1
|
Hosseini F, Asadi F, Rabiei R, Kiani F, Harari RE. Applications of artificial intelligence in diagnosis of uncommon cystoid macular edema using optical coherence tomography imaging: A systematic review. Surv Ophthalmol 2024; 69:937-944. [PMID: 38942125 DOI: 10.1016/j.survophthal.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Cystoid macular edema (CME) is a sight-threatening condition often associated with inflammatory and diabetic diseases. Early detection is crucial to prevent irreversible vision loss. Artificial intelligence (AI) has shown promise in automating CME diagnosis through optical coherence tomography (OCT) imaging, but its utility needs critical evaluation. This systematic review assesses the application of AI to diagnosis CME, specifically focusing on disorders like postoperative CME (Irvine Gass syndrome) and retinitis pigmentosa without obvious vasculopathy, using OCT imaging. A comprehensive search was conducted across 6 databases (PubMed, Scopus, Web of Science, Wiley, ScienceDirect, and IEEE) from 2018 to November, 2023. Twenty-three articles met the inclusion criteria and were selected for in-depth analysis. We evaluate AI's role in CME diagnosis and its performance in "detection", "classification", and "segmentation" of OCT retinal images. We found that convolutional neural network (CNN)-based methods consistently outperformed other machine learning techniques, achieving an average accuracy of over 96 % in detecting and identifying CME from OCT images. Despite certain limitations such as dataset size and ethical concerns, the synergy between AI and OCT, particularly through CNNs, holds promise for significantly advancing CME diagnostics.
Collapse
Affiliation(s)
- Farhang Hosseini
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Asadi
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Rabiei
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Kiani
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rayan Ebnali Harari
- STRATUS Center for Medical Simulation, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Kulyabin M, Zhdanov A, Pershin A, Sokolov G, Nikiforova A, Ronkin M, Borisov V, Maier A. Segment Anything in Optical Coherence Tomography: SAM 2 for Volumetric Segmentation of Retinal Biomarkers. Bioengineering (Basel) 2024; 11:940. [PMID: 39329682 PMCID: PMC11428920 DOI: 10.3390/bioengineering11090940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Optical coherence tomography (OCT) is a non-invasive imaging technique widely used in ophthalmology for visualizing retinal layers, aiding in the early detection and monitoring of retinal diseases. OCT is useful for detecting diseases such as age-related macular degeneration (AMD) and diabetic macular edema (DME), which affect millions of people globally. Over the past decade, the area of application of artificial intelligence (AI), particularly deep learning (DL), has significantly increased. The number of medical applications is also rising, with solutions from other domains being increasingly applied to OCT. The segmentation of biomarkers is an essential problem that can enhance the quality of retinal disease diagnostics. For 3D OCT scans, AI is beneficial since manual segmentation is very labor-intensive. In this paper, we employ the new SAM 2 and MedSAM 2 for the segmentation of OCT volumes for two open-source datasets, comparing their performance with the traditional U-Net. The model achieved an overall Dice score of 0.913 and 0.902 for macular holes (MH) and intraretinal cysts (IRC) on OIMHS and 0.888 and 0.909 for intraretinal fluid (IRF) and pigment epithelial detachment (PED) on the AROI dataset, respectively.
Collapse
Affiliation(s)
- Mikhail Kulyabin
- Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Aleksei Zhdanov
- "VisioMed.AI", Golovinskoe Highway, 8/2A, 125212 Moscow, Russia
| | - Andrey Pershin
- Engineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University Named after the First President of Russia B. N. Yeltsin, 620002 Yekaterinburg, Russia
| | - Gleb Sokolov
- "VisioMed.AI", Golovinskoe Highway, 8/2A, 125212 Moscow, Russia
| | - Anastasia Nikiforova
- Ophthalmosurgery Clinic "Professorskaya Plus", Vostochnaya, 30, 620075 Yekaterinburg, Russia
- Preventive and Family Medicine, Ural State Medical University, Repina, 3, 620028 Yekaterinburg, Russia
| | - Mikhail Ronkin
- Engineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University Named after the First President of Russia B. N. Yeltsin, 620002 Yekaterinburg, Russia
| | - Vasilii Borisov
- Engineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University Named after the First President of Russia B. N. Yeltsin, 620002 Yekaterinburg, Russia
| | - Andreas Maier
- Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
3
|
Darooei R, Nazari M, Kafieh R, Rabbani H. Optimal Deep Learning Architecture for Automated Segmentation of Cysts in OCT Images Using X-Let Transforms. Diagnostics (Basel) 2023; 13:1994. [PMID: 37370889 PMCID: PMC10297540 DOI: 10.3390/diagnostics13121994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The retina is a thin, light-sensitive membrane with a multilayered structure found in the back of the eyeball. There are many types of retinal disorders. The two most prevalent retinal illnesses are Age-Related Macular Degeneration (AMD) and Diabetic Macular Edema (DME). Optical Coherence Tomography (OCT) is a vital retinal imaging technology. X-lets (such as curvelet, DTCWT, contourlet, etc.) have several benefits in image processing and analysis. They can capture both local and non-local features of an image simultaneously. The aim of this paper is to propose an optimal deep learning architecture based on sparse basis functions for the automated segmentation of cystic areas in OCT images. Different X-let transforms were used to produce different network inputs, including curvelet, Dual-Tree Complex Wavelet Transform (DTCWT), circlet, and contourlet. Additionally, three different combinations of these transforms are suggested to achieve more accurate segmentation results. Various metrics, including Dice coefficient, sensitivity, false positive ratio, Jaccard index, and qualitative results, were evaluated to find the optimal networks and combinations of the X-let's sub-bands. The proposed network was tested on both original and noisy datasets. The results show the following facts: (1) contourlet achieves the optimal results between different combinations; (2) the five-channel decomposition using high-pass sub-bands of contourlet transform achieves the best performance; and (3) the five-channel decomposition using high-pass sub-bands formations out-performs the state-of-the-art methods, especially in the noisy dataset. The proposed method has the potential to improve the accuracy and speed of the segmentation process in clinical settings, facilitating the diagnosis and treatment of retinal diseases.
Collapse
Affiliation(s)
- Reza Darooei
- Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran; (R.D.); (R.K.)
- Department of Bioelectrics and Biomedical Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Milad Nazari
- Department of Molecular Biology and Genetics, Aarhus University, 8200 Aarhus, Denmark;
- The Danish Research Institute of Translational Neuroscience (DANDRITE), Aarhus University, 8200 Aarhus, Denmark
| | - Rahele Kafieh
- Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran; (R.D.); (R.K.)
- Department of Engineering, Durham University, South Road, Durham DH1 3RW, UK
| | - Hossein Rabbani
- Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran; (R.D.); (R.K.)
- Department of Bioelectrics and Biomedical Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| |
Collapse
|
4
|
Wei X, Sui R. A Review of Machine Learning Algorithms for Retinal Cyst Segmentation on Optical Coherence Tomography. SENSORS (BASEL, SWITZERLAND) 2023; 23:3144. [PMID: 36991857 PMCID: PMC10054815 DOI: 10.3390/s23063144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Optical coherence tomography (OCT) is an emerging imaging technique for diagnosing ophthalmic diseases and the visual analysis of retinal structure changes, such as exudates, cysts, and fluid. In recent years, researchers have increasingly focused on applying machine learning algorithms, including classical machine learning and deep learning methods, to automate retinal cysts/fluid segmentation. These automated techniques can provide ophthalmologists with valuable tools for improved interpretation and quantification of retinal features, leading to more accurate diagnosis and informed treatment decisions for retinal diseases. This review summarized the state-of-the-art algorithms for the three essential steps of cyst/fluid segmentation: image denoising, layer segmentation, and cyst/fluid segmentation, while emphasizing the significance of machine learning techniques. Additionally, we provided a summary of the publicly available OCT datasets for cyst/fluid segmentation. Furthermore, the challenges, opportunities, and future directions of artificial intelligence (AI) in OCT cyst segmentation are discussed. This review is intended to summarize the key parameters for the development of a cyst/fluid segmentation system and the design of novel segmentation algorithms and has the potential to serve as a valuable resource for imaging researchers in the development of assessment systems related to ocular diseases exhibiting cyst/fluid in OCT imaging.
Collapse
|
5
|
Xing G, Chen L, Wang H, Zhang J, Sun D, Xu F, Lei J, Xu X. Multi-Scale Pathological Fluid Segmentation in OCT With a Novel Curvature Loss in Convolutional Neural Network. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1547-1559. [PMID: 35015634 DOI: 10.1109/tmi.2022.3142048] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The segmentation of pathological fluid lesions in optical coherence tomography (OCT), including intraretinal fluid, subretinal fluid, and pigment epithelial detachment, is of great importance for the diagnosis and treatment of various eye diseases such as neovascular age-related macular degeneration and diabetic macular edema. Although significant progress has been achieved with the rapid development of fully convolutional neural networks (FCN) in recent years, some important issues remain unsolved. First, pathological fluid lesions in OCT show large variations in location, size, and shape, imposing challenges on the design of FCN architecture. Second, fluid lesions should be continuous regions without holes inside. But the current architectures lack the capability to preserve the shape prior information. In this study, we introduce an FCN architecture for the simultaneous segmentation of three types of pathological fluid lesions in OCT. First, attention gate and spatial pyramid pooling modules are employed to improve the ability of the network to extract multi-scale objects. Then, we introduce a novel curvature regularization term in the loss function to incorporate shape prior information. The proposed method was extensively evaluated on public and clinical datasets with significantly improved performance compared with the state-of-the-art methods.
Collapse
|