1
|
Sawall S, Baader E, Trapp P, Kachelrieß M. CT material decomposition with contrast agents: Single or multiple spectral photon-counting CT scans? A simulation study. Med Phys 2025; 52:2167-2190. [PMID: 39791354 PMCID: PMC11972055 DOI: 10.1002/mp.17604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 01/12/2025] Open
Abstract
PURPOSE With the widespread introduction of dual energy computed tomography (DECT), applications utilizing the spectral information to perform material decomposition became available. Among these, a popular application is to decompose contrast-enhanced CT images into virtual non-contrast (VNC) or virtual non-iodine images and into iodine maps. In 2021, photon-counting CT (PCCT) was introduced, which is another spectral CT modality. It allows for scans with more than two different detected spectra. With these systems, it becomes possible to distinguish more than two materials. It is frequently proposed to administer more than one contrast agent, perform a single PCCT scan, and then calculate the VNC images and the contrast agent maps. This may not be optimal because the patient is injected with a material, only to have it computationally extracted again immediately afterwards by spectral CT. It may be better to do an unenhanced scan followed by one or more contrast-enhanced scans. The main argument for the spectral material decomposition is patient motion, which poses a significant challenge for approaches involving two or more temporally separated scans. In this work, we assume that we can correct for patient motion and thus are free to scan the patient more than once. Our goal is then to quantify the penalty for performing a single contrast-enhanced scan rather than a clever series of unenhanced and enhanced scans. In particular, we consider the impact on patient dose and image quality. METHODS We simulate CT scans of three differently sized phantoms containing various contrast agents. We do this for a variety of tube voltage settings, a variety of patient-specific prefilter (PSP) thicknesses and a variety of threshold settings of the photon-counting detector with up to four energy bins. The reconstructed bin images give the expectation values of soft tissue and of the contrast agents. Error propagation of projection noise into the images yields the image noise. Dose is quantified using the total CT dose index (CTDI) value of the scans. When combining multiple scans, we further consider all possible tube current (or dose) ratios between the scans. Material decomposition is done image-based in a statistical optimal way. Error propagation into the material-specific images yields the signal-to-noise ratio at unit dose (SNRD). The winning scan strategy is the one with the highest total SNRD, which is related to the SNRD of the material that has the lowest signal-to-noise ratio (SNR) among the materials to decompose into. We consider scan strategies with up to three scans and up to three materials (water W, contrast agent X and contrast agent Y). RESULTS In all cases, those scan strategies yield the best performance that combine differently enhanced scans, for example, W+WX, W+WXY, WX+WXY, W+WX+WY, with W denoting an unenhanced scan and WX, WY and WXY denoting X-, Y-, and X-Y-enhanced scans, respectively. The dose efficiency of scans with a single enhancement scheme, such as WX or WXY, is far lower. The dose penalty to pay for these single enhancement strategies is about two or greater. Our findings also apply to scans with a single energy bin and thus also to CT systems with conventional, energy-integrating detectors, that is, conventional DECT. Dual source CT (DSCT) scans are preferable over single source CT scans, also because one can use a PSP on the high Kilovolt spectrum to better separate the detected spectra. For the strategies and tasks considered here, it does not make sense to simultaneously scan with two different types of contrast agents. Iodine outperforms other high Z elements in nearly all cases. CONCLUSIONS Given the significant dose penalty when performing only one contrast-enhanced scan rather than a series of unenhanced and enhanced scans, one should consider avoiding the single-scan strategies. This requires to invest in the development of accurate registration algorithms that can compensate for patient and contrast agent motion between separate scans.
Collapse
Affiliation(s)
- Stefan Sawall
- German Cancer Research Center (DKFZ)HeidelbergGermany
- Medical FacultyHeidelberg UniversityHeidelbergGermany
| | - Edith Baader
- German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Physics and AstronomyHeidelberg UniversityHeidelbergGermany
| | - Philip Trapp
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Marc Kachelrieß
- German Cancer Research Center (DKFZ)HeidelbergGermany
- Medical FacultyHeidelberg UniversityHeidelbergGermany
| |
Collapse
|
2
|
Devkota L, Bhavane R, Badea CT, Tanifum EA, Annapragada AV, Ghaghada KB. Nanoparticle Contrast Agents for Photon-Counting Computed Tomography: Recent Developments and Future Opportunities. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70004. [PMID: 39948059 PMCID: PMC11874078 DOI: 10.1002/wnan.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 12/20/2024] [Accepted: 01/05/2025] [Indexed: 03/05/2025]
Abstract
The clinical availability of photon-counting computed tomography (PCCT) has ushered in a new era of CT imaging. Spectral imaging coupled with superior contrast resolution, and ultrahigh spatial resolution (200 μm) offered by PCCT has the potential to revolutionize value-driven imaging. The potential of multicolor PCCT has generated excitement, and renewed interest, in novel contrast agent development for comprehensive disease interrogation, prediction and monitoring of treatment outcomes. Nanoparticles provide a versatile and powerful platform for the development of next generation contrast agents for spectral PCCT. In this article, we review recent developments and use of nanoparticle contrast agents for PCCT. We also discuss future research and translational opportunities for nanoparticle-based CT contrast agents enabled by the advent of PCCT and describe key considerations for their clinical translation.
Collapse
Affiliation(s)
- Laxman Devkota
- Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
- Edward B. Singleton Department of Radiology, Texas Children’s Hospital, Houston, Texas, USA
| | - Rohan Bhavane
- Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
- Edward B. Singleton Department of Radiology, Texas Children’s Hospital, Houston, Texas, USA
| | - Cristian T. Badea
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Eric A. Tanifum
- Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
- Edward B. Singleton Department of Radiology, Texas Children’s Hospital, Houston, Texas, USA
| | - Ananth V. Annapragada
- Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
- Edward B. Singleton Department of Radiology, Texas Children’s Hospital, Houston, Texas, USA
| | - Ketan B. Ghaghada
- Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
- Edward B. Singleton Department of Radiology, Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
3
|
Gunaseelan N, Saha P, Maher N, Pan D. Nanoparticles with " K-edge" Metals Bring "Color" in Multiscale Spectral Photon Counting X-ray Imaging. ACS NANO 2024; 18:34464-34491. [PMID: 39652749 DOI: 10.1021/acsnano.4c11724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Preclinical and clinical diagnostics depend greatly on medical imaging, which enables the identification of physiological and pathological processes in living subjects. It is often necessary to use contrast agents to complement anatomical data with functional information or to describe the disease phenotypically. Nanomaterials are used as contrast agents in many advanced bioimaging techniques and applications because of their high payload, physicochemical properties, improved sensitivity, and multimodality. Metals with k-edge energy within the X-ray bandwidth respond to photon counting and spectral X-ray imaging. This Perspective examines the progress made in the emerging area of nanoparticle-based k-edge contrast agents. These nano "k-edge" particles have been explored with spectral photon counting CT (SPCCT) for multiplexed molecular imaging, pushing the boundaries of resolution and capabilities of CT imaging. Design considerations, contrast properties, and biological behavior are discussed in detail. The key applications are highlighted by categorizing these nanomaterials based on their X-ray, k-edge energy, and biological properties, as well as their synthesis, functionalization, and characterization processes. The article delves into the transformative impact of nano "k-edge" particles on early disease detection and other biomedical applications. The review provides further insights into how the "k-edge signatures" of these nanoparticles combined with photon counting technique can be leveraged for quantitative, multicontrast imaging of diseases. We also discuss the status quo of clinically approved nanoparticles for imaging and highlight the challenges such as toxicity and clearance as well as promising clinical perspectives, providing a balanced view of the potential and limitations of these nanomaterials. Furthermore, we discuss the necessary future research efforts required to clinically translate nano "k-edge" particles as SPCCT contrast agents for early disease diagnosis and tracking.
Collapse
Affiliation(s)
- Nivetha Gunaseelan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Pranay Saha
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nada Maher
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Dipanjan Pan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Huck Institutes of the Life Sciences, 101 Huck Life Sciences Building, University Park, Pennsylvania 16802, United States
| |
Collapse
|
4
|
Suslova EV, Shashurin DA, Maslakov KI, Kupreenko SY, Luneva TO, Medvedev OS, Chelkov GA. Composite Contrast Enhancement of Hydrogel-Based Implants for Photon-Counting Computed Tomography Studies. Gels 2024; 10:807. [PMID: 39727565 DOI: 10.3390/gels10120807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
Hydrogels have a wide range of medical applications, including use within implantable systems. However, when used in implants, their visibility under conventional medical imaging techniques is limited, creating safety risks for patients. In the current work, we assessed the possibility of enhancing hydrogels using Ln-based contrasting agents to facilitate their visualization in photon-counting computed tomography (PCCT). The contrast enhancement of gelatin, polyacrylamide (PAM), and silicone shells of implants was assessed. A novel synthetic route for producing cross-linked nanosized Ln2O3 with polyacrylamide was proposed and discussed in detail. Several prototypes of silicone implants, including silicone shell and gelatin or PAM filling with different combinations of contrasting agents, were produced and assessed in phantom PCCT studies.
Collapse
Affiliation(s)
- Evgeniya V Suslova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1 Bld. 3, 119991 Moscow, Russia
| | - Denis A Shashurin
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave. 27 Bld. 10, 119991 Moscow, Russia
| | - Konstantin I Maslakov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1 Bld. 3, 119991 Moscow, Russia
| | - Stepan Yu Kupreenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1 Bld. 3, 119991 Moscow, Russia
| | - Tatyana O Luneva
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1 Bld. 3, 119991 Moscow, Russia
| | - Oleg S Medvedev
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave. 27 Bld. 10, 119991 Moscow, Russia
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Georgy A Chelkov
- Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Russia
| |
Collapse
|
5
|
Dudás I, Schultz L, Benke M, Szücs Á, Kaposi PN, Szijártó A, Maurovich-Horvat P, Budai BK. The reliability of virtual non-contrast reconstructions of photon-counting detector CT scans in assessing abdominal organs. BMC Med Imaging 2024; 24:237. [PMID: 39251996 PMCID: PMC11386360 DOI: 10.1186/s12880-024-01419-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Spectral imaging of photon-counting detector CT (PCD-CT) scanners allows for generating virtual non-contrast (VNC) reconstruction. By analyzing 12 abdominal organs, we aimed to test the reliability of VNC reconstructions in preserving HU values compared to real unenhanced CT images. METHODS Our study included 34 patients with pancreatic cystic neoplasm (PCN). The VNC reconstructions were generated from unenhanced, arterial, portal, and venous phase PCD-CT scans using the Liver-VNC algorithm. The observed 11 abdominal organs were segmented by the TotalSegmentator algorithm, the PCNs were segmented manually. Average densities were extracted from unenhanced scans (HUunenhanced), postcontrast (HUpostcontrast) scans, and VNC reconstructions (HUVNC). The error was calculated as HUerror=HUVNC-HUunenhanced. Pearson's or Spearman's correlation was used to assess the association. Reproducibility was evaluated by intraclass correlation coefficients (ICC). RESULTS Significant differences between HUunenhanced and HUVNC[unenhanced] were found in vertebrae, paraspinal muscles, liver, and spleen. HUVNC[unenhanced] showed a strong correlation with HUunenhanced in all organs except spleen (r = 0.45) and kidneys (r = 0.78 and 0.73). In all postcontrast phases, the HUVNC had strong correlations with HUunenhanced in all organs except the spleen and kidneys. The HUerror had significant correlations with HUunenhanced in the muscles and vertebrae; and with HUpostcontrast in the spleen, vertebrae, and paraspinal muscles in all postcontrast phases. All organs had at least one postcontrast VNC reconstruction that showed good-to-excellent agreement with HUunenhanced during ICC analysis except the vertebrae (ICC: 0.17), paraspinal muscles (ICC: 0.64-0.79), spleen (ICC: 0.21-0.47), and kidneys (ICC: 0.10-0.31). CONCLUSIONS VNC reconstructions are reliable in at least one postcontrast phase for most organs, but further improvement is needed before VNC can be utilized to examine the spleen, kidneys, and vertebrae.
Collapse
Affiliation(s)
- Ibolyka Dudás
- Department of Radiology, Medical Imaging Centre, Semmelweis University, 2 Korányi Sándor St, Budapest, H-1083, Hungary
| | - Leona Schultz
- Department of Radiology, Medical Imaging Centre, Semmelweis University, 2 Korányi Sándor St, Budapest, H-1083, Hungary
| | - Márton Benke
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, 78/A Üllői St, Budapest, H-1082, Hungary
| | - Ákos Szücs
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, 78/A Üllői St, Budapest, H-1082, Hungary
| | - Pál Novák Kaposi
- Department of Radiology, Medical Imaging Centre, Semmelweis University, 2 Korányi Sándor St, Budapest, H-1083, Hungary
| | - Attila Szijártó
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, 78/A Üllői St, Budapest, H-1082, Hungary
| | - Pál Maurovich-Horvat
- Department of Radiology, Medical Imaging Centre, Semmelweis University, 2 Korányi Sándor St, Budapest, H-1083, Hungary
| | - Bettina Katalin Budai
- Department of Radiology, Medical Imaging Centre, Semmelweis University, 2 Korányi Sándor St, Budapest, H-1083, Hungary.
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany.
| |
Collapse
|
6
|
Safari A, Mahdavi M, Fardid R, Oveisi A, Jalli R, Haghani M. Evaluation of hafnium oxide nanoparticles imaging characteristics as a contrast agent in X-ray computed tomography. Radiol Phys Technol 2024; 17:441-450. [PMID: 38630390 DOI: 10.1007/s12194-024-00797-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 05/27/2024]
Abstract
This research aimed to compare the quantitative imaging attributes of synthesized hafnium oxide nanoparticles (NPs) derived from UiO-66-NH2(Hf) and two gadolinium- and iodine-based clinical contrast agents (CAs) using cylindrical phantom. Aqueous solutions of the studied CAs, containing 2.5, 5, and 10 mg/mL of HfO2NPs, gadolinium, and iodine, were prepared. Constructed within a cylindrical phantom, 15 cc small tubes were filled with CAs. Maintaining constant mAs, the phantom underwent scanning at tube voltage variations from 80 to 140 kVp. The CT numbers were quantified in Hounsfield units (HU), and the contrast-to-noise ratios (CNR) were calculated within delineated regions of interest (ROI) for all CAs. The HfO2NPs at 140 kVp and concentration of 2.5 mg/ml exhibited 2.3- and 1.3-times higher CT numbers than iodine and gadolinium, respectively. Notably, gadolinium consistently displayed higher CT numbers than iodine across all exposure techniques and concentrations. At the highest tube potential, the maximum amount of the CAs CT numbers was attained, and at 140 kVp and concentration of 2.5 mg/ml of HfO2NPs the CNR surpassed iodine by 114%, and gadolinium by 30%, respectively. HfO2NPs, as a contrast agent, demonstrated superior image quality in terms of contrast and noise in comparison to iodine- and gadolinium-based contrast media, particularly at higher energies of X-ray in computed tomography. Thus, its utilization is highly recommended in CT.
Collapse
Affiliation(s)
- Arash Safari
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Maziyar Mahdavi
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fardid
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Oveisi
- Department of Chemistry, Faculty of Sciences, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Reza Jalli
- Department of Radiology, Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Haghani
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Haidar LL, Bilek M, Akhavan B. Surface Bio-engineered Polymeric Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310876. [PMID: 38396265 DOI: 10.1002/smll.202310876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Surface bio-engineering of polymeric nanoparticles (PNPs) has emerged as a cornerstone in contemporary biomedical research, presenting a transformative avenue that can revolutionize diagnostics, therapies, and drug delivery systems. The approach involves integrating bioactive elements on the surfaces of PNPs, aiming to provide them with functionalities to enable precise, targeted, and favorable interactions with biological components within cellular environments. However, the full potential of surface bio-engineered PNPs in biomedicine is hampered by obstacles, including precise control over surface modifications, stability in biological environments, and lasting targeted interactions with cells or tissues. Concerns like scalability, reproducibility, and long-term safety also impede translation to clinical practice. In this review, these challenges in the context of recent breakthroughs in developing surface-biofunctionalized PNPs for various applications, from biosensing and bioimaging to targeted delivery of therapeutics are discussed. Particular attention is given to bonding mechanisms that underlie the attachment of bioactive moieties to PNP surfaces. The stability and efficacy of surface-bioengineered PNPs are critically reviewed in disease detection, diagnostics, and treatment, both in vitro and in vivo settings. Insights into existing challenges and limitations impeding progress are provided, and a forward-looking discussion on the field's future is presented. The paper concludes with recommendations to accelerate the clinical translation of surface bio-engineered PNPs.
Collapse
Affiliation(s)
- Laura Libnan Haidar
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Marcela Bilek
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Behnam Akhavan
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- School of Engineering, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), Precision Medicine Program, New Lambton Heights, NSW, 2305, Australia
| |
Collapse
|
8
|
Bliznakova K, Kolev I, Dukov N, Dimova T, Bliznakov Z. Exploring the Potential of a Novel Iodine-Based Material as an Alternative Contrast Agent in X-ray Imaging Studies. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2059. [PMID: 38730863 PMCID: PMC11084318 DOI: 10.3390/ma17092059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Contrast-enhanced mammography is one of the new emerging imaging techniques used for detecting breast tissue lesions. Optimization of imaging protocols and reconstruction techniques for this modality, however, requires the involvement of physical phantoms. Their development is related to the use of radiocontrast agents. This study assesses the X-ray properties of a novel contrast material in clinical settings. This material is intended for experimental use with physical phantoms, offering an alternative to commonly available radiocontrast agents. MATERIALS AND METHODS The water-soluble sodium salt of the newly synthesized diiodine-substituted natural eudesmic acid, Sodium 2,6-DiIodo-3,4,5-TriMethoxyBenzoate [NaDITMB], has been investigated with respect to one of the most commonly applied radiocontrast medium in medical practice-Omnipaque®. For this purpose, simulation and experimental studies were carried out with a computational phantom and a physical counterpart, respectively. Synthetic and experimental X-ray images were subsequently produced under varying beam kilovoltage peaks (kVps), and the proposed contrast material was evaluated. RESULTS AND DISCUSSION Simulation results revealed equivalent absorptions between the two simulated radiocontrast agents. Experimental findings supported these simulations, showing a maximum deviation of 3.7% between the image gray values of contrast materials for NaDITMB and Omnipaque solutions for a 46 kVp X-ray beam. Higher kVp X-ray beams show even smaller deviations in the mean grey values of the imaged contrast agents, with the NaDITMB solution demonstrating less than a 2% deviation compared to Omnipaque. CONCLUSION The proposed contrast agent is a suitable candidate for use in experimental work related to contrast-enhanced imaging by utilizing phantoms. It boasts the advantages of easy synthesis and is recognized for its safety, ensuring a secure environment for both the experimenter and the environment.
Collapse
Affiliation(s)
- Kristina Bliznakova
- Department of Medical Equipment Electronic and Information Technologies in Healthcare, Faculty of Public Health, Medical University of Varna, 9002 Varna, Bulgaria; (N.D.); (Z.B.)
| | - Iliyan Kolev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria; (I.K.); (T.D.)
| | - Nikolay Dukov
- Department of Medical Equipment Electronic and Information Technologies in Healthcare, Faculty of Public Health, Medical University of Varna, 9002 Varna, Bulgaria; (N.D.); (Z.B.)
| | - Tanya Dimova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria; (I.K.); (T.D.)
| | - Zhivko Bliznakov
- Department of Medical Equipment Electronic and Information Technologies in Healthcare, Faculty of Public Health, Medical University of Varna, 9002 Varna, Bulgaria; (N.D.); (Z.B.)
| |
Collapse
|
9
|
Srinivas-Rao S, Cao J, Marin D, Kambadakone A. Dual-Energy Computed Tomography to Photon Counting Computed Tomography: Emerging Technological Innovations. Radiol Clin North Am 2023; 61:933-944. [PMID: 37758361 DOI: 10.1016/j.rcl.2023.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Computed tomography (CT) has seen remarkable developments in the past several decades, radically transforming the role of imaging in day-to-day clinical practice. Dual-energy CT (DECT), an exciting innovation introduced in the early part of this century, has widened the scope of CT, opening new opportunities due to its ability to provide superior tissue characterization. The introduction of photon-counting CT (PCCT) heralds a paradigm shift in CT scanner technology representing another significant milestone in CT innovation. PCCT offers several advantages over DECT, such as improved spectral resolution, enhanced tissue characterization, reduced image artifacts, and improved image quality.
Collapse
Affiliation(s)
- Shravya Srinivas-Rao
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA 02114-2696, USA
| | - Jinjin Cao
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA 02114-2696, USA
| | - Daniele Marin
- Department of Radiology, Duke University Medical Center, Box 3808 Erwin Road, Durham, NC 27710, USA
| | - Avinash Kambadakone
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA 02114-2696, USA.
| |
Collapse
|
10
|
Jost G, McDermott M, Gutjahr R, Nowak T, Schmidt B, Pietsch H. New Contrast Media for K-Edge Imaging With Photon-Counting Detector CT. Invest Radiol 2023; 58:515-522. [PMID: 37068840 PMCID: PMC10259215 DOI: 10.1097/rli.0000000000000978] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 04/19/2023]
Abstract
ABSTRACT The recent technological developments in photon-counting detector computed tomography (PCD-CT) and the introduction of the first commercially available clinical PCD-CT unit open up new exciting opportunities for contrast media research. With PCD-CT, the efficacy of available iodine-based contrast media improves, allowing for a reduction of iodine dosage or, on the other hand, an improvement of image quality in low contrast indications. Virtual monoenergetic image reconstructions are routinely available and enable the virtual monoenergetic image energy to be adapted to the diagnostic task.A key property of PCD-CT is the ability of spectral separation in combination with improved material decomposition. Thus, the discrimination of contrast media from intrinsic or pathological tissues and the discrimination of 2 or more contrasting elements that characterize different tissues are attractive fields for contrast media research. For these approaches, K-edge imaging in combination with high atomic number elements such as the lanthanides, tungsten, tantalum, or bismuth plays a central role.The purpose of this article is to present an overview of innovative contrast media concepts that use high atomic number elements. The emphasis is on improving contrast enhancement for cardiovascular plaque imaging, stent visualization, and exploring new approaches using 2 contrasting elements. Along with the published research, new experimental findings with a contrast medium that incorporates tungsten are included.Both the literature review and the new experimental data demonstrate the great potential and feasibility for new contrast media to significantly increase diagnostic performance and to enable new clinical fields and indications in combination with PCD-CT.
Collapse
Affiliation(s)
- Gregor Jost
- From the MR and CT Contrast Media Research, Bayer AG, Berlin, Germany
| | - Michael McDermott
- From the MR and CT Contrast Media Research, Bayer AG, Berlin, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Ralf Gutjahr
- Computed Tomography, Siemens Healthineers, Forchheim, Germany
| | - Tristan Nowak
- Computed Tomography, Siemens Healthineers, Forchheim, Germany
| | | | - Hubertus Pietsch
- From the MR and CT Contrast Media Research, Bayer AG, Berlin, Germany
| |
Collapse
|
11
|
Borges AP, Antunes C, Caseiro-Alves F. Spectral CT: Current Liver Applications. Diagnostics (Basel) 2023; 13:diagnostics13101673. [PMID: 37238163 DOI: 10.3390/diagnostics13101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Using two different energy levels, dual-energy computed tomography (DECT) allows for material differentiation, improves image quality and iodine conspicuity, and allows researchers the opportunity to determine iodine contrast and radiation dose reduction. Several commercialized platforms with different acquisition techniques are constantly being improved. Furthermore, DECT clinical applications and advantages are continually being reported in a wide range of diseases. We aimed to review the current applications of and challenges in using DECT in the treatment of liver diseases. The greater contrast provided by low-energy reconstructed images and the capability of iodine quantification have been mostly valuable for lesion detection and characterization, accurate staging, treatment response assessment, and thrombi characterization. Material decomposition techniques allow for the non-invasive quantification of fat/iron deposition and fibrosis. Reduced image quality with larger body sizes, cross-vendor and scanner variability, and long reconstruction time are among the limitations of DECT. Promising techniques for improving image quality with lower radiation dose include the deep learning imaging reconstruction method and novel spectral photon-counting computed tomography.
Collapse
Affiliation(s)
- Ana P Borges
- Medical Imaging Department, Coimbra University Hospitals, 3004-561 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Academic and Clinical Centre of Coimbra, 3000-370 Coimbra, Portugal
| | - Célia Antunes
- Medical Imaging Department, Coimbra University Hospitals, 3004-561 Coimbra, Portugal
- Academic and Clinical Centre of Coimbra, 3000-370 Coimbra, Portugal
| | - Filipe Caseiro-Alves
- Medical Imaging Department, Coimbra University Hospitals, 3004-561 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Academic and Clinical Centre of Coimbra, 3000-370 Coimbra, Portugal
| |
Collapse
|
12
|
Sawall S. [New contrast agents for photon-counting computed tomography]. RADIOLOGIE (HEIDELBERG, GERMANY) 2023:10.1007/s00117-023-01135-6. [PMID: 37069237 DOI: 10.1007/s00117-023-01135-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND The introduction of energy-selective photon-counting detectors into clinical practice represents the next milestone in computed tomography (CT). In addition to significantly higher resolution, these detectors allow the implicit acquisition of dual or multispectral data in a single measurement through the use of typically freely selectable thresholds. This capability reignited the interest in new contrast agents based on heavy elements, so-called high‑z elements, for clinical CT. OBJECTIVE The present article aims to investigate the potential suitability of different chemical elements as contrast agents and to discuss possible clinical applications, for example, K‑edge imaging or simultaneous application of different contrast agents. CONCLUSION First preclinical experiments as well as experiments in large animals could demonstrate potential advantages of contrast agents based on heavy elements. For example, such contrast agents promise a significant increase in image contrast compared to conventional iodine-based agents.
Collapse
Affiliation(s)
- Stefan Sawall
- Röntgenbildgebung und CT (E025), Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Deutschland.
- Medizinische Fakultät, Universität Heidelberg, Heidelberg, Deutschland.
| |
Collapse
|
13
|
Sauerbeck J, Adam G, Meyer M. Spectral CT in Oncology. ROFO-FORTSCHR RONTG 2023; 195:21-29. [PMID: 36167316 DOI: 10.1055/a-1902-9949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Spectral CT is gaining increasing clinical importance with multiple potential applications, including oncological imaging. Spectral CT-specific image data offers multiple advantages over conventional CT image data through various post-processing algorithms, which will be highlighted in the following review. METHODOLOGY The purpose of this review article is to provide an overview of potential useful oncologic applications of spectral CT and to highlight specific spectral CT pitfalls. The technical background, clinical advantages of primary and follow-up spectral CT exams in oncology, and the application of appropriate spectral tools will be highlighted. RESULTS/CONCLUSIONS Spectral CT imaging offers multiple advantages over conventional CT imaging, particularly in the field of oncology. The combination of virtual native and low monoenergetic images leads to improved detection and characterization of oncologic lesions. Iodine-map images may provide a potential imaging biomarker for assessing treatment response. KEY POINTS · The most important spectral CT reconstructions for oncology imaging are virtual unenhanced, iodine map, and virtual monochromatic reconstructions.. · The combination of virtual unenhanced and low monoenergetic reconstructions leads to better detection and characterization of the vascularization of solid tumors.. · Iodine maps can be a surrogate parameter for tumor perfusion and potentially used as a therapy monitoring parameter.. · For radiotherapy planning, the relative electron density and the effective atomic number of a tissue can be calculated.. CITATION FORMAT · Sauerbeck J, Adam G, Meyer M. Onkologische Bildgebung mittels Spektral-CT. Fortschr Röntgenstr 2023; 195: 21 - 29.
Collapse
Affiliation(s)
- Julia Sauerbeck
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, Hamburg, Germany
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, Hamburg, Germany
| | - Mathias Meyer
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, Hamburg, Germany
| |
Collapse
|
14
|
Suslova EV, Kozlov AP, Shashurin DA, Rozhkov VA, Sotenskii RV, Maximov SV, Savilov SV, Medvedev OS, Chelkov GA. New Composite Contrast Agents Based on Ln and Graphene Matrix for Multi-Energy Computed Tomography. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4110. [PMID: 36500733 PMCID: PMC9737213 DOI: 10.3390/nano12234110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The subject of the current research study is aimed at the development of novel types of contrast agents (CAs) for multi-energy computed tomography (CT) based on Ln-graphene composites, which include Ln (Ln = La, Nd, and Gd) nanoparticles with a size of 2-3 nm, acting as key contrasting elements, and graphene nanoflakes (GNFs) acting as the matrix. The synthesis and surface modifications of the GNFs and the properties of the new CAs are presented herein. The samples have had their characteristics determined using X-ray photoelectron spectroscopy, X-Ray diffraction, transmission electron microscopy, thermogravimetric analysis, and Raman spectroscopy. Multi-energy CT images of the La-, Nd-, and Gd-based CAs demonstrating their visualization and discriminative properties, as well as the possibility of a quantitative analysis, are presented.
Collapse
Affiliation(s)
- Evgeniya V. Suslova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alexei P. Kozlov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Denis A. Shashurin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | | | - Sergei V. Maximov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Serguei V. Savilov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Oleg S. Medvedev
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
- Laboratory of Experimental Pharmacology, Institute of Experimental Cardiology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | | |
Collapse
|
15
|
Wehrse E, Klein L, Rotkopf LT, Stiller W, Finke M, Echner G, Glowa C, Heinze S, Ziener CH, Schlemmer HP, Kachelrieß M, Sawall S. Ultrahigh resolution whole body photon counting computed tomography as a novel versatile tool for translational research from mouse to man. Z Med Phys 2022:S0939-3889(22)00066-6. [PMID: 35868888 DOI: 10.1016/j.zemedi.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 11/19/2022]
Abstract
X-ray computed tomography (CT) is a cardinal tool in clinical practice. It provides cross-sectional images within seconds. The recent introduction of clinical photon-counting CT allowed for an increase in spatial resolution by more than a factor of two resulting in a pixel size in the center of rotation of about 150 µm. This level of spatial resolution is in the order of dedicated preclinical micro-CT systems. However so far, the need for different dedicated clinical and preclinical systems often hinders the rapid translation of early research results to applications in men. This drawback might be overcome by ultra-high resolution (UHR) clinical photon-counting CT unifying preclinical and clinical research capabilities in a single machine. Herein, the prototype of a clinical UHR PCD CT (SOMATOM CounT, Siemens Healthineers, Forchheim, Germany) was used. The system comprises a conventional energy-integrating detector (EID) and a novel photon-counting detector (PCD). While the EID provides a pixel size of 0.6 mm in the centre of rotation, the PCD provides a pixel size of 0.25 mm. Additionally, it provides a quantification of photon energies by sorting them into up to four distinct energy bins. This acquisition of multi-energy data allows for a multitude of applications, e.g. pseudo-monochromatic imaging. In particular, we examine the relation between spatial resolution, image noise and administered radiation dose for a multitude of use-cases. These cases include ultra-high resolution and multi-energy acquisitions of mice administered with a prototype bismuth-based contrast agent (nanoPET Pharma, Berlin, Germany) as well as larger animals and actual patients. The clinical EID provides a spatial resolution of about 9 lp/cm (modulation transfer function at 10%, MTF10%) while UHR allows for the acquisition of images with up to 16 lp/cm allowing for the visualization of all relevant anatomical structures in preclinical and clinical specimen. The spectral capabilities of the system enable a variety of applications previously not available in preclinical research such as pseudo-monochromatic images. Clinical ultra-high resolution photon-counting CT has the potential to unify preclinical and clinical research on a single system enabling versatile imaging of specimens and individuals ranging from mice to man.
Collapse
Affiliation(s)
- E Wehrse
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - L Klein
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany; Division of X-ray Imaging and CT, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - L T Rotkopf
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - W Stiller
- Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Heidelberg, Germany
| | - M Finke
- Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Heidelberg, Germany
| | - G Echner
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - C Glowa
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiation Oncology and Radiotherapy, University Hospital Heidelberg, Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - S Heinze
- Institute of Forensic and Traffic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - C H Ziener
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - H-P Schlemmer
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Kachelrieß
- Medical Faculty, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany; Division of X-ray Imaging and CT, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - S Sawall
- Medical Faculty, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany; Division of X-ray Imaging and CT, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
16
|
Steidel J, Maier J, Sawall S, Kachelrieß M. Dose reduction potential in diagnostic single energy CT through patient-specific prefilters and a wider range of tube voltages. Med Phys 2021; 49:93-106. [PMID: 34796532 DOI: 10.1002/mp.15355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Various studies have demonstrated that additional prefilters and/or reduced tube voltages have the potential to significantly increase the contrast-to-noise ratios at unit dose (CNRDs) and thereby to significantly reduce patient dose in clinical CT. An exhaustive analysis, accounting for a wide range of filter thicknesses and a wide range of tube voltages extending beyond the 70 to 150 kV range of today's CT systems, including their specific choice depending on the patient size, is, however, missing. Therefore, this work analyzes the dose reduction potential for patient-specific selectable prefilters combined with a wider range of tube voltages. We do so for soft tissue and iodine contrast in single energy CT. The findings may be helpful to guide further developments of x-ray tubes and automatic filter changers. METHODS CT acquisitions were simulated for different patient sizes (semianthropomorphic phantoms for child, adult, and obese patients), tube voltages (35-150 kV), prefilter materials (tin and copper), and prefilter thicknesses (up to 5 mm). For each acquisition soft tissue and iodine CNRDs were determined. Dose was calculated using Monte Carlo simulations of a computed tomography dose index (CTDI) phantom. CNRD values of acquisitions with different parameters were used to evaluate dose reduction. RESULTS Dose reduction through patient-specific prefilters depends on patient size and available tube current among others. With an available tube current time product of 1000 mAs dose reductions of 17% for the child, 32% for the adult and 29% for the obese phantom were achieved for soft tissue contrast. For iodine contrast dose reductions were 57%, 49%, and 39% for child, adult, and obese phantoms, respectively. Here, a tube voltage range extended to lower kV is important. CONCLUSIONS Substantial dose reduction can be achieved by utilizing patient-specific prefilters. Tube voltages lower than 70 kV are beneficial for dose reduction with iodine contrast, especially for small patients. The optimal implementation of patient-specific prefilters benefits from higher tube power. Tin prefilters should be available in 0.1 mm steps or lower, copper prefilter in 0.3 mm steps or lower. At least 10 different prefilter thicknesses should be used to cover the dose optima of all investigated patient sizes and contrast mechanisms. In many cases it would be advantageous to adapt the prefilter thickness rather than the tube current to the patient size, that is, to always use the maximum available tube current and to control the exposure by adjusting the thickness of the prefilter.
Collapse
Affiliation(s)
- Jörg Steidel
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany
| | - Joscha Maier
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany
| | - Stefan Sawall
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany
| | - Marc Kachelrieß
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany
| |
Collapse
|
17
|
Feng M, Ji X, Zhang R, Treb K, Dingle AM, Li K. An experimental method to correct low-frequency concentric artifacts in photon counting CT. Phys Med Biol 2021; 66. [PMID: 34315142 DOI: 10.1088/1361-6560/ac1833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/27/2021] [Indexed: 11/12/2022]
Abstract
Large-area photon counting detectors (PCDs) are usually built by tiling multiple semiconductor panels that often have slightly different spectral responses to input x-rays. As a result of this spectral inconsistency, experimental PCD-CT images of large, human-sized objects may show high-frequency ring artifacts and low-frequency band artifacts. Due to the much larger width of the bands compared with the rings, the concentric artifact problem in PCD-CT images of human-sized objects cannot be adequately addressed by conventional CT ring correction methods. This work presents an experimental method to correct the concentric artifacts in PCD-CT. The method is applicable to not only energy-discriminating PCDs with multiple bins but also PCDs with only a single threshold controller. Its principle is similar to the two-step beam hardening correction method, except that the proposed method uses pixel-specific polynomial functions to address the spectral inconsistency problem across the detector plane. The pixel-specific polynomial coefficients were experimentally calibrated using 15 acrylic sheets and 6 aluminum sheets of known thicknesses. The pixel-specific polynomial functions were used to convert the measured PCD-CT projection data to acrylic- and aluminum-equivalent thicknesses that are energy-independent. The proposed method was experimentally evaluated using a human cadaver head and multiple physical phantoms: two of them contain iodine and one phantom contains dual K-edge contrast materials (gadolinium and iodine). The results show that the proposed method can effectively remove the low-frequency concentric artifacts in PCD-CT images while reducing beam hardening artifacts. In contrast, the conventional CT ring correction algorithm did not adequately address the low-frequency band artifacts. Compared with the direct material decomposition-based correction method, the proposed method not only relaxes the requirement of multi-energy bins but also generates images with lower noise and fewer concentric artifacts.
Collapse
Affiliation(s)
- Mang Feng
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, United States of America
| | - Xu Ji
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, United States of America
| | - Ran Zhang
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, United States of America
| | - Kevin Treb
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, United States of America
| | - Aaron M Dingle
- Department of Surgery, University of Wisconsin-Madison, WI 53792, United States of America
| | - Ke Li
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, United States of America.,Department of Radiology, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, United States of America
| |
Collapse
|
18
|
Sawall S, Amato C, Klein L, Wehrse E, Maier J, Kachelrieß M. Toward molecular imaging using spectral photon-counting computed tomography? Curr Opin Chem Biol 2021; 63:163-170. [PMID: 34051510 DOI: 10.1016/j.cbpa.2021.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/07/2021] [Indexed: 12/22/2022]
Abstract
Molecular imaging is a valuable tool in drug discovery and development, early screening and diagnosis of diseases, and therapy assessment among others. Although many different imaging modalities are in use today, molecular imaging with computed tomography (CT) is still challenging owing to its low sensitivity and soft tissue contrast compared with other modalities. Recent technical advances, particularly the introduction of spectral photon-counting detectors, might allow overcoming these challenges. Herein, the fundamentals and recent advances in CT relevant to molecular imaging are reviewed and potential future preclinical and clinical applications are highlighted. The review concludes with a discussion of potential future advancements of CT for molecular imaging.
Collapse
Affiliation(s)
- Stefan Sawall
- Division of X-Ray Imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Baden-Württemberg, Germany; Medical Faculty, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 672, Heidelberg, 69120, Baden-Württemberg, Germany.
| | - Carlo Amato
- Division of X-Ray Imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Baden-Württemberg, Germany; Medical Faculty, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 672, Heidelberg, 69120, Baden-Württemberg, Germany
| | - Laura Klein
- Division of X-Ray Imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Baden-Württemberg, Germany; Physical Faculty, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 226, Heidelberg, 69120, Baden-Württemberg, Germany
| | - Eckhard Wehrse
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Baden-Württemberg, Germany; Medical Faculty, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 672, Heidelberg, 69120, Baden-Württemberg, Germany
| | - Joscha Maier
- Division of X-Ray Imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Baden-Württemberg, Germany
| | - Marc Kachelrieß
- Division of X-Ray Imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Baden-Württemberg, Germany; Medical Faculty, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 672, Heidelberg, 69120, Baden-Württemberg, Germany
| |
Collapse
|
19
|
Schlemmer HP. The Eye of the CT Scanner: The story of learning to see the invisible or from the fluorescent screen to the photon-counting detector. ROFO-FORTSCHR RONTG 2021; 193:1034-1049. [PMID: 33735934 DOI: 10.1055/a-1308-2693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Roentgen's photographs with the "new kind of rays" triggered a worldwide storm of enthusiasm in all social circles. It was a stroke of luck that the photographic dry plates available to him were also sensitive to invisible X-rays. The discovery, research and utilization of X-rays are based on methods for making them visible, from fluorescent screens to photographic plates and digital X-ray detectors. From this point of view, this paper aims to outline the 125-year success story of X-ray imaging from its discovery to the recent development of photon-counting detectors. The scientific-historical view during the transition from the 19th to the 20th century reveals an impressive period of profound scientific and social upheaval in which revolutionary discoveries and technological developments led to enormous progress in medicine. The cross-fertilization of physics and medicine and their combination with inventiveness, engineering and entrepreneurial spirit created the impressive possibilities of today's imaging diagnostics. This contribution accompanies the Roentgen Lecture the author gave on November 13, 2020 in Roentgen's birth house as part of its inauguration and the closing ceremony of the 101st Congress of the German Roentgen Society in Remscheid-Lennep. KEY POINTS:: · The development of computed tomography was a milestone in the methodological advancement of imaging with X-rays.. · In the detector pixel invisible X-rays are converted into digital electrical impulses, which the computer uses to create images.. · Photon-counting detectors could have significant diagnostic advantages for clinical applications.. CITATION FORMAT: · Schlemmer H, The Eye of the CT Scanner: The story of learning to see the invisible or from the fluorescent screen to the photon-counting detector. Fortschr Röntgenstr 2021; 193: 1034 - 1048.
Collapse
|
20
|
Sawall S, Klein L, Wehrse E, Rotkopf LT, Amato C, Maier J, Schlemmer HP, Ziener CH, Heinze S, Kachelrieß M. Threshold-dependent iodine imaging and spectral separation in a whole-body photon-counting CT system. Eur Radiol 2021; 31:6631-6639. [PMID: 33713171 PMCID: PMC8379121 DOI: 10.1007/s00330-021-07786-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/20/2021] [Accepted: 02/12/2021] [Indexed: 11/01/2022]
Abstract
OBJECTIVE To evaluate the dual-energy (DE) performance and spectral separation with respect to iodine imaging in a photon-counting CT (PCCT) and compare it to dual-source CT (DSCT) DE imaging. METHODS A semi-anthropomorphic phantom extendable with fat rings equipped with iodine vials is measured in an experimental PCCT. The system comprises a PC detector with two energy bins (20 keV, T) and (T, eU) with threshold T and tube voltage U. Measurements using the PCCT are performed at all available tube voltages (80 to 140 kV) and threshold settings (50-90 keV). Further measurements are performed using a conventional energy-integrating DSCT. Spectral separation is quantified as the relative contrast media ratio R between the energy bins and low/high images. Image noise and dose-normalized contrast-to-noise ratio (CNRD) are evaluated in resulting iodine images. All results are validated in a post-mortem angiography study. RESULTS R of the PC detector varies between 1.2 and 2.6 and increases with higher thresholds and higher tube voltage. Reference R of the EI DSCT is found as 2.20 on average overall phantoms. Maximum CNRD in iodine images is found for T = 60/65/70/70 keV for 80/100/120/140 kV. The highest CNRD of the PCCT is obtained using 140 kV and is decreasing with decreasing tube voltage. All results could be confirmed in the post-mortem angiography study. CONCLUSION Intrinsically acquired DE data are able to provide iodine images similar to conventional DSCT. However, PCCT thresholds should be chosen with respect to tube voltage to maximize image quality in retrospectively derived image sets. KEY POINTS • Photon-counting CT allows for the computation of iodine images with similar quality compared to conventional dual-source dual-energy CT. • Thresholds should be chosen as a function of the tube voltage to maximize iodine contrast-to-noise ratio in derived image sets. • Image quality of retrospectively computed image sets can be maximized using optimized threshold settings.
Collapse
Affiliation(s)
- S Sawall
- Division of X-Ray Imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany. .,Medical Faculty, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany.
| | - L Klein
- Division of X-Ray Imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Department of Physics and Astronomy, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 226, 69120, Heidelberg, Germany
| | - E Wehrse
- Medical Faculty, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany.,Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - L T Rotkopf
- Medical Faculty, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany.,Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - C Amato
- Division of X-Ray Imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Medical Faculty, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - J Maier
- Division of X-Ray Imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - H-P Schlemmer
- Medical Faculty, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany.,Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - C H Ziener
- Medical Faculty, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany.,Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - S Heinze
- Institute of Forensic and Traffic Medicine, University Hospital Heidelberg, Voßstraße 2, 69115, Heidelberg, Germany
| | - M Kachelrieß
- Division of X-Ray Imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Medical Faculty, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| |
Collapse
|