1
|
Criscuolo ER, Hao Y, Zhang Z, McKeown T, Yang D. A Vessel Bifurcation Landmark Pair Dataset for Abdominal CT Deformable Image Registration (DIR) Validation. ARXIV 2025:arXiv:2501.09162v1. [PMID: 39876932 PMCID: PMC11774459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Purpose Deformable image registration (DIR) is an enabling technology in many diagnostic and therapeutic tasks. Despite this, DIR algorithms have limited clinical use, largely due to a lack of benchmark datasets for quality assurance during development. DIRs of intra-patient abdominal CTs are among the most challenging registration scenarios due to significant organ deformations and inconsistent image content. To support future algorithm development, here we introduce our first-of-its-kind abdominal CT DIR benchmark dataset, comprising large numbers of highly accurate landmark pairs on matching blood vessel bifurcations. Acquisition and Validation Methods Abdominal CT image pairs of 30 patients were acquired from several publicly available repositories as well as the authors' institution with IRB approval. The two CTs of each pair were originally acquired for the same patient but on different days. An image processing workflow was developed and applied to each CT image pair: 1) Abdominal organs were segmented with a deep learning model, and image intensity within organ masks was overwritten. 2) Matching image patches were manually identified between two CTs of each image pair. 3) Vessel bifurcation landmarks were labeled on one image of each image patch pair. 4) Image patches were deformably registered, and landmarks were projected onto the second image 5) Landmark pair locations were refined manually or with an automated process. This workflow resulted in 1895 total landmark pairs, or 63 per case on average. Estimates of the landmark pair accuracy using digital phantoms were 0.7mm +/- 1.2 mm. Data Format and Usage Notes The data is published in Zenodo at https://doi.org/10.5281/zenodo.14362785. Instructions for use can be found at https://github.com/deshanyang/Abdominal-DIR-QA. Potential Applications This dataset is a first-of-its-kind for abdominal DIR validation. The number, accuracy, and distribution of landmark pairs will allow for robust validation of DIR algorithms with precision beyond what is currently available.
Collapse
Affiliation(s)
- Edward R Criscuolo
- Department of Radiation Oncology, Duke University, Durham, NC, 27701, USA
| | - Yao Hao
- Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Zhendong Zhang
- Department of Radiation Oncology, Duke University, Durham, NC, 27701, USA
| | - Trevor McKeown
- Department of Radiation Oncology, Duke University, Durham, NC, 27701, USA
| | - Deshan Yang
- Department of Radiation Oncology, Duke University, Durham, NC, 27701, USA
| |
Collapse
|
2
|
Zhang Z, Criscuolo ER, Hao Y, McKeown T, Yang D. A vessel bifurcation liver CT landmark pair dataset for evaluating deformable image registration algorithms. Med Phys 2025; 52:703-715. [PMID: 39504386 PMCID: PMC11915780 DOI: 10.1002/mp.17507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/10/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
PURPOSE Evaluating deformable image registration (DIR) algorithms is vital for enhancing algorithm performance and gaining clinical acceptance. However, there is a notable lack of dependable DIR benchmark datasets for assessing DIR performance except for lung images. To address this gap, we aim to introduce our comprehensive liver computed tomography (CT) DIR landmark dataset library. This dataset is designed for efficient and quantitative evaluation of various DIR methods for liver CTs, paving the way for more accurate and reliable image registration techniques. ACQUISITION AND VALIDATION METHODS Forty CT liver image pairs were acquired from several publicly available image archives and authors' institutions under institutional review board (IRB) approval. The images were processed with a semi-automatic procedure to generate landmark pairs: (1) for each case, liver vessels were automatically segmented on one image; (2) landmarks were automatically detected at vessel bifurcations; (3) corresponding landmarks in the second image were placed using two deformable image registration methods to avoid algorithm-specific biases; (4) a comprehensive validation process based on quantitative evaluation and manual assessment was applied to reject outliers and ensure the landmarks' positional accuracy. This workflow resulted in an average of ∼56 landmark pairs per image pair, comprising a total of 2220 landmarks for 40 cases. The general landmarking accuracy of this procedure was evaluated using digital phantoms and manual landmark placement. The landmark pair target registration errors (TRE) on digital phantoms were 0.37 ± 0.26 and 0.55 ± 0.34 mm respectively for the two selected DIR algorithms used in our workflow, with 97% of landmark pairs having TREs below 1.5 mm. The distances from the calculated landmarks to the averaged manual placement were 1.27 ± 0.79 mm. DATA FORMAT AND USAGE NOTES All data, including image files and landmark information, are publicly available at Zenodo (https://zenodo.org/records/13738577). Instructions for using our data can be found on our GitHub page at https://github.com/deshanyang/Liver-DIR-QA. POTENTIAL APPLICATIONS The landmark dataset generated in this work is the first collection of large-scale liver CT DIR landmarks prepared on real patient images. This dataset can provide researchers with a dense set of ground truth benchmarks for the quantitative evaluation of DIR algorithms within the liver.
Collapse
Affiliation(s)
- Zhendong Zhang
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| | | | - Yao Hao
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Trevor McKeown
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - Deshan Yang
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
3
|
Bosma LS, Hussein M, Jameson MG, Asghar S, Brock KK, McClelland JR, Poeta S, Yuen J, Zachiu C, Yeo AU. Tools and recommendations for commissioning and quality assurance of deformable image registration in radiotherapy. Phys Imaging Radiat Oncol 2024; 32:100647. [PMID: 39328928 PMCID: PMC11424976 DOI: 10.1016/j.phro.2024.100647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Multiple tools are available for commissioning and quality assurance of deformable image registration (DIR), each with their own advantages and disadvantages in the context of radiotherapy. The selection of appropriate tools should depend on the DIR application with its corresponding available input, desired output, and time requirement. Discussions were hosted by the ESTRO Physics Workshop 2021 on Commissioning and Quality Assurance for DIR in Radiotherapy. A consensus was reached on what requirements are needed for commissioning and quality assurance for different applications, and what combination of tools is associated with this. For commissioning, we recommend the target registration error of manually annotated anatomical landmarks or the distance-to-agreement of manually delineated contours to evaluate alignment. These should be supplemented by the distance to discordance and/or biomechanical criteria to evaluate consistency and plausibility. Digital phantoms can be useful to evaluate DIR for dose accumulation but are currently only available for a limited range of anatomies, image modalities and types of deformations. For quality assurance of DIR for contour propagation, we recommend at least a visual inspection of the registered image and contour. For quality assurance of DIR for warping quantitative information such as dose, Hounsfield units or positron emission tomography-data, we recommend visual inspection of the registered image together with image similarity to evaluate alignment, supplemented by an inspection of the Jacobian determinant or bending energy to evaluate plausibility, and by the dose (gradient) to evaluate relevance. We acknowledge that some of these metrics are still missing in currently available commercial solutions.
Collapse
Affiliation(s)
- Lando S Bosma
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Mohammad Hussein
- Metrology for Medical Physics Centre, National Physical Laboratory, Teddington, UK
| | - Michael G Jameson
- GenesisCare, Sydney, Australia
- School of Clinical Medicine, Medicine and Health, University of New South Wales, Sydney, Australia
| | | | - Kristy K Brock
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jamie R McClelland
- Centre for Medical Image Computing and the Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Dept. Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Sara Poeta
- Medical Physics Department, Institut Jules Bordet - Université Libre de Bruxelles, Belgium
| | - Johnson Yuen
- School of Clinical Medicine, Medicine and Health, University of New South Wales, Sydney, Australia
- St. George Hospital Cancer Care Centre, Sydney NSW2217, Australia
- Ingham Institute for Applied Medical Research, Sydney, Australia
| | - Cornel Zachiu
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Adam U Yeo
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, the University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Lin YM, Paolucci I, Albuquerque Marques Silva J, O'Connor CS, Hong J, Shah KY, Abdelsalam ME, Habibollahi P, Jones KA, Brock KK, Odisio BC. Ablative margin quantification using deformable versus rigid image registration in colorectal liver metastasis thermal ablation: a retrospective single-center study. Eur Radiol 2024; 34:5541-5550. [PMID: 38334762 PMCID: PMC11815991 DOI: 10.1007/s00330-024-10632-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 02/10/2024]
Abstract
PURPOSE To investigate the correlation of minimal ablative margin (MAM) quantification using biomechanical deformable (DIR) versus intensity-based rigid image registration (RIR) with local outcomes following colorectal liver metastasis (CLM) thermal ablation. METHODS This retrospective single-institution study included consecutive patients undergoing thermal ablation between May 2016 and October 2021. Patients who did not have intraprocedural pre- and post-ablation contrast-enhanced CT images for MAM quantification or follow-up period less than 1 year without residual tumor or local tumor progression (LTP) were excluded. DIR and RIR methods were used to quantify the MAM. The registration accuracy was compared using Dice similarity coefficient (DSC). Area under the receiver operating characteristic curve (AUC) was used to test MAM in predicting local tumor outcomes. RESULTS A total of 72 patients (mean age 57; 44 men) with 139 tumors (mean diameter 1.5 cm ± 0.8 (SD)) were included. During a median follow-up of 29.4 months, there was one residual unablated tumor and the LTP rate was 17% (24/138). The ranges of DSC were 0.96-0.98 and 0.67-0.98 for DIR and RIR, respectively (p < 0.001). When using DIR, 27 (19%) tumors were partially or totally registered outside the liver, compared to 46 (33%) with RIR. Using DIR versus RIR, the corresponding median MAM was 4.7 mm versus 4.0 mm, respectively (p = 0.5). The AUC in predicting residual tumor and 1-year LTP for DIR versus RIR was 0.89 versus 0.72, respectively (p < 0.001). CONCLUSION Ablative margin quantified on intra-procedural CT imaging using DIR method outperformed RIR for predicting local outcomes of CLM thermal ablation. CLINICAL RELEVANCE STATEMENT The study supports the role of biomechanical deformable image registration as the preferred image registration method over rigid image registration for quantifying minimal ablative margins using intraprocedural contrast-enhanced CT images. KEY POINTS • Accurate and reproducible image registration is a prerequisite for clinical application of image-based ablation confirmation methods. • When compared to intensity-based rigid image registration, biomechanical deformable image registration for minimal ablative margin quantification was more accurate for liver registration using intraprocedural contrast-enhanced CT images. • Biomechanical deformable image registration outperformed intensity-based rigid image registration for predicting local tumor outcomes following colorectal liver metastasis thermal ablation.
Collapse
Affiliation(s)
- Yuan-Mao Lin
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Iwan Paolucci
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Jessica Albuquerque Marques Silva
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Caleb S O'Connor
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Jun Hong
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Ketan Y Shah
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Mohamed E Abdelsalam
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Peiman Habibollahi
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Kyle A Jones
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Kristy K Brock
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Bruno C Odisio
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Lin YH, Chen LW, Wang HJ, Hsieh MS, Lu CW, Chuang JH, Chang YC, Chen JS, Chen CM, Lin MW. Quantification of Resection Margin following Sublobar Resection in Lung Cancer Patients through Pre- and Post-Operative CT Image Comparison: Utilizing a CT-Based 3D Reconstruction Algorithm. Cancers (Basel) 2024; 16:2181. [PMID: 38927887 PMCID: PMC11201844 DOI: 10.3390/cancers16122181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Sublobar resection has emerged as a standard treatment option for early-stage peripheral non-small cell lung cancer. Achieving an adequate resection margin is crucial to prevent local tumor recurrence. However, gross measurement of the resection margin may lack accuracy due to the elasticity of lung tissue and interobserver variability. Therefore, this study aimed to develop an objective measurement method, the CT-based 3D reconstruction algorithm, to quantify the resection margin following sublobar resection in lung cancer patients through pre- and post-operative CT image comparison. An automated subvascular matching technique was first developed to ensure accuracy and reproducibility in the matching process. Following the extraction of matched feature points, another key technique involves calculating the displacement field within the image. This is particularly important for mapping discontinuous deformation fields around the surgical resection area. A transformation based on thin-plate spline is used for medical image registration. Upon completing the final step of image registration, the distance at the resection margin was measured. After developing the CT-based 3D reconstruction algorithm, we included 12 cases for resection margin distance measurement, comprising 4 right middle lobectomies, 6 segmentectomies, and 2 wedge resections. The outcomes obtained with our method revealed that the target registration error for all cases was less than 2.5 mm. Our method demonstrated the feasibility of measuring the resection margin following sublobar resection in lung cancer patients through pre- and post-operative CT image comparison. Further validation with a multicenter, large cohort, and analysis of clinical outcome correlation is necessary in future studies.
Collapse
Affiliation(s)
- Yu-Hsuan Lin
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 106, Taiwan; (Y.-H.L.); (L.-W.C.); (H.-J.W.)
| | - Li-Wei Chen
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 106, Taiwan; (Y.-H.L.); (L.-W.C.); (H.-J.W.)
| | - Hao-Jen Wang
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 106, Taiwan; (Y.-H.L.); (L.-W.C.); (H.-J.W.)
| | - Min-Shu Hsieh
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan;
| | - Chao-Wen Lu
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan; (C.-W.L.); (J.-H.C.); (J.-S.C.)
| | - Jen-Hao Chuang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan; (C.-W.L.); (J.-H.C.); (J.-S.C.)
| | - Yeun-Chung Chang
- Department of Medical Imaging, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan;
| | - Jin-Shing Chen
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan; (C.-W.L.); (J.-H.C.); (J.-S.C.)
| | - Chung-Ming Chen
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 106, Taiwan; (Y.-H.L.); (L.-W.C.); (H.-J.W.)
| | - Mong-Wei Lin
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan; (C.-W.L.); (J.-H.C.); (J.-S.C.)
| |
Collapse
|
6
|
Criscuolo ER, Fu Y, Hao Y, Zhang Z, Yang D. A comprehensive lung CT landmark pair dataset for evaluating deformable image registration algorithms. Med Phys 2024; 51:3806-3817. [PMID: 38478966 PMCID: PMC11302745 DOI: 10.1002/mp.17026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/29/2024] [Accepted: 03/03/2024] [Indexed: 05/08/2024] Open
Abstract
PURPOSE Deformable image registration (DIR) is a key enabling technology in many diagnostic and therapeutic tasks, but often does not meet the required robustness and accuracy for supporting clinical tasks. This is in large part due to a lack of high-quality benchmark datasets by which new DIR algorithms can be evaluated. Our team was supported by the National Institute of Biomedical Imaging and Bioengineering to develop DIR benchmark dataset libraries for multiple anatomical sites, comprising of large numbers of highly accurate landmark pairs on matching blood vessel bifurcations. Here we introduce our lung CT DIR benchmark dataset library, which was developed to improve upon the number and distribution of landmark pairs in current public lung CT benchmark datasets. ACQUISITION AND VALIDATION METHODS Thirty CT image pairs were acquired from several publicly available repositories as well as authors' institution with IRB approval. The data processing workflow included multiple steps: (1) The images were denoised. (2) Lungs, airways, and blood vessels were automatically segmented. (3) Bifurcations were directly detected on the skeleton of the segmented vessel tree. (4) Falsely identified bifurcations were filtered out using manually defined rules. (5) A DIR was used to project landmarks detected on the first image onto the second image of the image pair to form landmark pairs. (6) Landmark pairs were manually verified. This workflow resulted in an average of 1262 landmark pairs per image pair. Estimates of the landmark pair target registration error (TRE) using digital phantoms were 0.4 mm ± 0.3 mm. DATA FORMAT AND USAGE NOTES The data is published in Zenodo at https://doi.org/10.5281/zenodo.8200423. Instructions for use can be found at https://github.com/deshanyang/Lung-DIR-QA. POTENTIAL APPLICATIONS The dataset library generated in this work is the largest of its kind to date and will provide researchers with a new and improved set of ground truth benchmarks for quantitatively validating DIR algorithms within the lung.
Collapse
Affiliation(s)
| | - Yabo Fu
- Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yao Hao
- Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Zhendong Zhang
- Department of Radiation Oncology, Duke University, Durham, NC, 27701, USA
| | - Deshan Yang
- Department of Radiation Oncology, Duke University, Durham, NC, 27701, USA
| |
Collapse
|
7
|
Gupta AC, Cazoulat G, Al Taie M, Yedururi S, Rigaud B, Castelo A, Wood J, Yu C, O'Connor C, Salem U, Silva JAM, Jones AK, McCulloch M, Odisio BC, Koay EJ, Brock KK. Fully automated deep learning based auto-contouring of liver segments and spleen on contrast-enhanced CT images. Sci Rep 2024; 14:4678. [PMID: 38409252 PMCID: PMC10967337 DOI: 10.1038/s41598-024-53997-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 02/07/2024] [Indexed: 02/28/2024] Open
Abstract
Manual delineation of liver segments on computed tomography (CT) images for primary/secondary liver cancer (LC) patients is time-intensive and prone to inter/intra-observer variability. Therefore, we developed a deep-learning-based model to auto-contour liver segments and spleen on contrast-enhanced CT (CECT) images. We trained two models using 3d patch-based attention U-Net ([Formula: see text] and 3d full resolution of nnU-Net ([Formula: see text] to determine the best architecture ([Formula: see text]. BA was used with vessels ([Formula: see text] and spleen ([Formula: see text] to assess the impact on segment contouring. Models were trained, validated, and tested on 160 ([Formula: see text]), 40 ([Formula: see text]), 33 ([Formula: see text]), 25 (CCH) and 20 (CPVE) CECT of LC patients. [Formula: see text] outperformed [Formula: see text] across all segments with median differences in Dice similarity coefficients (DSC) ranging 0.03-0.05 (p < 0.05). [Formula: see text], and [Formula: see text] were not statistically different (p > 0.05), however, both were slightly better than [Formula: see text] by DSC up to 0.02. The final model, [Formula: see text], showed a mean DSC of 0.89, 0.82, 0.88, 0.87, 0.96, and 0.95 for segments 1, 2, 3, 4, 5-8, and spleen, respectively on entire test sets. Qualitatively, more than 85% of cases showed a Likert score [Formula: see text] 3 on test sets. Our final model provides clinically acceptable contours of liver segments and spleen which are usable in treatment planning.
Collapse
Affiliation(s)
- Aashish C Gupta
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| | - Guillaume Cazoulat
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mais Al Taie
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sireesha Yedururi
- Abdominal Imaging Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bastien Rigaud
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Austin Castelo
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John Wood
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cenji Yu
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caleb O'Connor
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Usama Salem
- Abdominal Imaging Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Aaron Kyle Jones
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Molly McCulloch
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bruno C Odisio
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eugene J Koay
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristy K Brock
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
8
|
He Y, Cazoulat G, Wu C, Svensson S, Almodovar-Abreu L, Rigaud B, McCollum E, Peterson C, Wooten Z, Rhee DJ, Balter P, Pollard-Larkin J, Cardenas C, Court L, Liao Z, Mohan R, Brock K. Quantifying the Effect of 4-Dimensional Computed Tomography-Based Deformable Dose Accumulation on Representing Radiation Damage for Patients with Locally Advanced Non-Small Cell Lung Cancer Treated with Standard-Fractionated Intensity-Modulated Radiation Therapy. Int J Radiat Oncol Biol Phys 2024; 118:231-241. [PMID: 37552151 PMCID: PMC11379060 DOI: 10.1016/j.ijrobp.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/04/2023] [Accepted: 07/14/2023] [Indexed: 08/09/2023]
Abstract
PURPOSE The aim of this study was to investigate the dosimetric and clinical effects of 4-dimensional computed tomography (4DCT)-based longitudinal dose accumulation in patients with locally advanced non-small cell lung cancer treated with standard-fractionated intensity-modulated radiation therapy (IMRT). METHODS AND MATERIALS Sixty-seven patients were retrospectively selected from a randomized clinical trial. Their original IMRT plan, planning and verification 4DCTs, and ∼4-month posttreatment follow-up CTs were imported into a commercial treatment planning system. Two deformable image registration algorithms were implemented for dose accumulation, and their accuracies were assessed. The planned and accumulated doses computed using average-intensity images or phase images were compared. At the organ level, mean lung dose and normal-tissue complication probability (NTCP) for grade ≥2 radiation pneumonitis were compared. At the region level, mean dose in lung subsections and the volumetric overlap between isodose intervals were compared. At the voxel level, the accuracy in estimating the delivered dose was compared by evaluating the fit of a dose versus radiographic image density change (IDC) model. The dose-IDC model fit was also compared for subcohorts based on the magnitude of NTCP difference (|ΔNTCP|) between planned and accumulated doses. RESULTS Deformable image registration accuracy was quantified, and the uncertainty was considered for the voxel-level analysis. Compared with planned doses, accumulated doses on average resulted in <1-Gy lung dose increase and <2% NTCP increase (up to 8.2 Gy and 18.8% for a patient, respectively). Volumetric overlap of isodose intervals between the planned and accumulated dose distributions ranged from 0.01 to 0.93. Voxel-level dose-IDC models demonstrated a fit improvement from planned dose to accumulated dose (pseudo-R2 increased 0.0023) and a further improvement for patients with ≥2% |ΔNTCP| versus for patients with <2% |ΔNTCP|. CONCLUSIONS With a relatively large cohort, robust image registrations, multilevel metric comparisons, and radiographic image-based evidence, we demonstrated that dose accumulation more accurately represents the delivered dose and can be especially beneficial for patients with greater longitudinal response.
Collapse
Affiliation(s)
- Yulun He
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center UTHealth Houston, Houston, Texas; Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Guillaume Cazoulat
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carol Wu
- Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Bastien Rigaud
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Emma McCollum
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christine Peterson
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zachary Wooten
- Department of Statistics, Rice University, Houston, Texas
| | - Dong Joo Rhee
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peter Balter
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Julianne Pollard-Larkin
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carlos Cardenas
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Laurence Court
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhongxing Liao
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Radhe Mohan
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kristy Brock
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
9
|
He Y, Anderson BM, Cazoulat G, Rigaud B, Almodovar-Abreu L, Pollard-Larkin J, Balter P, Liao Z, Mohan R, Odisio B, Svensson S, Brock KK. Optimization of mesh generation for geometric accuracy, robustness, and efficiency of biomechanical-model-based deformable image registration. Med Phys 2023; 50:323-329. [PMID: 35978544 PMCID: PMC467002 DOI: 10.1002/mp.15939] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Successful generation of biomechanical-model-based deformable image registration (BM-DIR) relies on user-defined parameters that dictate surface mesh quality. The trial-and-error process to determine the optimal parameters can be labor-intensive and hinder DIR efficiency and clinical workflow. PURPOSE To identify optimal parameters in surface mesh generation as boundary conditions for a BM-DIR in longitudinal liver and lung CT images to facilitate streamlined image registration processes. METHODS Contrast-enhanced CT images of 29 colorectal liver cancer patients and end-exhale four-dimensional CT images of 26 locally advanced non-small cell lung cancer patients were collected. Different combinations of parameters that determine the triangle mesh quality (voxel side length and triangle edge length) were investigated. The quality of DIRs generated using these parameters was evaluated with metrics for geometric accuracy, robustness, and efficiency. Metrics for geometric accuracy included target registration error (TRE) of internal vessel bifurcations, dice similar coefficient (DSC), mean distance to agreement (MDA), Hausdorff distance (HD) for organ contours, and number of vertices in the triangle mesh. American Association of Physicists in Medicine Task Group 132 was used to ensure parameters met TRE, DSC, MDA recommendations before the comparison among the parameters. Robustness was evaluated as the success rate of DIR generation, and efficiency was evaluated as the total time to generate boundary conditions and compute finite element analysis. RESULTS Voxel side length of 0.2 cm and triangle edge length of 3 were found to be the optimal parameters for both liver and lung, with success rate of 1.00 and 0.98 and average DIR computation time of 100 and 143 s, respectively. For this combination, the average TRE, DSC, MDA, and HD were 0.38-0.40, 0.96-0.97, 0.09-0.12, and 0.87-1.17 mm, respectively. CONCLUSION The optimal parameters were found for the analyzed patients. The decision-making process described in this study serves as a recommendation for BM-DIR algorithms to be used for liver and lung. These parameters can facilitate consistence in the evaluation of published studies and more widespread utilization of BM-DIR in clinical practice.
Collapse
Affiliation(s)
- Yulun He
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Brian M. Anderson
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guillaume Cazoulat
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bastien Rigaud
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Julianne Pollard-Larkin
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peter Balter
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhongxing Liao
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Radhe Mohan
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bruno Odisio
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Kristy K. Brock
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
10
|
McCulloch MM, Cazoulat G, Svensson S, Gryshkevych S, Rigaud B, Anderson BM, Kirimli E, De B, Mathew RT, Zaid M, Elganainy D, Peterson CB, Balter P, Koay EJ, Brock KK. Leveraging deep learning-based segmentation and contours-driven deformable registration for dose accumulation in abdominal structures. Front Oncol 2022; 12:1015608. [PMID: 36408172 PMCID: PMC9666494 DOI: 10.3389/fonc.2022.1015608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/10/2022] [Indexed: 12/29/2023] Open
Abstract
Purpose Discrepancies between planned and delivered dose to GI structures during radiation therapy (RT) of liver cancer may hamper the prediction of treatment outcomes. The purpose of this study is to develop a streamlined workflow for dose accumulation in a treatment planning system (TPS) during liver image-guided RT and to assess its accuracy when using different deformable image registration (DIR) algorithms. Materials and Methods Fifty-six patients with primary and metastatic liver cancer treated with external beam radiotherapy guided by daily CT-on-rails (CTOR) were retrospectively analyzed. The liver, stomach and duodenum contours were auto-segmented on all planning CTs and daily CTORs using deep-learning methods. Dose accumulation was performed for each patient using scripting functionalities of the TPS and considering three available DIR algorithms based on: (i) image intensities only; (ii) intensities + contours; (iii) a biomechanical model (contours only). Planned and accumulated doses were converted to equivalent dose in 2Gy (EQD2) and normal tissue complication probabilities (NTCP) were calculated for the stomach and duodenum. Dosimetric indexes for the normal liver, GTV, stomach and duodenum and the NTCP values were exported from the TPS for analysis of the discrepancies between planned and the different accumulated doses. Results Deep learning segmentation of the stomach and duodenum enabled considerable acceleration of the dose accumulation process for the 56 patients. Differences between accumulated and planned doses were analyzed considering the 3 DIR methods. For the normal liver, stomach and duodenum, the distribution of the 56 differences in maximum doses (D2%) presented a significantly higher variance when a contour-driven DIR method was used instead of the intensity only-based method. Comparing the two contour-driven DIR methods, differences in accumulated minimum doses (D98%) in the GTV were >2Gy for 15 (27%) of the patients. Considering accumulated dose instead of planned dose in standard NTCP models of the duodenum demonstrated a high sensitivity of the duodenum toxicity risk to these dose discrepancies, whereas smaller variations were observed for the stomach. Conclusion This study demonstrated a successful implementation of an automatic workflow for dose accumulation during liver cancer RT in a commercial TPS. The use of contour-driven DIR methods led to larger discrepancies between planned and accumulated doses in comparison to using an intensity only based DIR method, suggesting a better capability of these approaches in estimating complex deformations of the GI organs.
Collapse
Affiliation(s)
- Molly M. McCulloch
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Guillaume Cazoulat
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | | | - Bastien Rigaud
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Brian M. Anderson
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ezgi Kirimli
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Brian De
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ryan T. Mathew
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mohamed Zaid
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dalia Elganainy
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Christine B. Peterson
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Peter Balter
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Eugene J. Koay
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kristy K. Brock
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
11
|
Teuwen J, Gouw ZA, Sonke JJ. Artificial Intelligence for Image Registration in Radiation Oncology. Semin Radiat Oncol 2022; 32:330-342. [DOI: 10.1016/j.semradonc.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|