Ren K, Gu Y, Luo M, Chen H, Wang Z. Deep-learning-based denoising of X-ray differential phase and dark-field images.
Eur J Radiol 2023;
163:110835. [PMID:
37098281 DOI:
10.1016/j.ejrad.2023.110835]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/27/2023]
Abstract
PURPOSE
Statistical photon noise has always been a common problem in X-ray multi-contrast imaging and significantly influenced the quality of retrieved differential phase and dark-field images. We intend to develop a deep learning-based denoising algorithm to reduce the noise of retrieved X-ray differential phase and dark-field images.
METHODS
A novel deep learning based image noise suppression algorithm (named DnCNN-P) is presented. We proposed two different denoising modes: Retrieval-Denoising mode (R-D mode) and Denoising-Retrieval mode (D-R mode). While the R-D mode denoises the retrieved images, the D-R mode denoises the raw phase stepping data. The two denoising modes are evaluated under different photon counts and visibilities.
RESULTS
Experimental results show that with the algorithm DnCNN-P used, the D-R mode always exhibits a better noise reduction under diverse experimental conditions, even in the case of a low photon count and/or a low visibility. With a detected photon count of 1800 and a visibility of 0.3, compared to the differential phase images without denoising, the standard deviation is reduced by 89.1% and 16.4% in the D-R and R-D modes. Compared to the dark-field images without denoising, the standard deviation is reduced by 83.7% and 12.6% in the D-R and R-D modes, respectively.
CONCLUSIONS
The novel supervised DnCNN-P algorithm can significantly reduce the noise in retrieved X-ray differential phase and dark-field images. We believe this novel algorithm can be a promising approach to improve the quality of X-ray differential phase and dark-field images, and therefore dose efficiency in future biomedical applications.
Collapse