Dmax > 80%. RESULTS There was wide variation in appropriate in-vivo source tracking error thresholds amongst the 16 participating departments, ranging from 1 - 6 mm. Appropriate in-vivo source tracking error thresholds were also found to depend on the direction of the source positioning error and the end-point. A robustness parameter was derived, and found to correlate with the sensitivity of plans to source positioning errors. CONCLUSION A single HDR prostate BT in-vivo source tracking error threshold cannot be applied across multiple departments, even for the same patient anatomy. The burden on in-vivo source tracking devices may be eased through improving HDR prostate BT plan robustness during the plan optimisation phase. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Joel Poder
- Department of Radiation Oncology, St George Cancer Care Centre, Kogarah, NSW, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Dylan Koprivec
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Yashiv Dookie
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Andrew Howie
- Department of Radiation Oncology, St George Cancer Care Centre, Kogarah, NSW, Australia
| | - Dean Cutajar
- Department of Radiation Oncology, St George Cancer Care Centre, Kogarah, NSW, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Antonio L Damato
- Department of Medical Physics, Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Nicolas Côté
- Department of Medical Physics, Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Marco Petasecca
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Joseph Bucci
- Department of Radiation Oncology, St George Cancer Care Centre, Kogarah, NSW, Australia
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
14
|
Jørgensen EB, Buus S, Bentzen L, Hokland SB, Rylander S, Kertzscher G, Beddar S, Tanderup K, Johansen JG. 3D dose reconstruction based on in vivo dosimetry for determining the dosimetric impact of geometric variations in high-dose-rate prostate brachytherapy. Radiother Oncol 2022; 171:62-68. [PMID: 35033604 DOI: 10.1016/j.radonc.2022.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION In vivo dosimetry (IVD) can be used for source tracking (ST), i.e., estimating source positions, during brachytherapy. The aim of this study was to exploit IVD-based ST to perform 3D dose reconstruction for high-dose-rate prostate brachytherapy and to evaluate the robustness of the treatments against observed geometric variations. MATERIALS AND METHODS Twenty-three fractions of high-dose-rate prostate brachytherapy were analysed. The treatment planning was based on MRI. Time-resolved IVD was performed using a fibre-coupled scintillator. ST was retrospectively performed using the IVD measurements. The ST identified 2D positional shifts of each treatment catheter and thereby inferred updated source positions. For each fraction, the dose was recalculated based on the source-tracked catheter positions and compared with the original plan dose using differences in dose volume histogram indices. RESULTS Of 352 treatment catheters, 344 had shifts of less than 5 mm. Shifts between 5 and 10 mm were observed for 3 catheters, and shifts greater than 10 mm for 2 catheters. The ST failed for 3 catheters. The maximum relative difference in clinical target volume (prostate + 3 mm isotropic margin) D90% was 5%. In one fraction, the bladder D2cm3 dose increased by 18% (1.4Gy) due to a single source position being inside the bladder rather than nearby as planned. The max increase in urethra dose was 1.5Gy (15%). CONCLUSION IVD-based 3D dose reconstruction for high-dose-rate prostate brachytherapy is feasible. The dosimetric impact of the observed catheter shifts was limited. Dose reconstruction can therefore aid in determining the dosimetric impact of geometric variations and errors in brachytherapy.
Collapse
Affiliation(s)
- Erik B Jørgensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Simon Buus
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Lise Bentzen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Susanne Rylander
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Sam Beddar
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Kari Tanderup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jacob G Johansen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
15
|
Jørgensen EB, Johansen JG, Overgaard J, Piché-Meunier D, Tho D, Rosales HML, Tanderup K, Beaulieu L, Kertzscher G, Beddar S. A high-Z inorganic scintillator-based detector for time-resolved in vivo dosimetry during brachytherapy. Med Phys 2021; 48:7382-7398. [PMID: 34586641 DOI: 10.1002/mp.15257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/08/2021] [Accepted: 09/09/2021] [Indexed: 11/11/2022] Open
Abstract
PURPOSE High-dose rate (HDR) and pulsed-dose rate (PDR) brachytherapy would benefit from an independent treatment verification system to monitor treatment delivery and to detect errors in real time. This paper characterizes and provides an uncertainty budget for a detector based on a fiber-coupled high-Z inorganic scintillator capable of performing time-resolved in vivo dosimetry during HDR and PDR brachytherapy. METHOD The detector was composed of a detector probe and an optical reader. The detector probe consisted of either a 0.5 × 0.4 × 0.4 mm3 (HDR) or a 1.0 × 0.4 × 0.4 mm3 (PDR) cuboid ZnSe:O crystal glued onto an optical-fiber cable. The outer diameter of the detector probes was 1 mm, and fit inside standard brachytherapy catheters. The signal from the detector probe was read out at 20 Hz by a photodiode and a data acquisition device inside the optical reader. In order to construct an uncertainty budget for the detector, six characteristics were determined: (1) temperature dependence of the detector probe, (2) energy dependence as a function of the probe-to-source position in 2D (determined with 2 mm resolution using a robotic arm), (3) the signal-to-noise ratio (SNR), (4) short-term stability over 8 h, and (5) long-term stability of three optical readers and four probes used for in vivo monitoring in HDR and PDR treatments over 21 months (196 treatments and 189 detector calibrations, and (6) dose-rate dependence. RESULTS The total uncertainty of the detector at a 20 mm probe-to-source distance was < 5.1% and < 5.8% for the HDR and PDR versions, respectively. Regarding the above characteristics, (1) the sensitivity of the detector decreased by an average of 1.4%/°C for detector probe temperatures varying from 22 to 37°C; (2) the energy dependence of the detector was nonlinear and depended on both probe-to-source distance and the angle between the probe and the brachytherapy source; (3) the median SNRs were 187 and 34 at a 20 mm probe-to-source distance for the HDR and PDR versions, respectively (corresponding median source activities of 4.8 and 0.56 Ci, respectively); (4) the detector response varied by 0.6% in 11 identical irradiations over 8 h; (5) the sensitivity of the four detector probes decreased systematically by 0-1.2%/100 Gy of dose delivered to the probes, and random fluctuations of 4.8% in the sensitivity were observed for the three probes used in PDR and 1.9% for the probe used in HDR; and (6) the detector response was linear with dose rate. CONCLUSION ZnSe:O detectors can be used effectively for in vivo dosimetry and with high accuracy for HDR and PDR brachytherapy applications.
Collapse
Affiliation(s)
- Erik B Jørgensen
- Health Graduate School, Aarhus University, Aarhus, Denmark.,Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jacob G Johansen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Dominique Piché-Meunier
- Département de physique-de génie physique et d'optique et Centre de recherche sur le cancer, Université Laval, Québec City, Quebec, Canada.,Département de radio-oncologie et Axe Oncologie, CHU de Québec-Université Laval, Québec City, Quebec, Canada
| | - Daline Tho
- Département de physique-de génie physique et d'optique et Centre de recherche sur le cancer, Université Laval, Québec City, Quebec, Canada.,Département de radio-oncologie et Axe Oncologie, CHU de Québec-Université Laval, Québec City, Quebec, Canada
| | - Haydee M L Rosales
- Département de physique-de génie physique et d'optique et Centre de recherche sur le cancer, Université Laval, Québec City, Quebec, Canada.,Département de radio-oncologie et Axe Oncologie, CHU de Québec-Université Laval, Québec City, Quebec, Canada
| | - Kari Tanderup
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Luc Beaulieu
- Département de physique-de génie physique et d'optique et Centre de recherche sur le cancer, Université Laval, Québec City, Quebec, Canada.,Département de radio-oncologie et Axe Oncologie, CHU de Québec-Université Laval, Québec City, Quebec, Canada
| | - Gustavo Kertzscher
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.,Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sam Beddar
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
16
|
Gonod M, Chacon Avila C, Suarez MA, Crouzilles J, Laskri S, Vinchant JF, Aubignac L, Grosjean T. Miniaturized scintillator dosimeter for small field radiation therapy. Phys Med Biol 2021; 66. [PMID: 33971635 DOI: 10.1088/1361-6560/abffbb] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/10/2021] [Indexed: 11/11/2022]
Abstract
The concept of a miniaturized inorganic scintillator detector is demonstrated in the analysis of the small static photon fields used in external radiation therapy. Such a detector is constituted by a 0.25 mm diameter and 0.48 mm long inorganic scintillating cell (1.6 × 10-5cm3detection volume) efficiently coupled to a narrow 125μm diameter silica optical fiber using a tiny photonic interface (an optical antenna). The response of our miniaturized scintillator detector (MSD) under 6 MV bremsstrahlung beam of various sizes (from 1 × 1 cm2to 4 × 4 cm2) is compared to that of two high resolution reference probes, namely, a micro-diamond detector and a dedicated silicon diode. The spurious Cerenkov signal transmitted through our bare detector is rejected with a basic spectral filtering. The MSD shows a linear response regarding the dose, a repeatability within 0.1% and a radial directional dependence of 0.36% (standard deviations). Beam profiling at 5 cm depth with the MSD and the micro-diamond detector shows a mismatch in the measurement of the full widths at 80% and 50% of the maximum which does not exceed 0.25 mm. The same difference range is found between the micro-diamond detector and a silicon diode. The deviation of the percentage depth dose between the MSD and micro-diamond detector remains below 2.3% within the first fifteen centimeters of the decay region for field sizes of 1 × 1 cm2, 2 × 2 cm2and 3 × 3 cm2(0.76% between the silicon diode and the micro-diamond in the same field range). The 2D dose mapping of a 0.6 × 0.6 cm2photon field evidences the strong 3D character of the radiation-matter interaction in small photon field regime. From a beam-probe convolution theory, we predict that our probe overestimates the beam width by 0.06%, making our detector a right compromise between high resolution, compactness, flexibility and ease of use. The MSD overcomes problem of volume averaging, stem effects, and despite its water non-equivalence it is expected to minimize electron fluence perturbation due to its extreme compactness. Such a detector thus has the potential to become a valuable dose verification tool in small field radiation therapy, and by extension in Brachytherapy, FLASH-radiotherapy and microbeam radiation therapy.
Collapse
Affiliation(s)
- Mathieu Gonod
- Centre Georges François Leclerc (CGFL)-Dijon, France
| | - Carlos Chacon Avila
- FEMTO-ST Institute-Optics Department-UMR 6174-University of Bourgogne Franche-Comté-CNRS-Besançon, France
| | - Miguel Angel Suarez
- FEMTO-ST Institute-Optics Department-UMR 6174-University of Bourgogne Franche-Comté-CNRS-Besançon, France
| | - Julien Crouzilles
- SEDI-ATI Fibres Optiques, 8 Rue Jean Mermoz, F-91080 Évry-Courcouronnes, France
| | - Samir Laskri
- SEDI-ATI Fibres Optiques, 8 Rue Jean Mermoz, F-91080 Évry-Courcouronnes, France
| | | | | | - Thierry Grosjean
- FEMTO-ST Institute-Optics Department-UMR 6174-University of Bourgogne Franche-Comté-CNRS-Besançon, France
| |
Collapse
|
17
|
Jean E, Therriault-Proulx F, Beaulieu L. Comparative optic and dosimetric characterization of the HYPERSCINT scintillation dosimetry research platform for multipoint applications. Phys Med Biol 2021; 66. [PMID: 33761485 DOI: 10.1088/1361-6560/abf1bd] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/24/2021] [Indexed: 11/12/2022]
Abstract
This study introduces the HYPERSCINT research platform (HYPERSCINT-RP100, Medscint Inc., Quebec, Canada), the first commercially available scintillation dosimetry platform capable of multi-point dosimetry through the hyperspectral approach. Optic and dosimetric performances of the system were investigated through comparison with another commercially available solution, the Ocean Optics QE65Pro spectrometer. The optical characterization was accomplished by measuring the linearity of the signal as a function of integration time, photon detection efficiency and spectral resolution for both systems under the same conditions. Dosimetric performances were then evaluated with a 3-point plastic scintillator detector (mPSD) in terms of signal to noise ratio (SNR) and signal to background ratio (SBR) associated with each scintillator. The latter were subsequently compared with those found in the literature for the Exradin W1, a single-point plastic scintillator detector. Finally, various beam measurements were realized with the HYPERSCINT platform to evaluate its ability to perform clinical photon beam dosimetry. Both systems were found to be comparable in terms of linearity of the signal as a function of the intensity. Although the QE65Pro possesses a higher spectral resolution, the detection efficiency of the HYPERSCINT is up to 1000 time greater. Dosimetric measurements shows that the latter also offers a better SNR and SBR, surpassing even the SNR of the Exradin W1 single-point PSD. While doses ranging from 1 to 600 cGy were accurately measured within 2.1% of the predicted dose using the HYPERSCINT platform coupled to the mPSD, the Ocean optics spectrometer shows discrepancies up to 86% under 50cGy. Similarly, depth dose, full width at half maximum region of the beam profile and output factors were all accurately measured within 2.3% of the predicted dose using the HYPERSCINT platform and exhibit an average difference of 0.5%, 1.6% and 0.6%, respectively.
Collapse
Affiliation(s)
- Emilie Jean
- Département de Physique, de génie Physique et d'optique et Centre de Recherche sur le Cancer, Université Laval, Quebec, QC, Canada.,Département de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec - Université Laval, Quebec, QC, Canada.,Département de radio-oncologie du CIUSSS-MCQ, CHAUR de Trois-Rivières, Trois-Rivières, QC, Canada
| | | | - Luc Beaulieu
- Département de Physique, de génie Physique et d'optique et Centre de Recherche sur le Cancer, Université Laval, Quebec, QC, Canada.,Département de radio-oncologie et Axe Oncologie du CRCHU de Québec, CHU de Québec - Université Laval, Quebec, QC, Canada
| |
Collapse
|
18
|
Linares Rosales HM, Johansen JG, Kertzscher G, Tanderup K, Beaulieu L, Beddar S. 3D source tracking and error detection in HDR using two independent scintillator dosimetry systems. Med Phys 2021; 48:2095-2107. [PMID: 33222208 DOI: 10.1002/mp.14607] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/22/2020] [Accepted: 11/01/2020] [Indexed: 01/22/2023] Open
Abstract
PURPOSE The aim of this study is to perform three-dimensional (3D) source position reconstruction by combining in vivo dosimetry measurements from two independent detector systems. METHODS Time-resolved dosimetry was performed in a water phantom during HDR brachytherapy irradiation with 192 Ir source using two detector systems. The first was based on three plastic scintillator detectors and the second on a single inorganic crystal (CsI:Tl). Brachytherapy treatments were simulated in water under TG-43U1 conditions, including a HDR prostate plan. Treatment needles were placed in distances covering a range of source movement of 120 mm around the detectors. The distance from each dwell position to each scintillator was determined based on the measured dose rates. The three distances given by the mPSD were recalculated to a position along the catheter (z) and a distance radially away from the mPSD (xy) for each dwell position (a circumference around the mPSD). The source x, y, and z coordinates were derived from the intersection of the mPSD's circumference with the sphere around the ISD based on the distance to this detector. We evaluated the accuracy of the source position reconstruction as a function of the distance to the source, the most likely location for detector positioning within a prostate volume, as well as the capacity to detect positioning errors. RESULTS Approximately 4000 source dwell positions were tracked for eight different HDR plans. An intersection of the mPSD torus and the ISD sphere was observed in 77.2% of the dwell positions, assuming no uncertainty in the dose rate determined distance. This increased to 100% if 1σ search regions were added. However, only 73(96)% of the expected dwell positions were found within the intersection band for 1(2) σ uncertainties. The agreement between the source's reconstructed and expected positions was within 3 mm for a range of distances to the source up to 50 mm. The experiments on a HDR prostate plan, showed that by having at least one of the detectors located in the middle of the prostate volume, reduces the measurement deviations considerably compared to scenarios where the detectors were located outside of the prostate volume. The analysis showed a detection probability that, in most cases, is far from the random detection threshold. Errors of 1(2) mm can be detected in ranges of 5-25 (25-50) mm from the source, with a true detection probability rate higher than 80%, while the false probability rate is kept below 20%. CONCLUSIONS By combining two detector responses, we enabled the determination of the absolute source coordinates. The combination of the mPSD and the ISD in vivo dosimetry constitutes a promising alternative for real-time 3D source tracking in HDR brachytherapy.
Collapse
Affiliation(s)
| | - Jacob G Johansen
- Department of Oncology, Aarhus University Hospital, Aarhus C, Denmark
| | | | - Kari Tanderup
- Department of Oncology, Aarhus University Hospital, Aarhus C, Denmark
| | - Luc Beaulieu
- CHU de Quebec-Université Laval, Quebec, Canada.,Université Laval, Quebec, Canada
| | - Sam Beddar
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
19
|
Jørgensen EB, Kertzscher G, Buus S, Bentzen L, Hokland SB, Rylander S, Tanderup K, Johansen JG. Accuracy of an in vivo dosimetry-based source tracking method for afterloading brachytherapy - A phantom study. Med Phys 2021; 48:2614-2623. [PMID: 33655555 DOI: 10.1002/mp.14812] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/07/2021] [Accepted: 02/04/2021] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To report on the accuracy of an in vivo dosimetry (IVD)-based source tracking (ST) method for high dose rate (HDR) prostate brachytherapy (BT). METHODS The ST was performed on a needle-by-needle basis. A least square fit of the expected to the measured dose rate was performed using the active dwell positions in the given needle. Two fitting parameters were used to determine the position of each needle relative to the IVD detector: radial (away or toward the detector) and longitudinal (along the axis of the treatment needle). The accuracy of the ST was assessed in a phantom where the geometries of five HDR prostate BT treatments previously treated at our clinic were reproduced. For each of the five treatment geometries, one irradiation was performed with the detector placed in the middle of the implant. Furthermore, four additional irradiations were performed for one of the geometries where the detector was retracted caudally in four steps of 10-15 mm and up to 12 mm inferior of the most inferior active dwell position, which represented the prostate apex. The time resolved dose measurements were retrieved at a rate of 20 Hz using a detector based on an Al2 O3 :C radioluminescence crystal, which was placed inside a standard BT needle. Individual calibrations of the detector were performed prior to each of the nine irradiations. RESULTS Source tracking could be applied in all needles across all nine irradiations. For irradiations with the detector located in the middle region of the implant (a total of 89 needles), the mean ± standard deviation (SD, k = 1) accuracy was -0.01 mm ± 0.38 mm and 0.30 mm ± 0.38 mm in the radial and longitudinal directions, respectively. Caudal retraction of the detector did not lead to reduced accuracy as long as the detector was located superior to the most inferior active dwell positions in all needles. However, reduced accuracy was observed for detector positions inferior to the most inferior active dwell positions which corresponded to detector positions in and inferior to the prostate apex region. Detector positions in the prostate apex and 12 mm inferior to the prostate resulted in mean ± SD (k = 1) ST accuracy of 0.7 mm ± 1 mm and 2.8 mm ± 1.6 mm, respectively, in radial direction, and -1.7 mm ± 1 mm and -2.1 mm ± 1.1 mm, respectively, in longitudinal direction. The largest deviations for the configurations with those detector positions were 2.6 and 5.4 mm, respectively, in the radial direction and -3.5 and -3.8 mm, respectively, in the longitudinal direction. CONCLUSION This phantom study demonstrates that ST based on IVD during prostate BT is adequately accurate for clinical use. The ST yields submillimeter accuracy on needle positions as long as the IVD detector is positioned superior to at least one active dwell position in all needles. Locations of the detector inferior to the prostate apex result in decreased ST accuracy while detector locations in the apex region and above are advantageous for clinical applications.
Collapse
Affiliation(s)
- Erik B Jørgensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Simon Buus
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Lise Bentzen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Susanne Rylander
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Kari Tanderup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jacob G Johansen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|