1
|
Finnegan RN, Quinn A, Booth J, Belous G, Hardcastle N, Stewart M, Griffiths B, Carroll S, Thwaites DI. Cardiac substructure delineation in radiation therapy - A state-of-the-art review. J Med Imaging Radiat Oncol 2024; 68:914-949. [PMID: 38757728 PMCID: PMC11686467 DOI: 10.1111/1754-9485.13668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
Delineation of cardiac substructures is crucial for a better understanding of radiation-related cardiotoxicities and to facilitate accurate and precise cardiac dose calculation for developing and applying risk models. This review examines recent advancements in cardiac substructure delineation in the radiation therapy (RT) context, aiming to provide a comprehensive overview of the current level of knowledge, challenges and future directions in this evolving field. Imaging used for RT planning presents challenges in reliably visualising cardiac anatomy. Although cardiac atlases and contouring guidelines aid in standardisation and reduction of variability, significant uncertainties remain in defining cardiac anatomy. Coupled with the inherent complexity of the heart, this necessitates auto-contouring for consistent large-scale data analysis and improved efficiency in prospective applications. Auto-contouring models, developed primarily for breast and lung cancer RT, have demonstrated performance comparable to manual contouring, marking a significant milestone in the evolution of cardiac delineation practices. Nevertheless, several key concerns require further investigation. There is an unmet need for expanding cardiac auto-contouring models to encompass a broader range of cancer sites. A shift in focus is needed from ensuring accuracy to enhancing the robustness and accessibility of auto-contouring models. Addressing these challenges is paramount for the integration of cardiac substructure delineation and associated risk models into routine clinical practice, thereby improving the safety of RT for future cancer patients.
Collapse
Affiliation(s)
- Robert N Finnegan
- Northern Sydney Cancer CentreRoyal North Shore HospitalSydneyNew South WalesAustralia
- Institute of Medical Physics, School of Physics, University of SydneySydneyNew South WalesAustralia
| | - Alexandra Quinn
- Northern Sydney Cancer CentreRoyal North Shore HospitalSydneyNew South WalesAustralia
| | - Jeremy Booth
- Northern Sydney Cancer CentreRoyal North Shore HospitalSydneyNew South WalesAustralia
- Institute of Medical Physics, School of Physics, University of SydneySydneyNew South WalesAustralia
| | - Gregg Belous
- Australian e‐Health Research CentreCommonwealth Scientific and Industrial Research OrganisationBrisbaneQueenslandAustralia
| | - Nicholas Hardcastle
- Department of Physical SciencesPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Maegan Stewart
- Northern Sydney Cancer CentreRoyal North Shore HospitalSydneyNew South WalesAustralia
- School of Health Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Brooke Griffiths
- Northern Sydney Cancer CentreRoyal North Shore HospitalSydneyNew South WalesAustralia
| | - Susan Carroll
- Northern Sydney Cancer CentreRoyal North Shore HospitalSydneyNew South WalesAustralia
- School of Health Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - David I Thwaites
- Institute of Medical Physics, School of Physics, University of SydneySydneyNew South WalesAustralia
- Radiotherapy Research GroupLeeds Institute of Medical Research, St James's Hospital and University of LeedsLeedsUK
| |
Collapse
|
2
|
Zhang SC, Nikolova AP, Kamrava M, Mak RH, Atkins KM. A roadmap for modelling radiation-induced cardiac disease. J Med Imaging Radiat Oncol 2024; 68:950-961. [PMID: 38985978 DOI: 10.1111/1754-9485.13716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/21/2024] [Indexed: 07/12/2024]
Abstract
Cardiac risk mitigation is a major priority in improving outcomes for cancer survivors as advances in cancer screening and treatments continue to decrease cancer mortality. More than half of adult cancer patients will be treated with radiotherapy (RT); therefore it is crucial to develop a framework for how to assess and predict radiation-induced cardiac disease (RICD). Historically, RICD was modelled solely using whole heart metrics such as mean heart dose. However, data over the past decade has identified cardiac substructures which outperform whole heart metrics in predicting for significant cardiac events. Additionally, non-RT factors such as pre-existing cardiovascular risk factors and toxicity from other therapies contribute to risk of future cardiac events. In this review, we aim to discuss the current evidence and knowledge gaps in predicting RICD and provide a roadmap for the development of comprehensive models based on three interrelated components, (1) baseline CV risk assessment, (2) cardiac substructure radiation dosimetry linked with cardiac-specific outcomes and (3) novel biomarker development.
Collapse
Affiliation(s)
- Samuel C Zhang
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Andriana P Nikolova
- Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Mitchell Kamrava
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Raymond H Mak
- Department of Radiation Oncology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Katelyn M Atkins
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
3
|
Summerfield N, Morris E, Banerjee S, He Q, Ghanem AI, Zhu S, Zhao J, Dong M, Glide-Hurst C. Enhancing Precision in Cardiac Segmentation for Magnetic Resonance-Guided Radiation Therapy Through Deep Learning. Int J Radiat Oncol Biol Phys 2024; 120:904-914. [PMID: 38797498 PMCID: PMC11427143 DOI: 10.1016/j.ijrobp.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/25/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
PURPOSE Cardiac substructure dose metrics are more strongly linked to late cardiac morbidities than to whole-heart metrics. Magnetic resonance (MR)-guided radiation therapy (MRgRT) enables substructure visualization during daily localization, allowing potential for enhanced cardiac sparing. We extend a publicly available state-of-the-art deep learning framework, "No New" U-Net, to incorporate self-distillation (nnU-Net.wSD) for substructure segmentation for MRgRT. METHODS AND MATERIALS Eighteen (institute A) patients who underwent thoracic or abdominal radiation therapy on a 0.35 T MR-guided linear accelerator were retrospectively evaluated. On each image, 1 of 2 radiation oncologists delineated reference contours of 12 cardiac substructures (chambers, great vessels, and coronary arteries) used to train (n = 10), validate (n = 3), and test (n = 5) nnU-Net.wSD by leveraging a teacher-student network and comparing it to standard 3-dimensional U-Net. The impact of using simulation data or including 3 to 4 daily images for augmentation during training was evaluated for nnU-Net.wSD. Geometric metrics (Dice similarity coefficient, mean distance to agreement, and 95% Hausdorff distance), visual inspection, and clinical dose-volume histograms were evaluated. To determine generalizability, institute A's model was tested on an unlabeled data set from institute B (n = 22) and evaluated via consensus scoring and volume comparisons. RESULTS nnU-Net.wSD yielded a Dice similarity coefficient (reported mean ± SD) of 0.65 ± 0.25 across the 12 substructures (chambers, 0.85 ± 0.05; great vessels, 0.67 ± 0.19; and coronary arteries, 0.33 ± 0.16; mean distance to agreement, <3 mm; mean 95% Hausdorff distance, <9 mm) while outperforming the 3-dimensional U-Net (0.583 ± 0.28; P <.01). Leveraging fractionated data for augmentation improved over a single MR simulation time point (0.579 ± 0.29; P <.01). Predicted contours yielded dose-volume histograms that closely matched those of the clinical treatment plans where mean and maximum (ie, dose to 0.03 cc) doses deviated by 0.32 ± 0.5 Gy and 1.42 ± 2.6 Gy, respectively. There were no statistically significant differences between institute A and B volumes (P >.05) for 11 of 12 substructures, with larger volumes requiring minor changes and coronary arteries exhibiting more variability. CONCLUSIONS This work is a critical step toward rapid and reliable cardiac substructure segmentation to improve cardiac sparing in low-field MRgRT.
Collapse
Affiliation(s)
- Nicholas Summerfield
- Department of Medical Physics, University of Wisconsin – Madison
- Department of Human Oncology, University of Wisconsin – Madison
| | - Eric Morris
- Department of Radiation Oncology, Washington University of Medicine in St. Louis
| | | | - Qisheng He
- Department of Computer Science, Wayne State University
| | - Ahmed I Ghanem
- Department of Radiation Oncology, Henry Ford Cancer Institute
- Alexandria Department of Clinical Oncology, Faculty of Medicine, Alexandria University, Egypt
| | - Simeng Zhu
- Department of Radiation Oncology, The Ohio State University
| | - Jiwei Zhao
- Department of Biostatistics and Medical Informatics, University of Wisconsin – Madison
| | - Ming Dong
- Department of Computer Science, Wayne State University
| | - Carri Glide-Hurst
- Department of Medical Physics, University of Wisconsin – Madison
- Department of Human Oncology, University of Wisconsin – Madison
| |
Collapse
|
4
|
Qin Y, Qin X, Zhang J, Guo X. Artificial intelligence: The future for multimodality imaging of right ventricle. Int J Cardiol 2024; 404:131970. [PMID: 38490268 DOI: 10.1016/j.ijcard.2024.131970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
The crucial pathophysiological and prognostic roles of the right ventricle in various diseases have been well-established. Nonetheless, conventional cardiovascular imaging modalities are frequently associated with intrinsic limitations when evaluating right ventricular (RV) morphology and function. The integration of artificial intelligence (AI) in multimodality imaging presents a promising avenue to circumvent these obstacles, paving the way for future fully automated imaging paradigms. This review aimed to address the current challenges faced by clinicians and researchers in integrating RV imaging and AI technology, to provide a comprehensive overview of the current applications of AI in RV imaging, and to offer insights into future directions, opportunities, and potential challenges in this rapidly advancing field.
Collapse
Affiliation(s)
- Yuhan Qin
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaohan Qin
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jing Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaoxiao Guo
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Abouei E, Pan S, Hu M, Kesarwala AH, Qiu RLJ, Zhou J, Roper J, Yang X. Cardiac MRI segmentation using shifted-window multilayer perceptron mixer networks. Phys Med Biol 2024; 69:115048. [PMID: 38744300 DOI: 10.1088/1361-6560/ad4b91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Objectives. In this work, we proposed a deep-learning segmentation algorithm for cardiac magnetic resonance imaging to aid in contouring of the left ventricle, right ventricle, and Myocardium (Myo).Approach.We proposed a shifted window multilayer perceptron (Swin-MLP) mixer network which is built upon a 3D U-shaped symmetric encoder-decoder structure. We evaluated our proposed network using public data from 100 individuals. The network performance was quantitatively evaluated using 3D volume similarity between the ground truth contours and the predictions using Dice score coefficient, sensitivity, and precision as well as 2D surface similarity using Hausdorff distance (HD), mean surface distance (MSD) and residual mean square distance (RMSD). We benchmarked the performance against two other current leading edge networks known as Dynamic UNet and Swin-UNetr on the same public dataset.Results.The proposed network achieved the following volume similarity metrics when averaged over three cardiac segments: Dice = 0.952 ± 0.017, precision = 0.948 ± 0.016, sensitivity = 0.956 ± 0.022. The average surface similarities were HD = 1.521 ± 0.121 mm, MSD = 0.266 ± 0.075 mm, and RMSD = 0.668 ± 0.288 mm. The network shows statistically significant improvement in comparison to the Dynamic UNet and Swin-UNetr algorithms for most volumetric and surface metrics withp-value less than 0.05. Overall, the proposed Swin-MLP mixer network demonstrates better or comparable performance than competing methods.Significance.The proposed Swin-MLP mixer network demonstrates more accurate segmentation performance compared to current leading edge methods. This robust method demonstrates the potential to streamline clinical workflows for multiple applications.
Collapse
Affiliation(s)
- Elham Abouei
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Shaoyan Pan
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
- Department of Biomedical Informatics, Emory University, Atlanta, GA 30322, United States of America
| | - Mingzhe Hu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
- Department of Biomedical Informatics, Emory University, Atlanta, GA 30322, United States of America
| | - Aparna H Kesarwala
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Richard L J Qiu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Justin Roper
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
- Department of Biomedical Informatics, Emory University, Atlanta, GA 30322, United States of America
| |
Collapse
|
6
|
Li S, Wang H, Meng Y, Zhang C, Song Z. Multi-organ segmentation: a progressive exploration of learning paradigms under scarce annotation. Phys Med Biol 2024; 69:11TR01. [PMID: 38479023 DOI: 10.1088/1361-6560/ad33b5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 03/13/2024] [Indexed: 05/21/2024]
Abstract
Precise delineation of multiple organs or abnormal regions in the human body from medical images plays an essential role in computer-aided diagnosis, surgical simulation, image-guided interventions, and especially in radiotherapy treatment planning. Thus, it is of great significance to explore automatic segmentation approaches, among which deep learning-based approaches have evolved rapidly and witnessed remarkable progress in multi-organ segmentation. However, obtaining an appropriately sized and fine-grained annotated dataset of multiple organs is extremely hard and expensive. Such scarce annotation limits the development of high-performance multi-organ segmentation models but promotes many annotation-efficient learning paradigms. Among these, studies on transfer learning leveraging external datasets, semi-supervised learning including unannotated datasets and partially-supervised learning integrating partially-labeled datasets have led the dominant way to break such dilemmas in multi-organ segmentation. We first review the fully supervised method, then present a comprehensive and systematic elaboration of the 3 abovementioned learning paradigms in the context of multi-organ segmentation from both technical and methodological perspectives, and finally summarize their challenges and future trends.
Collapse
Affiliation(s)
- Shiman Li
- Digital Medical Research Center, School of Basic Medical Science, Fudan University, Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention, Shanghai 200032, People's Republic of China
| | - Haoran Wang
- Digital Medical Research Center, School of Basic Medical Science, Fudan University, Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention, Shanghai 200032, People's Republic of China
| | - Yucong Meng
- Digital Medical Research Center, School of Basic Medical Science, Fudan University, Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention, Shanghai 200032, People's Republic of China
| | - Chenxi Zhang
- Digital Medical Research Center, School of Basic Medical Science, Fudan University, Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention, Shanghai 200032, People's Republic of China
| | - Zhijian Song
- Digital Medical Research Center, School of Basic Medical Science, Fudan University, Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention, Shanghai 200032, People's Republic of China
| |
Collapse
|
7
|
Kumari V, Kumar N, Kumar K S, Kumar A, Skandha SS, Saxena S, Khanna NN, Laird JR, Singh N, Fouda MM, Saba L, Singh R, Suri JS. Deep Learning Paradigm and Its Bias for Coronary Artery Wall Segmentation in Intravascular Ultrasound Scans: A Closer Look. J Cardiovasc Dev Dis 2023; 10:485. [PMID: 38132653 PMCID: PMC10743870 DOI: 10.3390/jcdd10120485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/15/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND AND MOTIVATION Coronary artery disease (CAD) has the highest mortality rate; therefore, its diagnosis is vital. Intravascular ultrasound (IVUS) is a high-resolution imaging solution that can image coronary arteries, but the diagnosis software via wall segmentation and quantification has been evolving. In this study, a deep learning (DL) paradigm was explored along with its bias. METHODS Using a PRISMA model, 145 best UNet-based and non-UNet-based methods for wall segmentation were selected and analyzed for their characteristics and scientific and clinical validation. This study computed the coronary wall thickness by estimating the inner and outer borders of the coronary artery IVUS cross-sectional scans. Further, the review explored the bias in the DL system for the first time when it comes to wall segmentation in IVUS scans. Three bias methods, namely (i) ranking, (ii) radial, and (iii) regional area, were applied and compared using a Venn diagram. Finally, the study presented explainable AI (XAI) paradigms in the DL framework. FINDINGS AND CONCLUSIONS UNet provides a powerful paradigm for the segmentation of coronary walls in IVUS scans due to its ability to extract automated features at different scales in encoders, reconstruct the segmented image using decoders, and embed the variants in skip connections. Most of the research was hampered by a lack of motivation for XAI and pruned AI (PAI) models. None of the UNet models met the criteria for bias-free design. For clinical assessment and settings, it is necessary to move from a paper-to-practice approach.
Collapse
Affiliation(s)
- Vandana Kumari
- School of Computer Science and Engineering, Galgotias University, Greater Noida 201310, India; (V.K.); (S.K.K.)
| | - Naresh Kumar
- Department of Applied Computational Science and Engineering, G L Bajaj Institute of Technology and Management, Greater Noida 201310, India
| | - Sampath Kumar K
- School of Computer Science and Engineering, Galgotias University, Greater Noida 201310, India; (V.K.); (S.K.K.)
| | - Ashish Kumar
- School of CSET, Bennett University, Greater Noida 201310, India;
| | - Sanagala S. Skandha
- Department of CSE, CMR College of Engineering and Technology, Hyderabad 501401, India;
| | - Sanjay Saxena
- Department of Computer Science and Engineering, IIT Bhubaneswar, Bhubaneswar 751003, India;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA;
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era, Deemed to be University, Dehradun 248002, India;
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA;
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09100 Cagliari, Italy;
| | - Rajesh Singh
- Department of Research and Innovation, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India;
| | - Jasjit S. Suri
- Stroke Diagnostics and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA
- Department of Computer Science & Engineering, Graphic Era, Deemed to be University, Dehradun 248002, India
- Monitoring and Diagnosis Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|
8
|
Lei Y, Wang T, Roper J, Tian S, Patel P, Bradley JD, Jani AB, Liu T, Yang X. Automatic segmentation of neurovascular bundle on mri using deep learning based topological modulated network. Med Phys 2023; 50:5479-5488. [PMID: 36939189 PMCID: PMC10509305 DOI: 10.1002/mp.16378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 01/20/2023] [Accepted: 03/09/2023] [Indexed: 03/21/2023] Open
Abstract
PURPOSE Radiation damage on neurovascular bundles (NVBs) may be the cause of sexual dysfunction after radiotherapy for prostate cancer. However, it is challenging to delineate NVBs as organ-at-risks from planning CTs during radiotherapy. Recently, the integration of MR into radiotherapy made NVBs contour delineating possible. In this study, we aim to develop an MRI-based deep learning method for automatic NVB segmentation. METHODS The proposed method, named topological modulated network, consists of three subnetworks, that is, a focal modulation, a hierarchical block and a topological fully convolutional network (FCN). The focal modulation is used to derive the location and bounds of left and right NVBs', namely the candidate volume-of-interests (VOIs). The hierarchical block aims to highlight the NVB boundaries information on derived feature map. The topological FCN then segments the NVBs inside the VOIs by considering the topological consistency nature of the vascular delineating. Based on the location information of candidate VOIs, the segmentations of NVBs can then be brought back to the input MRI's coordinate system. RESULTS A five-fold cross-validation study was performed on 60 patient cases to evaluate the performance of the proposed method. The segmented results were compared with manual contours. The Dice similarity coefficient (DSC) and 95th percentile Hausdorff distance (HD95 ) are (left NVB) 0.81 ± 0.10, 1.49 ± 0.88 mm, and (right NVB) 0.80 ± 0.15, 1.54 ± 1.22 mm, respectively. CONCLUSION We proposed a novel deep learning-based segmentation method for NVBs on pelvic MR images. The good segmentation agreement of our method with the manually drawn ground truth contours supports the feasibility of the proposed method, which can be potentially used to spare NVBs during proton and photon radiotherapy and thereby improve the quality of life for prostate cancer patients.
Collapse
Affiliation(s)
- Yang Lei
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Tonghe Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Justin Roper
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Sibo Tian
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Pretesh Patel
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Jeffrey D Bradley
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Ashesh B Jani
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Finnegan RN, Chin V, Chlap P, Haidar A, Otton J, Dowling J, Thwaites DI, Vinod SK, Delaney GP, Holloway L. Open-source, fully-automated hybrid cardiac substructure segmentation: development and optimisation. Phys Eng Sci Med 2023; 46:377-393. [PMID: 36780065 PMCID: PMC10030448 DOI: 10.1007/s13246-023-01231-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/30/2023] [Indexed: 02/14/2023]
Abstract
Radiotherapy for thoracic and breast tumours is associated with a range of cardiotoxicities. Emerging evidence suggests cardiac substructure doses may be more predictive of specific outcomes, however, quantitative data necessary to develop clinical planning constraints is lacking. Retrospective analysis of patient data is required, which relies on accurate segmentation of cardiac substructures. In this study, a novel model was designed to deliver reliable, accurate, and anatomically consistent segmentation of 18 cardiac substructures on computed tomography (CT) scans. Thirty manually contoured CT scans were included. The proposed multi-stage method leverages deep learning (DL), multi-atlas mapping, and geometric modelling to automatically segment the whole heart, cardiac chambers, great vessels, heart valves, coronary arteries, and conduction nodes. Segmentation performance was evaluated using the Dice similarity coefficient (DSC), mean distance to agreement (MDA), Hausdorff distance (HD), and volume ratio. Performance was reliable, with no errors observed and acceptable variation in accuracy between cases, including in challenging cases with imaging artefacts and atypical patient anatomy. The median DSC range was 0.81-0.93 for whole heart and cardiac chambers, 0.43-0.76 for great vessels and conduction nodes, and 0.22-0.53 for heart valves. For all structures the median MDA was below 6 mm, median HD ranged 7.7-19.7 mm, and median volume ratio was close to one (0.95-1.49) for all structures except the left main coronary artery (2.07). The fully automatic algorithm takes between 9 and 23 min per case. The proposed fully-automatic method accurately delineates cardiac substructures on radiotherapy planning CT scans. Robust and anatomically consistent segmentations, particularly for smaller structures, represents a major advantage of the proposed segmentation approach. The open-source software will facilitate more precise evaluation of cardiac doses and risks from available clinical datasets.
Collapse
Affiliation(s)
- Robert N Finnegan
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia.
- Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW, Australia.
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia.
| | - Vicky Chin
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- Liverpool Cancer Therapy Centre, South Western Sydney Local Health District, Liverpool, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Phillip Chlap
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- Liverpool Cancer Therapy Centre, South Western Sydney Local Health District, Liverpool, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Ali Haidar
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- Liverpool Cancer Therapy Centre, South Western Sydney Local Health District, Liverpool, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - James Otton
- South Western Sydney Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Jason Dowling
- Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW, Australia
- CSIRO Health and Biosecurity, The Australian e-Health and Research Centre, Herston, QLD, Australia
- School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, NSW, Australia
| | - David I Thwaites
- Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW, Australia
- Radiotherapy Research Group, Leeds Institute of Medical Research, St James's Hospital and University of Leeds, Leeds, UK
| | - Shalini K Vinod
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- Liverpool Cancer Therapy Centre, South Western Sydney Local Health District, Liverpool, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Geoff P Delaney
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- Liverpool Cancer Therapy Centre, South Western Sydney Local Health District, Liverpool, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Lois Holloway
- Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- Liverpool Cancer Therapy Centre, South Western Sydney Local Health District, Liverpool, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales, Sydney, NSW, Australia
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
10
|
Pogue JA, Cardenas CE, Cao Y, Popple RA, Soike M, Boggs DH, Stanley DN, Harms J. Leveraging intelligent optimization for automated, cardiac-sparing accelerated partial breast treatment planning. Front Oncol 2023; 13:1130119. [PMID: 36845685 PMCID: PMC9950631 DOI: 10.3389/fonc.2023.1130119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Background Accelerated partial breast irradiation (APBI) yields similar rates of recurrence and cosmetic outcomes as compared to whole breast radiation therapy (RT) when patients and treatment techniques are appropriately selected. APBI combined with stereotactic body radiation therapy (SBRT) is a promising technique for precisely delivering high levels of radiation while avoiding uninvolved breast tissue. Here we investigate the feasibility of automatically generating high quality APBI plans in the Ethos adaptive workspace with a specific emphasis on sparing the heart. Methods Nine patients (10 target volumes) were utilized to iteratively tune an Ethos APBI planning template for automatic plan generation. Twenty patients previously treated on a TrueBeam Edge accelerator were then automatically replanned using this template without manual intervention or reoptimization. The unbiased validation cohort Ethos plans were benchmarked via adherence to planning objectives, a comparison of DVH and quality indices against the clinical Edge plans, and qualitative reviews by two board-certified radiation oncologists. Results 85% (17/20) of automated validation cohort plans met all planning objectives; three plans did not achieve the contralateral lung V1.5Gy objective, but all other objectives were achieved. Compared to the Eclipse generated plans, the proposed Ethos template generated plans with greater evaluation planning target volume (PTV_Eval) V100% coverage (p = 0.01), significantly decreased heart V1.5Gy (p< 0.001), and increased contralateral breast V5Gy, skin D0.01cc, and RTOG conformity index (p = 0.03, p = 0.03, and p = 0.01, respectively). However, only the reduction in heart dose was significant after correcting for multiple testing. Physicist-selected plans were deemed clinically acceptable without modification for 75% and 90% of plans by physicians A and B, respectively. Physicians A and B scored at least one automatically generated plan as clinically acceptable for 100% and 95% of planning intents, respectively. Conclusions Standard left- and right-sided planning templates automatically generated APBI plans of comparable quality to manually generated plans treated on a stereotactic linear accelerator, with a significant reduction in heart dose compared to Eclipse generated plans. The methods presented in this work elucidate an approach for generating automated, cardiac-sparing APBI treatment plans for daily adaptive RT with high efficiency.
Collapse
Affiliation(s)
- Joel A. Pogue
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Mackay K, Bernstein D, Glocker B, Kamnitsas K, Taylor A. A Review of the Metrics Used to Assess Auto-Contouring Systems in Radiotherapy. Clin Oncol (R Coll Radiol) 2023; 35:354-369. [PMID: 36803407 DOI: 10.1016/j.clon.2023.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/05/2022] [Accepted: 01/23/2023] [Indexed: 02/01/2023]
Abstract
Auto-contouring could revolutionise future planning of radiotherapy treatment. The lack of consensus on how to assess and validate auto-contouring systems currently limits clinical use. This review formally quantifies the assessment metrics used in studies published during one calendar year and assesses the need for standardised practice. A PubMed literature search was undertaken for papers evaluating radiotherapy auto-contouring published during 2021. Papers were assessed for types of metric and the methodology used to generate ground-truth comparators. Our PubMed search identified 212 studies, of which 117 met the criteria for clinical review. Geometric assessment metrics were used in 116 of 117 studies (99.1%). This includes the Dice Similarity Coefficient used in 113 (96.6%) studies. Clinically relevant metrics, such as qualitative, dosimetric and time-saving metrics, were less frequently used in 22 (18.8%), 27 (23.1%) and 18 (15.4%) of 117 studies, respectively. There was heterogeneity within each category of metric. Over 90 different names for geometric measures were used. Methods for qualitative assessment were different in all but two papers. Variation existed in the methods used to generate radiotherapy plans for dosimetric assessment. Consideration of editing time was only given in 11 (9.4%) papers. A single manual contour as a ground-truth comparator was used in 65 (55.6%) studies. Only 31 (26.5%) studies compared auto-contours to usual inter- and/or intra-observer variation. In conclusion, significant variation exists in how research papers currently assess the accuracy of automatically generated contours. Geometric measures are the most popular, however their clinical utility is unknown. There is heterogeneity in the methods used to perform clinical assessment. Considering the different stages of system implementation may provide a framework to decide the most appropriate metrics. This analysis supports the need for a consensus on the clinical implementation of auto-contouring.
Collapse
Affiliation(s)
- K Mackay
- The Institute of Cancer Research, London, UK; The Royal Marsden Hospital, London, UK.
| | - D Bernstein
- The Institute of Cancer Research, London, UK; The Royal Marsden Hospital, London, UK
| | - B Glocker
- Department of Computing, Imperial College London, South Kensington Campus, London, UK
| | - K Kamnitsas
- Department of Computing, Imperial College London, South Kensington Campus, London, UK; Department of Engineering Science, University of Oxford, Oxford, UK
| | - A Taylor
- The Institute of Cancer Research, London, UK; The Royal Marsden Hospital, London, UK
| |
Collapse
|
12
|
Alex DM, Abraham Chandy D, Hepzibah Christinal A, Singh A, Pushkaran M. YSegNet: a novel deep learning network for kidney segmentation in 2D ultrasound images. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07624-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Momin S, Lei Y, McCall NS, Zhang J, Roper J, Harms J, Tian S, Lloyd MS, Liu T, Bradley JD, Higgins K, Yang X. Mutual enhancing learning-based automatic segmentation of CT cardiac substructure. Phys Med Biol 2022; 67. [PMID: 35447610 PMCID: PMC9148580 DOI: 10.1088/1361-6560/ac692d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/21/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. Current segmentation practice for thoracic cancer RT considers the whole heart as a single organ despite increased risks of cardiac toxicities from irradiation of specific cardiac substructures. Segmenting up to 15 different cardiac substructures can be a very time-intensive process, especially due to their different volume sizes and anatomical variations amongst different patients. In this work, a new deep learning (DL)-based mutual enhancing strategy is introduced for accurate and automatic segmentation, especially of smaller substructures such as coronary arteries. Approach. Our proposed method consists of three subnetworks: retina U-net, classification module, and segmentation module. Retina U-net is used as a backbone network architecture that aims to learn deep features from the whole heart. Whole heart feature maps from retina U-net are then transferred to four different sets of classification modules to generate classification localization maps of coronary arteries, great vessels, chambers of the heart, and valves of the heart. Each classification module is in sync with its corresponding subsequent segmentation module in a bootstrapping manner, allowing them to share their encoding paths to generate a mutual enhancing strategy. We evaluated our method on three different datasets: institutional CT datasets (55 subjects) 2) publicly available Multi-Modality Whole Heart Segmentation (MM-WHS) challenge datasets (120 subjects), and Automated Cardiac Diagnosis Challenge (ACDC) datasets (100 subjects). For institutional datasets, we performed five-fold cross-validation on training data (45 subjects) and performed inference on separate hold-out data (10 subjects). For each subject, 15 cardiac substructures were manually contoured by a resident physician and evaluated by an attending radiation oncologist. For the MM-WHS dataset, we trained the network on 100 datasets and performed an inference on a separate hold-out dataset with 20 subjects, each with 7 cardiac substructures. For ACDC datasets, we performed five-fold cross-validation on 100 datasets, each with 3 cardiac substructures. We compared the proposed method against four different network architectures: 3D U-net, mask R-CNN, mask scoring R-CNN, and proposed network without classification module. Segmentation accuracies were statistically compared through dice similarity coefficient, Jaccard, 95% Hausdorff distance, mean surface distance, root mean square distance, center of mass distance, and volume difference. Main results. The proposed method generated cardiac substructure segmentations with significantly higher accuracy (P < 0.05) for small substructures, especially for coronary arteries such as left anterior descending artery (CA-LADA) and right coronary artery (CA-RCA) in comparison to four competing methods. For large substructures (i.e. chambers of the heart), our method yielded comparable results to mask scoring R-CNN method, resulting in significantly (P < 0.05) improved segmentation accuracy in comparison to 3D U-net and mask R-CNN. Significance. A new DL-based mutual enhancing strategy was introduced for automatic segmentation of cardiac substructures. Overall results of this work demonstrate the ability of the proposed method to improve segmentation accuracies of smaller substructures such as coronary arteries without largely compromising the segmentation accuracies of larger substructures. Fast and accurate segmentations of up to 15 substructures can possibly be used as a tool to rapidly generate substructure segmentations followed by physicians’ reviews to improve clinical workflow.
Collapse
|
14
|
Chun J, Chang JS, Oh C, Park I, Choi MS, Hong CS, Kim H, Yang G, Moon JY, Chung SY, Suh YJ, Kim JS. Synthetic contrast-enhanced computed tomography generation using a deep convolutional neural network for cardiac substructure delineation in breast cancer radiation therapy: a feasibility study. Radiat Oncol 2022; 17:83. [PMID: 35459221 PMCID: PMC9034542 DOI: 10.1186/s13014-022-02051-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/11/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Adjuvant radiation therapy improves the overall survival and loco-regional control in patients with breast cancer. However, radiation-induced heart disease, which occurs after treatment from incidental radiation exposure to the cardiac organ, is an emerging challenge. This study aimed to generate synthetic contrast-enhanced computed tomography (SCECT) from non-contrast CT (NCT) using deep learning (DL) and investigate its role in contouring cardiac substructures. We also aimed to determine its applicability for a retrospective study on the substructure volume-dose relationship for predicting radiation-induced heart disease. METHODS We prepared NCT-CECT cardiac scan pairs of 59 patients. Of these, 35, 4, and 20 pairs were used for training, validation, and testing, respectively. We adopted conditional generative adversarial network as a framework to generate SCECT. SCECT was validated in the following three stages: (1) The similarity between SCECT and CECT was evaluated; (2) Manual contouring was performed on SCECT and CECT with sufficient intervals and based on this, the geometric similarity of cardiac substructures was measured between them; (3) The treatment plan was quantitatively analyzed based on the contours of SCECT and CECT. RESULTS While the mean values (± standard deviation) of the mean absolute error, peak signal-to-noise ratio, and structural similarity index measure between SCECT and CECT were 20.66 ± 5.29, 21.57 ± 1.85, and 0.77 ± 0.06, those were 23.95 ± 6.98, 20.67 ± 2.34, and 0.76 ± 0.07 between NCT and CECT, respectively. The Dice similarity coefficients and mean surface distance between the contours of SCECT and CECT were 0.81 ± 0.06 and 2.44 ± 0.72, respectively. The dosimetry analysis displayed error rates of 0.13 ± 0.27 Gy and 0.71 ± 1.34% for the mean heart dose and V5Gy, respectively. CONCLUSION Our findings displayed the feasibility of SCECT generation from NCT and its potential for cardiac substructure delineation in patients who underwent breast radiation therapy.
Collapse
Affiliation(s)
- Jaehee Chun
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea.,Medical Physics and Biomedical Engineering Lab (MPBEL), Yonsei University College of Medicine, Seoul, South Korea.,Oncosoft Inc, Seoul, South Korea
| | - Jee Suk Chang
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea.,Medical Physics and Biomedical Engineering Lab (MPBEL), Yonsei University College of Medicine, Seoul, South Korea.,Oncosoft Inc, Seoul, South Korea
| | - Caleb Oh
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea.,Medical Physics and Biomedical Engineering Lab (MPBEL), Yonsei University College of Medicine, Seoul, South Korea
| | - InKyung Park
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea.,Medical Physics and Biomedical Engineering Lab (MPBEL), Yonsei University College of Medicine, Seoul, South Korea
| | - Min Seo Choi
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea.,Medical Physics and Biomedical Engineering Lab (MPBEL), Yonsei University College of Medicine, Seoul, South Korea
| | - Chae-Seon Hong
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea.,Medical Physics and Biomedical Engineering Lab (MPBEL), Yonsei University College of Medicine, Seoul, South Korea
| | - Hojin Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea.,Medical Physics and Biomedical Engineering Lab (MPBEL), Yonsei University College of Medicine, Seoul, South Korea
| | - Gowoon Yang
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Young Moon
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Yeun Chung
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Joo Suh
- Department of Radiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Sung Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea. .,Medical Physics and Biomedical Engineering Lab (MPBEL), Yonsei University College of Medicine, Seoul, South Korea. .,Oncosoft Inc, Seoul, South Korea.
| |
Collapse
|
15
|
Automatic Cardiac Structure Contouring for Small Datasets with Cascaded Deep Learning Models. J Med Syst 2022; 46:22. [PMID: 35338425 PMCID: PMC8956542 DOI: 10.1007/s10916-022-01810-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/11/2022] [Indexed: 11/26/2022]
Abstract
Cardiac structure contouring is a time consuming and tedious manual activity used for radiotherapeutic dose toxicity planning. We developed an automatic cardiac structure segmentation pipeline for use in low-dose non-contrast planning CT based on deep learning algorithms for small datasets. Fifty CT scans were retrospectively selected and the whole heart, ventricles and atria were contoured. A two stage deep learning pipeline was trained on 41 non contrast planning CTs, tuned with 3 CT scans and validated on 6 CT scans. In the first stage, An InceptionResNetV2 network was used to identify the slices that contained cardiac structures. The second stage consisted of three deep learning models trained on the images containing cardiac structures to segment the structures. The three deep learning models predicted the segmentations/contours on axial, coronal and sagittal images and are combined to create the final prediction. The final accuracy of the pipeline was quantified on 6 volumes by calculating the Dice similarity coefficient (DC), 95% Hausdorff distance (95% HD) and volume ratios between predicted and ground truth volumes. Median DC and 95% HD of 0.96, 0.88, 0.92, 0.80 and 0.82, and 1.86, 2.98, 2.02, 6.16 and 6.46 were achieved for the whole heart, right and left ventricle, and right and left atria respectively. The median differences in volume were -4, -1, + 5, -16 and -20% for the whole heart, right and left ventricle, and right and left atria respectively. The automatic contouring pipeline achieves good results for whole heart and ventricles. Robust automatic contouring with deep learning methods seems viable for local centers with small datasets.
Collapse
|
16
|
Dai X, Lei Y, Wang T, Zhou J, Rudra S, McDonald M, Curran WJ, Liu T, Yang X. Multi-organ auto-delineation in head-and-neck MRI for radiation therapy using regional convolutional neural network. Phys Med Biol 2022; 67:10.1088/1361-6560/ac3b34. [PMID: 34794138 PMCID: PMC8811683 DOI: 10.1088/1361-6560/ac3b34] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/18/2021] [Indexed: 01/23/2023]
Abstract
Magnetic resonance imaging (MRI) allows accurate and reliable organ delineation for many disease sites in radiation therapy because MRI is able to offer superb soft-tissue contrast. Manual organ-at-risk delineation is labor-intensive and time-consuming. This study aims to develop a deep-learning-based automated multi-organ segmentation method to release the labor and accelerate the treatment planning process for head-and-neck (HN) cancer radiotherapy. A novel regional convolutional neural network (R-CNN) architecture, namely, mask scoring R-CNN, has been developed in this study. In the proposed model, a deep attention feature pyramid network is used as a backbone to extract the coarse features given by MRI, followed by feature refinement using R-CNN. The final segmentation is obtained through mask and mask scoring networks taking those refined feature maps as input. With the mask scoring mechanism incorporated into conventional mask supervision, the classification error can be highly minimized in conventional mask R-CNN architecture. A cohort of 60 HN cancer patients receiving external beam radiation therapy was used for experimental validation. Five-fold cross-validation was performed for the assessment of our proposed method. The Dice similarity coefficients of brain stem, left/right cochlea, left/right eye, larynx, left/right lens, mandible, optic chiasm, left/right optic nerve, oral cavity, left/right parotid, pharynx, and spinal cord were 0.89 ± 0.06, 0.68 ± 0.14/0.68 ± 0.18, 0.89 ± 0.07/0.89 ± 0.05, 0.90 ± 0.07, 0.67 ± 0.18/0.67 ± 0.10, 0.82 ± 0.10, 0.61 ± 0.14, 0.67 ± 0.11/0.68 ± 0.11, 0.92 ± 0.07, 0.85 ± 0.06/0.86 ± 0.05, 0.80 ± 0.13, and 0.77 ± 0.15, respectively. After the model training, all OARs can be segmented within 1 min.
Collapse
Affiliation(s)
- Xianjin Dai
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Yang Lei
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Tonghe Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Soumon Rudra
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Mark McDonald
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Walter J Curran
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| |
Collapse
|
17
|
Garrett Fernandes M, Bussink J, Stam B, Wijsman R, Schinagl DAX, Monshouwer R, Teuwen J. Deep learning model for automatic contouring of cardiovascular substructures on radiotherapy planning CT images: Dosimetric validation and reader study based clinical acceptability testing. Radiother Oncol 2021; 165:52-59. [PMID: 34688808 DOI: 10.1016/j.radonc.2021.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Large radiotherapy (RT) planning imaging datasets with consistently contoured cardiovascular structures are essential for robust cardiac radiotoxicity research in thoracic cancers. This study aims to develop and validate a highly accurate automatic contouring model for the heart, cardiac chambers, and great vessels for RT planning computed tomography (CT) images that can be used for dose-volume parameter estimation. MATERIALS AND METHODS A neural network model was trained using a dataset of 127 expertly contoured planning CT images from RT treatment of locally advanced non-small-cell lung cancer (NSCLC) patients. Evaluation of geometric accuracy and quality of dosimetric parameter estimation was performed on 50 independent scans with contrast and without contrast enhancement. The model was further evaluated regarding the clinical acceptability of the contours in 99 scans randomly sampled from the RTOG-0617 dataset by three experienced radiation oncologists. RESULTS Median surface dice at 3 mm tolerance for all dedicated thoracic structures was 90% in the test set. Median absolute difference between mean dose computed with model contours and expert contours was 0.45 Gy averaged over all structures. The mean clinical acceptability rate by majority vote in the RTOG-0617 scans was 91%. CONCLUSION This model can be used to contour the heart, cardiac chambers, and great vessels in large datasets of RT planning thoracic CT images accurately, quickly, and consistently. Additionally, the model can be used as a time-saving tool for contouring in clinic practice.
Collapse
Affiliation(s)
- Miguel Garrett Fernandes
- Department of Radiation Oncology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Johan Bussink
- Department of Radiation Oncology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Barbara Stam
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Robin Wijsman
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - Dominic A X Schinagl
- Department of Radiation Oncology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - René Monshouwer
- Department of Radiation Oncology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jonas Teuwen
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Jin X, Thomas MA, Dise J, Kavanaugh J, Hilliard J, Zoberi I, Robinson CG, Hugo GD. Robustness of deep learning segmentation of cardiac substructures in noncontrast computed tomography for breast cancer radiotherapy. Med Phys 2021; 48:7172-7188. [PMID: 34545583 DOI: 10.1002/mp.15237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/19/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To develop and evaluate deep learning-based autosegmentation of cardiac substructures from noncontrast planning computed tomography (CT) images in patients undergoing breast cancer radiotherapy and to investigate the algorithm sensitivity to out-of-distribution data such as CT image artifacts. METHODS Nine substructures including aortic valve (AV), left anterior descending (LAD), tricuspid valve (TV), mitral valve (MV), pulmonic valve (PV), right atrium (RA), right ventricle (RV), left atrium (LA), and left ventricle (LV) were manually delineated by a radiation oncologist on noncontrast CT images of 129 patients with breast cancer; among them 90 were considered in-distribution data, also named as "clean" data. The image/label pairs of 60 subjects were used to train a 3D deep neural network while the remaining 30 were used for testing. The rest of the 39 patients were considered out-of-distribution ("outlier") data, which were used to test robustness. Random rigid transformations were used to augment the dataset during training. We investigated multiple loss functions, including Dice similarity coefficient (DSC), cross-entropy (CE), Euclidean loss as well as the variation and combinations of these, data augmentation, and network size on overall performance and sensitivity to image artifacts due to infrequent events such as the presence of implanted devices. The predicted label maps were compared to the ground-truth labels via DSC and mean and 90th percentile symmetric surface distance (90th-SSD). RESULTS When modified Dice combined with cross-entropy (MD-CE) was used as the loss function, the algorithm achieved a mean DSC = 0.79 ± 0.07 for chambers and 0.39 ± 0.10 for smaller substructures (valves and LAD). The mean and 90th-SSD were 2.7 ± 1.4 and 6.5 ± 2.8 mm for chambers and 4.1 ± 1.7 and 8.6 ± 3.2 mm for smaller substructures. Models with MD-CE, Dice-CE, MD, and weighted CE loss had highest performance, and were statistically similar. Data augmentation did not affect model performances on both clean and outlier data and model robustness was susceptible to network size. For a certain type of outlier data, robustness can be improved via incorporating them into the training process. The execution time for segmenting each patient was on an average 2.1 s. CONCLUSIONS A deep neural network provides a fast and accurate segmentation of large cardiac substructures in noncontrast CT images. Model robustness of two types of clinically common outlier data were investigated and potential approaches to improve them were explored. Evaluation of clinical acceptability and integration into clinical workflow are pending.
Collapse
Affiliation(s)
- Xiyao Jin
- Department of Radiation Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, USA
| | - Maria A Thomas
- Department of Radiation Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, USA
| | - Joseph Dise
- Department of Radiation Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, USA
| | - James Kavanaugh
- Department of Radiation Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, USA
| | - Jessica Hilliard
- Department of Radiation Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, USA
| | - Imran Zoberi
- Department of Radiation Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, USA
| | - Clifford G Robinson
- Department of Radiation Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, USA
| | - Geoffrey D Hugo
- Department of Radiation Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
19
|
Vaassen F, Hazelaar C, Canters R, Peeters S, Petit S, van Elmpt W. The impact of organ-at-risk contour variations on automatically generated treatment plans for NSCLC. Radiother Oncol 2021; 163:136-142. [PMID: 34461185 DOI: 10.1016/j.radonc.2021.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/29/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND PURPOSE Quality of automatic contouring is generally assessed by comparison with manual delineations, but the effect of contour differences on the resulting dose distribution remains unknown. This study evaluated dosimetric differences between treatment plans optimized using various organ-at-risk (OAR) contouring methods. MATERIALS AND METHODS OARs of twenty lung cancer patients were manually and automatically contoured, after which user-adjustments were made. For each contour set, an automated treatment plan was generated. The dosimetric effect of intra-observer contour variation and the influence of contour variations on treatment plan evaluation and generation were studied using dose-volume histogram (DVH)-parameters for thoracic OARs. RESULTS Dosimetric effect of intra-observer contour variability was highest for Heart Dmax (3.4 ± 6.8 Gy) and lowest for Lungs-GTV Dmean (0.3 ± 0.4 Gy). The effect of contour variation on treatment plan evaluation was highest for Heart Dmax (6.0 ± 13.4 Gy) and Esophagus Dmax (8.7 ± 17.2 Gy). Dose differences for the various treatment plans, evaluated on the reference (manual) contour, were on average below 1 Gy/1%. For Heart Dmean, higher dose differences were found for overlap with PTV (median 0.2 Gy, 95% 1.7 Gy) vs. no PTV overlap (median 0 Gy, 95% 0.5 Gy). For Dmax-parameters, largest dose difference was found between 0-1 cm distance to PTV (median 1.5 Gy, 95% 4.7 Gy). CONCLUSION Dose differences arising from automatic contour variations were of the same magnitude or lower than intra-observer contour variability. For Heart Dmean, we recommend delineation errors to be corrected when the heart overlaps with the PTV. For Dmax-parameters, we recommend checking contours if the distance is close to PTV (<5 cm). For the lungs, only obvious large errors need to be adjusted.
Collapse
Affiliation(s)
- Femke Vaassen
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands.
| | - Colien Hazelaar
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Richard Canters
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Stephanie Peeters
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Steven Petit
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Wouter van Elmpt
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
20
|
Patel B, Bianco C, Sengupta PP. Early Tracking of Radiation-Induced Cardiotoxicity: Paradigm, Pragmatism, and Possibilities. JACC CardioOncol 2021; 3:290-293. [PMID: 34396336 PMCID: PMC8352235 DOI: 10.1016/j.jaccao.2021.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Brijesh Patel
- Heart and Vascular Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Christopher Bianco
- Heart and Vascular Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Partho P. Sengupta
- Heart and Vascular Institute, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
21
|
Fu Y, Lei Y, Wang T, Curran WJ, Liu T, Yang X. A review of deep learning based methods for medical image multi-organ segmentation. Phys Med 2021; 85:107-122. [PMID: 33992856 PMCID: PMC8217246 DOI: 10.1016/j.ejmp.2021.05.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/12/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Deep learning has revolutionized image processing and achieved the-state-of-art performance in many medical image segmentation tasks. Many deep learning-based methods have been published to segment different parts of the body for different medical applications. It is necessary to summarize the current state of development for deep learning in the field of medical image segmentation. In this paper, we aim to provide a comprehensive review with a focus on multi-organ image segmentation, which is crucial for radiotherapy where the tumor and organs-at-risk need to be contoured for treatment planning. We grouped the surveyed methods into two broad categories which are 'pixel-wise classification' and 'end-to-end segmentation'. Each category was divided into subgroups according to their network design. For each type, we listed the surveyed works, highlighted important contributions and identified specific challenges. Following the detailed review, we discussed the achievements, shortcomings and future potentials of each category. To enable direct comparison, we listed the performance of the surveyed works that used thoracic and head-and-neck benchmark datasets.
Collapse
Affiliation(s)
- Yabo Fu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Yang Lei
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Tonghe Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Walter J Curran
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|