1
|
Hou X, Cheng W, Shen J, Guan H, Zhang Y, Bai L, Wang S, Liu Z. A deep learning model to predict dose distributions for breast cancer radiotherapy. Discov Oncol 2025; 16:165. [PMID: 39937302 PMCID: PMC11822156 DOI: 10.1007/s12672-025-01942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 02/05/2025] [Indexed: 02/13/2025] Open
Abstract
PURPOSE In this work, we propose to develop a 3D U-Net-based deep learning model that accurately predicts the dose distribution for breast cancer radiotherapy. METHODS This study included 176 breast cancer patients, divided into training, validating and testing sets. A deep learning model based on the 3D U-Net architecture was developed to predict dose distribution, which employed a double encoder combination attention (DECA) module, a cross stage partial + Resnet + Attention (CRA) module, a difficulty perception and a critical regions loss. The performance and generalization ability of this model were evaluated by the voxel mean absolute error (MAE), several clinically relevant dosimetric indexes and 3D gamma passing rates. RESULTS Our model accurately predicted the 3D dose distributions with each dosage level mirroring the clinical reality in shape. The generated dose-volume histogram (DVH) matched with the ground truth curve. The total dose error of our model was below 1.16 Gy, complying with clinical usage standards. When compared to other exceptional models, our model optimally predicted eight out of nine regions, and the prediction errors for the first planning target volume (PTV1) and PTV2 were merely 1.03 Gy and 0.74 Gy. Moreover, the mean 3%/3 mm 3D gamma passing rates for PTV1, PTV2, Heart and Lung L achieved 91.8%, 96.4%, 91.5%, and 93.2%, respectively, surpassing the other models and meeting clinical standards. CONCLUSIONS This study developed a new deep learning model based on 3D U-Net that can accurately predict dose distributions for breast cancer radiotherapy, which can improve the quality and planning efficiency.
Collapse
Affiliation(s)
- Xiaorong Hou
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Weishi Cheng
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jing Shen
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hui Guan
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yimeng Zhang
- MedMind Technology Co. Ltd., AB 1920 Techart Plaza, Beijing, 100083, China
| | - Lu Bai
- MedMind Technology Co. Ltd., AB 1920 Techart Plaza, Beijing, 100083, China
| | - Shaobin Wang
- MedMind Technology Co. Ltd., AB 1920 Techart Plaza, Beijing, 100083, China
| | - Zhikai Liu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
2
|
Zadnorouzi M, Abtahi SMM. Artificial intelligence (AI) applications in improvement of IMRT and VMAT radiotherapy treatment planning processes: A systematic review. Radiography (Lond) 2024; 30:1530-1535. [PMID: 39321595 DOI: 10.1016/j.radi.2024.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/11/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION Radiotherapy is a common option in the treatment of many types of cancer. Intensity-Modulated Radiation Therapy (IMRT) and Volumetric-Modulated Arc Therapy (VMAT) are the latest radiotherapy techniques. However, clinicians face problems due to these techniques' complexity and time-consuming planning. Various studies have pointed out the importance and role of artificial intelligence (AI) in radiotherapy and accelerating and improving its quality. This research explores different AI methods in different fields of IMRT and VMAT. This study evaluated both quantitative and qualitative methods used within the reviewed articles. METHODS Various articles were reviewed from Google Scholar, Science Direct, and PubMed databases between 2018 and 2024. According to PRISMA 2020 guidelines, study selection processes, screening, and inclusion and exclusion criteria were defined. The critical Appraisal Skill Program qualitative checklist tool was used for the qualitative evaluation of articles. RESULTS 26 articles met the inclusion among the 33 articles obtained. The search procedure was displayed using the PRISMA flow diagram. The evaluation of the articles shows the automation of various treatment planning processes by AI methods and their better performance than traditional methods. The qualitative evaluation of studies has demonstrated the high quality of all studies. The lowest score obtained from the qualitative evaluation of the article is 7 out of 9. CONCLUSION AI methods used in radiotherapy reduce time and increase prediction accuracy. They also work better than other methods in different areas, such as dose prediction, treatment design, and dose delivery. IMPLICATIONS FOR PRACTICE Healthcare providers should consider integrating artificial intelligence technologies into their practice to optimize treatment planning and enhance patient care in radiation therapy. Additionally, fostering collaboration between radiotherapy experts and artificial intelligence specialists can significantly improve the development and application of AI technologies in this field.
Collapse
Affiliation(s)
- M Zadnorouzi
- Department of Physics, University of Guilan, Rasht, Iran
| | - S M M Abtahi
- Physics Department, Imam Khomeini International University, Qazvin, Iran.
| |
Collapse
|
3
|
Xie H, Tan T, Zhang H, Li Q. Dose prediction for cervical cancer in radiotherapy based on the beam channel generative adversarial network. Heliyon 2024; 10:e37472. [PMID: 39309882 PMCID: PMC11415707 DOI: 10.1016/j.heliyon.2024.e37472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Background Existing deep learning methods, such as generative adversarial network (GAN) technology, face challenges when dealing with mixed datasets, which involve a combination of Intensity Modulated Radiotherapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT). This issue significantly complicates the application of dose prediction in the field of radiotherapy. In this study, we propose a novel approach called beam channel GAN (Bc-GAN) to address the task of radiation dose prediction for mixed datasets. Bc-GAN introduces a dose prediction calculation method that requires less precision. By defining an approximate range for dose prediction, Bc-GAN limits the physical range of GAN prediction, resulting in more reasonable dose distribution predictions. Methods We adopt a beam angle weighting method to determine the beam angle in the dose calculation. The dose of the beam with the highest weight is calculated using medical images and is then inputted into the artificial intelligence dose prediction model as the input channel. Additionally, we collect data from a total of 346 patients with Cervical Cancer (CC) for dataset. After cleaning the data, we exclude 51 cases with incomplete organ delineation, leaving us with 295 cases (IMRT: VMAT = 137:158) randomly divided into three sets: the training set, the validation set, and the test set, with proportions of 205:60:30, respectively. The assessment of model predictions was conducted via an analysis of dose distributions on the tomographic plane, dose volume histogram (DVH), and dosimetric parameters within the target zones and organs at risk (OAR). Results After DVH analysis, minimal discrepancy was found between predicted and actual dose distributions in PTV and OAR. The predicted distribution aligned with clinical standards. Dosimetric parameters for PTV were generally lower in the predicted model, except for homogeneity index (HI) (0.238 ± 0.024, P = 0.017) and Dmax (53.599 ± 0.710 Gy, P = 1.8e-05). The prediction model varied in estimating doses for six organs. Specifically, small intestine showed higher V20 (67.92 ± 51.64 %, P = 0.019) and V30 (57.171 ± 1.213 %, P = 0.024) than manual planning. A similar trend was seen in colon's V30 (37.13 ± 61.14 %, P = 0.016). However, predicted bladder V30 (87.51 ± 41.44 %, P = 2.03e-16) was lower, indicating significant dosimetric differences. Conclusion Overall, this study presents an innovative prediction method for CC in radiotherapy using the Bc-GAN model, addressing the challenges posed by different radiotherapy techniques. The proposed approach allows IMRT and VMAT in radiotherapy to be used as training sets, enabling the potential for large-scale engineering and commercialization applications of artificial intelligence (AI). The Bc-GAN-based prediction method for CC in radiotherapy not only reduces the amount of data needed for the training set but also expedites the model generation process. This approach can be applied to guide the development of clinical radiation therapy plans. Furthermore, future studies should consider extending the dose prediction method to encompass other types of tumors.
Collapse
Affiliation(s)
- Hui Xie
- Department of Radiation Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, PR China
- Faulty of Applied Sciences, Macao Polytechnic University, Macao, 999078, PR China
| | - Tao Tan
- Faulty of Applied Sciences, Macao Polytechnic University, Macao, 999078, PR China
| | - Hua Zhang
- Beijing Linking Med Technology Co., Ltd., No.9, Fenghaodong 2C-5, Haidian, Beijing 100089, PR China
| | - Qing Li
- Department of Radiation Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, PR China
- Key Experimental Project of Higher Education Institutes in Hunan Province(Key Laboratory of Tumor Precision Medicine), Chenzhou, 423000, PR China
- College of Medical Imaging, Laboratory Diagnostics, and Rehabilitation, Xiangnan University, Chenzhou, 423000, PR China
| |
Collapse
|
4
|
Jiang C, Ji T, Qiao Q. Application and progress of artificial intelligence in radiation therapy dose prediction. Clin Transl Radiat Oncol 2024; 47:100792. [PMID: 38779524 PMCID: PMC11109740 DOI: 10.1016/j.ctro.2024.100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Radiation therapy (RT) nowadays is a main treatment modality of cancer. To ensure the therapeutic efficacy of patients, accurate dose distribution is often required, which is a time-consuming and labor-intensive process. In addition, due to the differences in knowledge and experience among participants and diverse institutions, the predicted dose are often inconsistent. In last several decades, artificial intelligence (AI) has been applied in various aspects of RT, several products have been implemented in clinical practice and confirmed superiority. In this paper, we will review the research of AI in dose prediction, focusing on the progress in deep learning (DL).
Collapse
Affiliation(s)
- Chen Jiang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Tianlong Ji
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Qiao Qiao
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Jia Q, Zheng C, Li Y, Guo F, Zhou L, Song T. A predicted three-dimensional dose sequence based treatment planning optimization method for gynecologic IMRT. Med Eng Phys 2023; 118:104011. [PMID: 37536834 DOI: 10.1016/j.medengphy.2023.104011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/25/2023] [Accepted: 06/22/2023] [Indexed: 08/05/2023]
Abstract
In knowledge-based treatment planning (KBTP) for intensity-modulated radiation therapy (IMRT), the quality of the plan is dependent on the sophistication of the predicted dosimetric information and its application. In this paper, we propose a KBTP method that based on the effective and reasonable utilization of a three-dimensional (3D) dose prediction on planning optimization. We used an organs-at-risk (OARs) dose distribution prediction model to create a voxel-based dose sequence based optimization objective for OARs doses. This objective was used to reformulate a traditional fluence map optimization model, which involves a tolerable spatial re-assignment of the predicted dose distribution to the OAR voxels based on their current doses' positions at a sorted dose sequencing. The feasibility of this method was evaluated with ten gynecology (GYN) cancer IMRT cases by comparing its generated plan quality with the original clinical plan. Results showed feasible plan by proposed method, with comparable planning target volume (PTV) dose coverage and greater dose sparing of the OARs. Among ten GYN cases, the average V30 and V45 of rectum were decreased by 4%±4% (p = 0.02) and 4%±3% (p<0.01), respectively. V30 and V45 of bladder were decreased by 8%±2% (p<0.01) and 3%±2% (p<0.01), respectively. Our predicted dose sequence-based planning optimization method for GYN IMRT offered a flexible use of predicted 3D doses while ensuring the output plan consistency.
Collapse
Affiliation(s)
- Qiyuan Jia
- Department of Radiotherapy Technology, Ningbo No.2 Hospital, Ningbo, Zhejiang 315310, China; School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chuancheng Zheng
- Department of Radiotherapy Technology, Ningbo No.2 Hospital, Ningbo, Zhejiang 315310, China
| | - Yongbao Li
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Futong Guo
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Linghong Zhou
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Ting Song
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
6
|
Abstract
Treatment planning in radiation therapy has progressed enormously over the past several decades. Such advancements came in the form of innovative hardware and algorithms, giving rise to modalities such as intensity-modulated radiation therapy and volume modulated arc therapy, greatly improving patient outcome and quality of life. While these developments have improved the overall plan quality, they have also given rise to higher treatment planning complexity. This has resulted in increased treatment planning time and higher variability in the final approved plan quality. Radiation oncology, as an already technologically advanced field, has much research and implementation involving the use of AI. The field has begun to show the efficacy of using such technologies in many of its sub-areas, such as in diagnosis, imaging, segmentation, treatment planning, quality assurance, treatment delivery, and follow-up. Some AI technologies have already been clinically implemented by commercial systems. In this article, we will provide an overview to methods involved with treatment planning in radiation therapy. In particular, we will review the recent research and literature related to automation of the treatment planning process, leading to potentially higher efficiency and higher quality plans. We will then present the current and future challenges, as well as some future perspectives.
Collapse
Affiliation(s)
- Dan Nguyen
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, UT Southwestern Medical Center, Dallas, TX; Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX.
| | - Mu-Han Lin
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, UT Southwestern Medical Center, Dallas, TX; Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX
| | - David Sher
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, UT Southwestern Medical Center, Dallas, TX; Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX
| | - Weiguo Lu
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, UT Southwestern Medical Center, Dallas, TX; Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX
| | - Xun Jia
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, UT Southwestern Medical Center, Dallas, TX; Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX
| | - Steve Jiang
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, UT Southwestern Medical Center, Dallas, TX; Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
7
|
Uncertainty Assessment for Deep Learning Radiotherapy Applications. Semin Radiat Oncol 2022; 32:304-318. [DOI: 10.1016/j.semradonc.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Babier A, Mahmood R, Zhang B, Alves VGL, Barragán-Montero AM, Beaudry J, Cardenas CE, Chang Y, Chen Z, Chun J, Diaz K, Eraso HD, Faustmann E, Gaj S, Gay S, Gronberg M, Guo B, He J, Heilemann G, Hira S, Huang Y, Ji F, Jiang D, Giraldo JCJ, Lee H, Lian J, Liu S, Liu KC, Marrugo J, Miki K, Nakamura K, Netherton T, Nguyen D, Nourzadeh H, Osman AFI, Peng Z, Muñoz JDQ, Ramsl C, Rhee DJ, Rodriguez JD, Shan H, Siebers JV, Soomro MH, Sun K, Hoyos AU, Valderrama C, Verbeek R, Wang E, Willems S, Wu Q, Xu X, Yang S, Yuan L, Zhu S, Zimmermann L, Moore KL, Purdie TG, McNiven AL, Chan TCY. OpenKBP-Opt: an international and reproducible evaluation of 76 knowledge-based planning pipelines. Phys Med Biol 2022; 67:10.1088/1361-6560/ac8044. [PMID: 36093921 PMCID: PMC10696540 DOI: 10.1088/1361-6560/ac8044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/11/2022] [Indexed: 11/12/2022]
Abstract
Objective.To establish an open framework for developing plan optimization models for knowledge-based planning (KBP).Approach.Our framework includes radiotherapy treatment data (i.e. reference plans) for 100 patients with head-and-neck cancer who were treated with intensity-modulated radiotherapy. That data also includes high-quality dose predictions from 19 KBP models that were developed by different research groups using out-of-sample data during the OpenKBP Grand Challenge. The dose predictions were input to four fluence-based dose mimicking models to form 76 unique KBP pipelines that generated 7600 plans (76 pipelines × 100 patients). The predictions and KBP-generated plans were compared to the reference plans via: the dose score, which is the average mean absolute voxel-by-voxel difference in dose; the deviation in dose-volume histogram (DVH) points; and the frequency of clinical planning criteria satisfaction. We also performed a theoretical investigation to justify our dose mimicking models.Main results.The range in rank order correlation of the dose score between predictions and their KBP pipelines was 0.50-0.62, which indicates that the quality of the predictions was generally positively correlated with the quality of the plans. Additionally, compared to the input predictions, the KBP-generated plans performed significantly better (P< 0.05; one-sided Wilcoxon test) on 18 of 23 DVH points. Similarly, each optimization model generated plans that satisfied a higher percentage of criteria than the reference plans, which satisfied 3.5% more criteria than the set of all dose predictions. Lastly, our theoretical investigation demonstrated that the dose mimicking models generated plans that are also optimal for an inverse planning model.Significance.This was the largest international effort to date for evaluating the combination of KBP prediction and optimization models. We found that the best performing models significantly outperformed the reference dose and dose predictions. In the interest of reproducibility, our data and code is freely available.
Collapse
Affiliation(s)
- Aaron Babier
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
- Vector Institute, Toronto, ON, Canada
| | - Rafid Mahmood
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Binghao Zhang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Victor G L Alves
- Department of Radiation Oncology, University of Virginia Health System, Charlottesville, VA, United States of America
| | | | - Joel Beaudry
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Carlos E Cardenas
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Yankui Chang
- Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Zijie Chen
- Shenying Medical Technology Co., Ltd., Shenzhen, Guangdong, People’s Republic of China
| | - Jaehee Chun
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kelly Diaz
- Department of Physics, National University of Colombia, Medellín, Colombia
| | - Harold David Eraso
- Department of Physics, National University of Colombia, Medellín, Colombia
| | - Erik Faustmann
- Atominstitut, Vienna University of Technology, Vienna, Austria
| | - Sibaji Gaj
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, United States of America
| | - Skylar Gay
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Mary Gronberg
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Bingqi Guo
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, United States of America
| | - Junjun He
- Department of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Gerd Heilemann
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Sanchit Hira
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - Yuliang Huang
- Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, People’s Republic of China
| | - Fuxin Ji
- Department of Electrical Engineering and Automation, Anhui University, Hefei, People’s Republic of China
| | - Dashan Jiang
- Department of Electrical Engineering and Automation, Anhui University, Hefei, People’s Republic of China
| | | | - Hoyeon Lee
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, United States of America
| | - Jun Lian
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Shuolin Liu
- Department of Electrical Engineering and Automation, Anhui University, Hefei, People’s Republic of China
| | - Keng-Chi Liu
- Department of Medical Imaging, Taiwan AI Labs, Taipei, Taiwan
| | - José Marrugo
- Department of Physics, National University of Colombia, Medellín, Colombia
| | - Kentaro Miki
- Department Of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kunio Nakamura
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, United States of America
| | - Tucker Netherton
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Dan Nguyen
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Hamidreza Nourzadeh
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, United States of America
| | | | - Zhao Peng
- Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, People’s Republic of China
| | | | - Christian Ramsl
- Atominstitut, Vienna University of Technology, Vienna, Austria
| | - Dong Joo Rhee
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | | | - Hongming Shan
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, People’s Republic of China
| | - Jeffrey V Siebers
- Department of Radiation Oncology, University of Virginia Health System, Charlottesville, VA, United States of America
| | - Mumtaz H Soomro
- Department of Radiation Oncology, University of Virginia Health System, Charlottesville, VA, United States of America
| | - Kay Sun
- Studio Vodels, Atlanta, GA, United States of America
| | - Andrés Usuga Hoyos
- Department of Physics, National University of Colombia, Medellín, Colombia
| | - Carlos Valderrama
- Department of Physics, National University of Colombia, Medellín, Colombia
| | - Rob Verbeek
- Department Computer Science, Aalto University, Espoo, Finland
| | - Enpei Wang
- Shenying Medical Technology Co., Ltd., Shenzhen, Guangdong, People’s Republic of China
| | - Siri Willems
- Department of Electrical Engineering, KULeuven, Leuven, Belgium
| | - Qi Wu
- Department of Electrical Engineering and Automation, Anhui University, Hefei, People’s Republic of China
| | - Xuanang Xu
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States of America
| | - Sen Yang
- Tencent AI Lab, Shenzhen, Guangdong, People’s Republic of China
| | - Lulin Yuan
- Department of Radiation Oncology, Virginia Commonwealth University Medical Center, Richmond, VA, United States of America
| | - Simeng Zhu
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, United States of America
| | - Lukas Zimmermann
- Faculty of Health, University of Applied Sciences Wiener Neustadt, Wiener Neustadt, Austria
- Competence Center for Preclinical Imaging and Biomedical Engineering, University of Applied Sciences Wiener Neustadt, Wiener Neustadt, Austria
| | - Kevin L Moore
- Department of Radiation Oncology, University of California, San Diego, La Jolla, CA, United States of America
| | - Thomas G Purdie
- Radiation Medicine Program, UHN Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Techna Institute for the Advancement of Technology for Health, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Andrea L McNiven
- Radiation Medicine Program, UHN Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Timothy C Y Chan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
- Vector Institute, Toronto, ON, Canada
- Techna Institute for the Advancement of Technology for Health, Toronto, ON, Canada
| |
Collapse
|
9
|
Li G, Wu X, Ma X. Artificial intelligence in radiotherapy. Semin Cancer Biol 2022; 86:160-171. [PMID: 35998809 DOI: 10.1016/j.semcancer.2022.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/18/2022] [Indexed: 11/19/2022]
Abstract
Radiotherapy is a discipline closely integrated with computer science. Artificial intelligence (AI) has developed rapidly over the past few years. With the explosive growth of medical big data, AI promises to revolutionize the field of radiotherapy through highly automated workflow, enhanced quality assurance, improved regional balances of expert experiences, and individualized treatment guided by multi-omics. In addition to independent researchers, the increasing number of large databases, biobanks, and open challenges significantly facilitated AI studies on radiation oncology. This article reviews the latest research, clinical applications, and challenges of AI in each part of radiotherapy including image processing, contouring, planning, quality assurance, motion management, and outcome prediction. By summarizing cutting-edge findings and challenges, we aim to inspire researchers to explore more future possibilities and accelerate the arrival of AI radiotherapy.
Collapse
Affiliation(s)
- Guangqi Li
- Division of Biotherapy, Cancer Center, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China
| | - Xin Wu
- Head & Neck Oncology ward, Division of Radiotherapy Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China
| | - Xuelei Ma
- Division of Biotherapy, Cancer Center, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China.
| |
Collapse
|
10
|
Vandewinckele L, Willems S, Lambrecht M, Berkovic P, Maes F, Crijns W. Treatment plan prediction for lung IMRT using deep learning based fluence map generation. Phys Med 2022; 99:44-54. [DOI: 10.1016/j.ejmp.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/09/2022] [Accepted: 05/15/2022] [Indexed: 11/28/2022] Open
|
11
|
A Survey on Deep Learning for Precision Oncology. Diagnostics (Basel) 2022; 12:diagnostics12061489. [PMID: 35741298 PMCID: PMC9222056 DOI: 10.3390/diagnostics12061489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/27/2022] Open
Abstract
Precision oncology, which ensures optimized cancer treatment tailored to the unique biology of a patient’s disease, has rapidly developed and is of great clinical importance. Deep learning has become the main method for precision oncology. This paper summarizes the recent deep-learning approaches relevant to precision oncology and reviews over 150 articles within the last six years. First, we survey the deep-learning approaches categorized by various precision oncology tasks, including the estimation of dose distribution for treatment planning, survival analysis and risk estimation after treatment, prediction of treatment response, and patient selection for treatment planning. Secondly, we provide an overview of the studies per anatomical area, including the brain, bladder, breast, bone, cervix, esophagus, gastric, head and neck, kidneys, liver, lung, pancreas, pelvis, prostate, and rectum. Finally, we highlight the challenges and discuss potential solutions for future research directions.
Collapse
|
12
|
Qilin Z, Peng B, Ang Q, Weijuan J, Ping J, Hongqing Z, Bin D, Ruijie Y. The feasibility study on the generalization of deep learning dose prediction model for volumetric modulated arc therapy of cervical cancer. J Appl Clin Med Phys 2022; 23:e13583. [PMID: 35262273 PMCID: PMC9195039 DOI: 10.1002/acm2.13583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/23/2021] [Accepted: 02/19/2022] [Indexed: 11/09/2022] Open
Abstract
Purpose To develop a 3D‐Unet dose prediction model to predict the three‐dimensional dose distribution of volumetric modulated arc therapy (VMAT) for cervical cancer and test the dose prediction performance of the model in endometrial cancer to explore the feasibility of model generalization. Methods One hundred and seventeen cases of cervical cancer and 20 cases of endometrial cancer treated with VMAT were used for the model training, validation, and test. The prescribed dose was 50.4 Gy in 28 fractions. Eight independent channels of contoured structures were input to the model, and the dose distribution was used as the output of the model. The 3D‐Unet prediction model was trained and validated on the training set (n = 86) and validation set (n = 11), respectively. Then the model was tested on the test set (n = 20) of cervical cancer and endometrial cancer, respectively. The results between clinical dose distribution and predicted dose distribution were compared in the following aspects: (a) the mean absolute error (MAE) within the body, (b) the Dice similarity coefficients (DSCs) under different isodose volumes, (c) the dosimetric indexes including the mean dose (Dmean), the received dose of 2 cm3 (D2cc), the percentage volume of receiving 40 Gy dose of organs‐at‐risk (V40), planning target volume (PTV) D98%, and homogeneity index (HI), (d) dose–volume histograms (DVHs). Results The model can accurately predict the dose distribution of the VMAT plan for cervical cancer and endometrial cancer. The overall average MAE and maximum MAE for cervical cancer were 2.43 ± 3.17% and 3.16 ± 4.01% of the prescribed dose, respectively, and for endometrial cancer were 2.70 ± 3.54% and 3.85 ± 3.11%. The average DSCs under different isodose volumes is above 0.9. The predicted dosimetric indexes and DVHs are equivalent to the clinical dose for both cervical cancer and endometrial cancer, and there is no statistically significant difference. Conclusion A 3D‐Unet dose prediction model was developed for VMAT of cervical cancer, which can predict the dose distribution accurately for cervical cancer. The model can also be generalized for endometrial cancer with good performance.
Collapse
Affiliation(s)
- Zhang Qilin
- Department of Radiation OncologyPeking University Third HospitalBeijingChina
| | - Bao Peng
- Center for Data ScienceAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
| | - Qu Ang
- Department of Radiation OncologyPeking University Third HospitalBeijingChina
| | - Jiang Weijuan
- Department of Radiation OncologyPeking University Third HospitalBeijingChina
| | - Jiang Ping
- Department of Radiation OncologyPeking University Third HospitalBeijingChina
| | - Zhuang Hongqing
- Department of Radiation OncologyPeking University Third HospitalBeijingChina
| | - Dong Bin
- Beijing International Center for Mathematical ResearchPeking UniversityBeijingChina
| | - Yang Ruijie
- Department of Radiation OncologyPeking University Third HospitalBeijingChina
| |
Collapse
|
13
|
Zhang T, Bokrantz R, Olsson J. Probabilistic Pareto plan generation for semiautomated multicriteria radiation therapy treatment planning. Phys Med Biol 2022; 67. [PMID: 35061602 DOI: 10.1088/1361-6560/ac4da5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/21/2022] [Indexed: 11/12/2022]
Abstract
Objective.We propose a semiautomatic pipeline for radiation therapy treatment planning, combining ideas from machine learning-automated planning and multicriteria optimization (MCO).Approach.Using knowledge extracted from historically delivered plans, prediction models for spatial dose and dose statistics are trained and furthermore systematically modified to simulate changes in tradeoff priorities, creating a set of differently biased predictions. Based on the predictions, an MCO problem is subsequently constructed using previously developed dose mimicking functions, designed in such a way that its Pareto surface spans the range of clinically acceptable yet realistically achievable plans as exactly as possible. The result is an algorithm outputting a set of Pareto optimal plans, either fluence-based or machine parameter-based, which the user can navigate between in real time to make adjustments before a final deliverable plan is created.Main results.Numerical experiments performed on a dataset of prostate cancer patients show that one may often navigate to a better plan than one produced by a single-plan-output algorithm.Significance.We demonstrate the potential of merging MCO and a data-driven workflow to automate labor-intensive parts of the treatment planning process while maintaining a certain extent of manual control for the user.
Collapse
Affiliation(s)
- Tianfang Zhang
- Department of Mathematics, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden.,RaySearch Laboratories, Eugeniavägen 18, Solna, Stockholm SE-171 64, Sweden
| | - Rasmus Bokrantz
- RaySearch Laboratories, Eugeniavägen 18, Solna, Stockholm SE-171 64, Sweden
| | - Jimmy Olsson
- Department of Mathematics, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| |
Collapse
|
14
|
Fu Y, Zhang H, Morris ED, Glide-Hurst CK, Pai S, Traverso A, Wee L, Hadzic I, Lønne PI, Shen C, Liu T, Yang X. Artificial Intelligence in Radiation Therapy. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022; 6:158-181. [PMID: 35992632 PMCID: PMC9385128 DOI: 10.1109/trpms.2021.3107454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Artificial intelligence (AI) has great potential to transform the clinical workflow of radiotherapy. Since the introduction of deep neural networks, many AI-based methods have been proposed to address challenges in different aspects of radiotherapy. Commercial vendors have started to release AI-based tools that can be readily integrated to the established clinical workflow. To show the recent progress in AI-aided radiotherapy, we have reviewed AI-based studies in five major aspects of radiotherapy including image reconstruction, image registration, image segmentation, image synthesis, and automatic treatment planning. In each section, we summarized and categorized the recently published methods, followed by a discussion of the challenges, concerns, and future development. Given the rapid development of AI-aided radiotherapy, the efficiency and effectiveness of radiotherapy in the future could be substantially improved through intelligent automation of various aspects of radiotherapy.
Collapse
Affiliation(s)
- Yabo Fu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Hao Zhang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eric D. Morris
- Department of Radiation Oncology, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Carri K. Glide-Hurst
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Suraj Pai
- Maastricht University Medical Centre, Netherlands
| | | | - Leonard Wee
- Maastricht University Medical Centre, Netherlands
| | | | - Per-Ivar Lønne
- Department of Medical Physics, Oslo University Hospital, PO Box 4953 Nydalen, 0424 Oslo, Norway
| | - Chenyang Shen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75002, USA
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
15
|
Dong F, Weng X, Deng X, Yang Y, Xu B, Li X. Clinical utility of a new immobilization method in image-guided intensity-modulated radiotherapy for breast cancer patients after radical mastectomy. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2022; 30:641-655. [PMID: 35367978 DOI: 10.3233/xst-221127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To investigate clinical utility of a new immobilization method in image-guided intensity-modulated radiotherapy (IMRT) for breast cancer patients after radical mastectomy. MATERIALS AND METHODS Forty patients with breast cancer who underwent radical mastectomy and postoperative IMRT were prospectively enrolled. The patients were randomly and equally divided into two groups using both a carbon-fiber support board and a hollowed-out cervicothoracic thermoplastic mask (Group A) and using only the board (Group B). An iSCOUT image-guided system was used for acquiring and correcting pretreatment setup errors for each treatment fraction. Initial setup errors and residual errors were obtained by aligning iSCOUT images with digitally reconstructed radiograph (DRR) images generated from planning CT. Totally 600 initial and residual errors were compared and analyzed between two groups, and the planning target volume (PTV) margins before and after the image-guided correction were calculated. RESULTS The initial setup errors of Group A and Group B were (3.14±3.07), (2.21±1.92), (2.45±1.92) mm and (3.14±2.97), (2.94±3.35), (2.80±2.47) mm in the left-right (LAT), superior-inferior (LONG), anterior-posterior (VERT) directions, respectively. The initial errors in Group A were smaller than those in Group B in the LONG direction (P < 0.05). No significant difference was found in the distribution of three initial error ranges (≤3 mm, 3-5 mm and > 5 mm) in each of the three translational directions for the two groups (P > 0.05). The residual errors of Group A and Group B were (1.74±1.03), (1.62±0.92), (1.66±0.91) mm and (1.70±0.97), (1.68±1.18), (1.58±0.98) mm in the three translational directions, respectively. No significant difference was found in the residual errors between two groups (P > 0.05). With the image-guided correction, PTV margins were reduced from 8.01, 5.44, 5.45 mm to 3.54, 2.99, 2.89 mm in three translational directions of Group A, respectively, and from 8.14, 10.89, 6.29 mm to 2.67, 3.64, 2.74 mm in those of Group B, respectively. CONCLUSION The use of hollowed-out cervicothoracic thermoplastic masks combined with a carbon-fiber support board showed better inter-fraction immobilization than the single use of the board in reducing longitudinal setup errors for breast cancer patients after radical mastectomy during IMRT treatment course, which has potential to reduce setup errors and improve the pretreatment immobilization accuracy for breast cancer IMRT after radical mastectomy.
Collapse
Affiliation(s)
- Fangfen Dong
- College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors (Fujian Medical University), Fuzhou, China
- Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, China
| | - Xing Weng
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors (Fujian Medical University), Fuzhou, China
- Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, China
| | - Xianzhi Deng
- College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Yong Yang
- College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors (Fujian Medical University), Fuzhou, China
- Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, China
| | - Benhua Xu
- College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors (Fujian Medical University), Fuzhou, China
- Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, China
| | - Xiaobo Li
- College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors (Fujian Medical University), Fuzhou, China
- Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, China
- Department of Engineering Physics, Tsinghua University, Beijing, China
| |
Collapse
|
16
|
Sheng Y, Zhang J, Ge Y, Li X, Wang W, Stephens H, Yin FF, Wu Q, Wu QJ. Artificial intelligence applications in intensity modulated radiation treatment planning: an overview. Quant Imaging Med Surg 2021; 11:4859-4880. [PMID: 34888195 PMCID: PMC8611458 DOI: 10.21037/qims-21-208] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022]
Abstract
Artificial intelligence (AI) refers to methods that improve and automate challenging human tasks by systematically capturing and applying relevant knowledge in these tasks. Over the past decades, a number of approaches have been developed to address different types and needs of system intelligence ranging from search strategies to knowledge representation and inference to robotic planning. In the context of radiation treatment planning, multiple AI approaches may be adopted to improve the planning quality and efficiency. For example, knowledge representation and inference methods may improve dose prescription by integrating and reasoning about the domain knowledge described in many clinical guidelines and clinical trials reports. In this review, we will focus on the most studied AI approach in intensity modulated radiation therapy (IMRT)/volumetric modulated arc therapy (VMAT)-machine learning (ML) and describe our recent efforts in applying ML to improve the quality, consistency, and efficiency of IMRT/VMAT planning. With the available high-quality data, we can build models to accurately predict critical variables for each step of the planning process and thus automate and improve its outcomes. Specific to the IMRT/VMAT planning process, we can build models for each of the four critical components in the process: dose-volume histogram (DVH), Dose, Fluence, and Human Planner. These models can be divided into two general groups. The first group focuses on encoding prior experience and knowledge through ML and more recently deep learning (DL) from prior clinical plans and using these models to predict the optimal DVH (DVH prediction model), or 3D dose distribution (dose prediction model), or fluence map (fluence map model). The goal of these models is to reduce or remove the trial-and-error process and guarantee consistently high-quality plans. The second group of models focuses on mimicking human planners' decision-making process (planning strategy model) during the iterative adjustments/guidance of the optimization engine. Each critical step of the IMRT/VMAT treatment planning process can be improved and automated by AI methods. As more training data becomes available and more sophisticated models are developed, we can expect that the AI methods in treatment planning will continue to improve accuracy, efficiency, and robustness.
Collapse
Affiliation(s)
- Yang Sheng
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Jiahan Zhang
- Department of Radiation Oncology, Emory University Hospital, Atlanta, GA, USA
| | - Yaorong Ge
- Department of Software and Information Systems, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Xinyi Li
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Wentao Wang
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Hunter Stephens
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Fang-Fang Yin
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Qiuwen Wu
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Q. Jackie Wu
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
17
|
Momin S, Fu Y, Lei Y, Roper J, Bradley JD, Curran WJ, Liu T, Yang X. Knowledge-based radiation treatment planning: A data-driven method survey. J Appl Clin Med Phys 2021; 22:16-44. [PMID: 34231970 PMCID: PMC8364264 DOI: 10.1002/acm2.13337] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/26/2021] [Accepted: 06/02/2021] [Indexed: 12/18/2022] Open
Abstract
This paper surveys the data-driven dose prediction methods investigated for knowledge-based planning (KBP) in the last decade. These methods were classified into two major categories-traditional KBP methods and deep-learning (DL) methods-according to their techniques of utilizing previous knowledge. Traditional KBP methods include studies that require geometric or anatomical features to either find the best-matched case(s) from a repository of prior treatment plans or to build dose prediction models. DL methods include studies that train neural networks to make dose predictions. A comprehensive review of each category is presented, highlighting key features, methods, and their advancements over the years. We separated the cited works according to the framework and cancer site in each category. Finally, we briefly discuss the performance of both traditional KBP methods and DL methods, then discuss future trends of both data-driven KBP methods to dose prediction.
Collapse
Affiliation(s)
- Shadab Momin
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGAUSA
| | - Yabo Fu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGAUSA
| | - Yang Lei
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGAUSA
| | - Justin Roper
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGAUSA
| | - Jeffrey D. Bradley
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGAUSA
| | - Walter J. Curran
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGAUSA
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGAUSA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGAUSA
| |
Collapse
|
18
|
Ma J, Nguyen D, Bai T, Folkerts M, Jia X, Lu W, Zhou L, Jiang S. A feasibility study on deep learning-based individualized 3D dose distribution prediction. Med Phys 2021; 48:4438-4447. [PMID: 34091925 DOI: 10.1002/mp.15025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Radiation therapy treatment planning is a trial-and-error, often time-consuming process. An approximately optimal dose distribution corresponding to a specific patient's anatomy can be predicted by using pre-trained deep learning (DL) models. However, dose distributions are often optimized based not only on patient-specific anatomy but also on physicians' preferred trade-offs between planning target volume (PTV) coverage and organ at risk (OAR) sparing or among different OARs. Therefore, it is desirable to allow physicians to fine-tune the dose distribution predicted based on patient anatomy. In this work, we developed a DL model to predict the individualized 3D dose distributions by using not only the patient's anatomy but also the desired PTV/OAR trade-offs, as represented by a dose volume histogram (DVH), as inputs. METHODS In this work, we developed a modified U-Net network to predict the 3D dose distribution by using patient PTV/OAR masks and the desired DVH as inputs. The desired DVH, fine-tuned by physicians from the initially predicted DVH, is first projected onto the Pareto surface, then converted into a vector, and then concatenated with feature maps encoded from the PTV/OAR masks. The network output for training is the dose distribution corresponding to the Pareto optimal DVH. The training/validation datasets contain 77 prostate cancer patients, and the testing dataset has 20 patients. RESULTS The trained model can predict a 3D dose distribution that is approximately Pareto optimal while having the DVH closest to the input desired DVH. We calculated the difference between the predicted dose distribution and the optimized dose distribution that has a DVH closest to the desired one for the PTV and for all OARs as a quantitative evaluation. The largest absolute error in mean dose was about 3.6% of the prescription dose, and the largest absolute error in the maximum dose was about 2.0% of the prescription dose. CONCLUSIONS In this feasibility study, we have developed a 3D U-Net model with the patient's anatomy and the desired DVH curves as inputs to predict an individualized 3D dose distribution that is approximately Pareto optimal while having the DVH closest to the desired one. The predicted dose distributions can be used as references for dosimetrists and physicians to rapidly develop a clinically acceptable treatment plan.
Collapse
Affiliation(s)
- Jianhui Ma
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dan Nguyen
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ti Bai
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Folkerts
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xun Jia
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Weiguo Lu
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Linghong Zhou
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Steve Jiang
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
19
|
Nguyen D, Sadeghnejad Barkousaraie A, Bohara G, Balagopal A, McBeth R, Lin MH, Jiang S. A comparison of Monte Carlo dropout and bootstrap aggregation on the performance and uncertainty estimation in radiation therapy dose prediction with deep learning neural networks. Phys Med Biol 2021; 66:054002. [PMID: 33503599 PMCID: PMC8837265 DOI: 10.1088/1361-6560/abe04f] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recently, artificial intelligence technologies and algorithms have become a major focus for advancements in treatment planning for radiation therapy. As these are starting to become incorporated into the clinical workflow, a major concern from clinicians is not whether the model is accurate, but whether the model can express to a human operator when it does not know if its answer is correct. We propose to use Monte Carlo Dropout (MCDO) and the bootstrap aggregation (bagging) technique on deep learning (DL) models to produce uncertainty estimations for radiation therapy dose prediction. We show that both models are capable of generating a reasonable uncertainty map, and, with our proposed scaling technique, creating interpretable uncertainties and bounds on the prediction and any relevant metrics. Performance-wise, bagging provides statistically significant reduced loss value and errors in most of the metrics investigated in this study. The addition of bagging was able to further reduce errors by another 0.34% for [Formula: see text] and 0.19% for [Formula: see text] on average, when compared to the baseline model. Overall, the bagging framework provided significantly lower mean absolute error (MAE) of 2.62, as opposed to the baseline model's MAE of 2.87. The usefulness of bagging, from solely a performance standpoint, does highly depend on the problem and the acceptable predictive error, and its high upfront computational cost during training should be factored in to deciding whether it is advantageous to use it. In terms of deployment with uncertainty estimations turned on, both methods offer the same performance time of about 12 s. As an ensemble-based metaheuristic, bagging can be used with existing machine learning architectures to improve stability and performance, and MCDO can be applied to any DL models that have dropout as part of their architecture.
Collapse
Affiliation(s)
- Dan Nguyen
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, United States of America
| | - Azar Sadeghnejad Barkousaraie
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, United States of America
| | - Gyanendra Bohara
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, United States of America
| | - Anjali Balagopal
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, United States of America
| | - Rafe McBeth
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, United States of America
| | - Mu-Han Lin
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, United States of America
| | - Steve Jiang
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, United States of America
| |
Collapse
|