1
|
Liu M, Wang Y, Gu Y, Gong H, Lu HM, Tang Z, Yang Y. Development of a proton CT imaging system using scintillator-based range detection. Med Phys 2024; 51:8047-8059. [PMID: 39250696 DOI: 10.1002/mp.17393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/22/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND The accuracy of proton therapy and preclinical proton irradiation experiments is susceptible to proton range uncertainties, which partly stem from the inaccurate conversion between CT numbers and relative stopping power (RSP). Proton computed tomography (PCT) can reduce these uncertainties by directly acquiring RSP maps. PURPOSE This study aims to develop a novel PCT imaging system based on scintillator-based proton range detection for accurate RSP reconstruction. METHODS The proposed PCT system consists of a pencil-beam brass collimator with a 1 mm aperture, an object stage capable of translation and 360° rotation, a plastic scintillator for dose-to-light conversion, and a complementary metal oxide semiconductor (CMOS) camera for light distribution acquisition. A calibration procedure based on Monte Carlo (MC) simulation was implemented to convert the obtained light ranges into water equivalent ranges. The water equivalent path lengths (WEPLs) of the imaged object were determined by calculating the differences in proton ranges obtained with and without the object in the beam path. To validate the WEPL calculation, measurements of WEPLs for eight tissue-equivalent inserts were conducted. PCT imaging was performed on a custom-designed phantom and a mouse, utilizing both 60 and 360 projections. The filtered back projection (FBP) algorithm was employed to reconstruct the RSP from WEPLs. Image quality was assessed based on the reconstructed RSP maps and compared to reference and simulation-based reconstructions. RESULTS The differences between the calibrated and reference ranges of 110-150 MeV proton beams were within 0.18 mm. The WEPLs of eight tissue-equivalent inserts were measured with accuracies better than 1%. Phantom experiments exhibited good agreement with reference and simulation-based reconstructions, demonstrating average RSP errors of 1.26%, 1.38%, and 0.38% for images reconstructed with 60 projections, 60 projections after penalized weighted least-squares algorithm denoising, and 360 projections, respectively. Mouse experiments provided clear observations of mouse contours and major tissue types. MC simulation estimated an imaging dose of 3.44 cGy for decent RSP reconstruction. CONCLUSIONS The proposed PCT imaging system enables RSP map acquisition with high accuracy and has the potential to improve dose calculation accuracy in proton therapy and preclinical proton irradiation experiments.
Collapse
Affiliation(s)
- Meiqi Liu
- School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuxiang Wang
- School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui, China
- Hefei Ion Medical Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yue Gu
- School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Haonian Gong
- School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Hsiao-Ming Lu
- Hefei Ion Medical Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Ion Medical Research Institute, University of Science and Technology of China, Hefei, Anhui, China
| | - Zebo Tang
- School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yidong Yang
- School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui, China
- Hefei Ion Medical Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Ion Medical Research Institute, University of Science and Technology of China, Hefei, Anhui, China
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
2
|
Fogazzi E, Hu G, Bruzzi M, Farace P, Kröncke T, Niepel K, Ricke J, Risch F, Sabel B, Scaringella M, Schwarz F, Tommasino F, Landry G, Civinini C, Parodi K. A direct comparison of multi-energy x-ray and proton CT for imaging and relative stopping power estimation of plastic and ex-vivophantoms. Phys Med Biol 2024; 69:175021. [PMID: 39159669 DOI: 10.1088/1361-6560/ad70ef] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/19/2024] [Indexed: 08/21/2024]
Abstract
Objective.Proton therapy administers a highly conformal dose to the tumour region, necessitating accurate prediction of the patient's 3D map of proton relative stopping power (RSP) compared to water. This remains challenging due to inaccuracies inherent in single-energy computed tomography (SECT) calibration. Recent advancements in spectral x-ray CT (xCT) and proton CT (pCT) have shown improved RSP estimation compared to traditional SECT methods. This study aims to provide the first comparison of the imaging and RSP estimation performance among dual-energy CT (DECT) and photon-counting CT (PCCT) scanners, and a pCT system prototype.Approach.Two phantoms were scanned with the three systems for their performance characterisation: a plastic phantom, filled with water and containing four plastic inserts and a wood insert, and a heterogeneous biological phantom, containing a formalin-stabilised bovine specimen. RSP maps were generated by converting CT numbers to RSP using a calibration based on low- and high-energy xCT images, while pCT utilised a distance-driven filtered back projection algorithm for RSP reconstruction. Spatial resolution, noise, and RSP accuracy were compared across the resulting images.Main results.All three systems exhibited similar spatial resolution of around 0.54 lp/mm for the plastic phantom. The PCCT images were less noisy than the DECT images at the same dose level. The lowest mean absolute percentage error (MAPE) of RSP,(0.28±0.07)%, was obtained with the pCT system, compared to MAPE values of(0.51±0.08)%and(0.80±0.08)%for the DECT- and PCCT-based methods, respectively. For the biological phantom, the xCT-based methods resulted in higher RSP values in most of the voxels compared to pCT.Significance.The pCT system yielded the most accurate estimation of RSP values for the plastic materials, and was thus used to benchmark the xCT calibration performance on the biological phantom. This study underlined the potential benefits and constraints of utilising such a novelex-vivophantom for inter-centre surveys in future.
Collapse
Affiliation(s)
- Elena Fogazzi
- Physics Department, University of Trento, Trento, TN, Italy
- Trento Institute for Fundamental Physics and Applications (TIFPA), Italian National Institute of Nuclear Physics (INFN), Trento, TN, Italy
| | - Guyue Hu
- Department of Medical Physics, Faculty of Physics, LMU Munich, Garching, Germany
| | - Mara Bruzzi
- Italian National Institute of Nuclear Physics (INFN), Florence section, Sesto Fiorentino, FI, Italy
- Physics and Astronomy Department, University of Florence, Sesto Fiorentino, FI, Italy
| | - Paolo Farace
- Trento Institute for Fundamental Physics and Applications (TIFPA), Italian National Institute of Nuclear Physics (INFN), Trento, TN, Italy
- Medical Physics Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Thomas Kröncke
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Augsburg, Germany
| | - Katharina Niepel
- Department of Medical Physics, Faculty of Physics, LMU Munich, Garching, Germany
| | - Jens Ricke
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Franka Risch
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Augsburg, Germany
| | - Bastian Sabel
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Monica Scaringella
- Italian National Institute of Nuclear Physics (INFN), Florence section, Sesto Fiorentino, FI, Italy
| | - Florian Schwarz
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Augsburg, Germany
| | - Francesco Tommasino
- Physics Department, University of Trento, Trento, TN, Italy
- Trento Institute for Fundamental Physics and Applications (TIFPA), Italian National Institute of Nuclear Physics (INFN), Trento, TN, Italy
| | - Guillaume Landry
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Bavarian Cancer Research Centre (BZKF), Munich, Germany
| | - Carlo Civinini
- Italian National Institute of Nuclear Physics (INFN), Florence section, Sesto Fiorentino, FI, Italy
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, LMU Munich, Garching, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| |
Collapse
|
3
|
Johnson RP. Meeting the detector challenges for pre-clinical proton and ion computed tomography. Phys Med Biol 2024; 69:11TR02. [PMID: 38657632 DOI: 10.1088/1361-6560/ad42fc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Six decades after its conception, proton computed tomography (pCT) and proton radiography have yet to be used in medical clinics. However, good progress has been made on relevant detector technologies in the past two decades, and a few prototype pCT systems now exist that approach the performance needed for a clinical device. The tracking and energy-measurement technologies in common use are described, as are the few pCT scanners that are in routine operation at this time. Most of these devices still look like detector R&D efforts as opposed to medical devices, are difficult to use, are at least a factor of five slower than desired for clinical use, and are too small to image many parts of the human body. Recommendations are made for what to consider when engineering a pre-clinical pCT scanner that is designed to meet clinical needs in terms of performance, cost, and ease of use.
Collapse
Affiliation(s)
- Robert P Johnson
- Physics Department, University of California at Santa Cruz, Santa Cruz, CA 95064, United States of America
| |
Collapse
|
4
|
Simard M, Robertson DG, Fullarton R, Royle G, Beddar S, Collins-Fekete CA. Integrated-mode proton radiography with 2D lateral projections. Phys Med Biol 2024; 69:054001. [PMID: 38241716 DOI: 10.1088/1361-6560/ad209d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
Integrated-mode proton radiography leading to water equivalent thickness (WET) maps is an avenue of interest for motion management, patient positioning, andin vivorange verification. Radiographs can be obtained using a pencil beam scanning setup with a large 3D monolithic scintillator coupled with optical cameras. Established reconstruction methods either (1) involve a camera at the distal end of the scintillator, or (2) use a lateral view camera as a range telescope. Both approaches lead to limited image quality. The purpose of this work is to propose a third, novel reconstruction framework that exploits the 2D information provided by two lateral view cameras, to improve image quality achievable using lateral views. The three methods are first compared in a simulated Geant4 Monte Carlo framework using an extended cardiac torso (XCAT) phantom and a slanted edge. The proposed method with 2D lateral views is also compared with the range telescope approach using experimental data acquired with a plastic volumetric scintillator. Scanned phantoms include a Las Vegas (contrast), 9 tissue-substitute inserts (WET accuracy), and a paediatric head phantom. Resolution increases from 0.24 (distal) to 0.33 lp mm-1(proposed method) on the simulated slanted edge phantom, and the mean absolute error on WET maps of the XCAT phantom is reduced from 3.4 to 2.7 mm with the same methods. Experimental data from the proposed 2D lateral views indicate a 36% increase in contrast relative to the range telescope method. High WET accuracy is obtained, with a mean absolute error of 0.4 mm over 9 inserts. Results are presented for various pencil beam spacing ranging from 2 to 6 mm. This work illustrates that high quality proton radiographs can be obtained with clinical beam settings and the proposed reconstruction framework with 2D lateral views, with potential applications in adaptive proton therapy.
Collapse
Affiliation(s)
- Mikaël Simard
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Daniel G Robertson
- Division of Medical Physics, Department of Radiation Oncology, Mayo Clinic Arizona, 5881 E Mayo Blvd, Phoenix, AZ, United States of America
| | - Ryan Fullarton
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Gary Royle
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Sam Beddar
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States of America
| | | |
Collapse
|
5
|
Knäusl B, Belotti G, Bertholet J, Daartz J, Flampouri S, Hoogeman M, Knopf AC, Lin H, Moerman A, Paganelli C, Rucinski A, Schulte R, Shimizu S, Stützer K, Zhang X, Zhang Y, Czerska K. A review of the clinical introduction of 4D particle therapy research concepts. Phys Imaging Radiat Oncol 2024; 29:100535. [PMID: 38298885 PMCID: PMC10828898 DOI: 10.1016/j.phro.2024.100535] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
Background and purpose Many 4D particle therapy research concepts have been recently translated into clinics, however, remaining substantial differences depend on the indication and institute-related aspects. This work aims to summarise current state-of-the-art 4D particle therapy technology and outline a roadmap for future research and developments. Material and methods This review focused on the clinical implementation of 4D approaches for imaging, treatment planning, delivery and evaluation based on the 2021 and 2022 4D Treatment Workshops for Particle Therapy as well as a review of the most recent surveys, guidelines and scientific papers dedicated to this topic. Results Available technological capabilities for motion surveillance and compensation determined the course of each 4D particle treatment. 4D motion management, delivery techniques and strategies including imaging were diverse and depended on many factors. These included aspects of motion amplitude, tumour location, as well as accelerator technology driving the necessity of centre-specific dosimetric validation. Novel methodologies for X-ray based image processing and MRI for real-time tumour tracking and motion management were shown to have a large potential for online and offline adaptation schemes compensating for potential anatomical changes over the treatment course. The latest research developments were dominated by particle imaging, artificial intelligence methods and FLASH adding another level of complexity but also opportunities in the context of 4D treatments. Conclusion This review showed that the rapid technological advances in radiation oncology together with the available intrafractional motion management and adaptive strategies paved the way towards clinical implementation.
Collapse
Affiliation(s)
- Barbara Knäusl
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Gabriele Belotti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Jenny Bertholet
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Juliane Daartz
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Mischa Hoogeman
- Department of Medical Physics & Informatics, HollandPTC, Delft, The Netherlands
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, The Netherlands
| | - Antje C Knopf
- Institut für Medizintechnik und Medizininformatik Hochschule für Life Sciences FHNW, Muttenz, Switzerland
| | - Haibo Lin
- New York Proton Center, New York, NY, USA
| | - Astrid Moerman
- Department of Medical Physics & Informatics, HollandPTC, Delft, The Netherlands
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Antoni Rucinski
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Reinhard Schulte
- Division of Biomedical Engineering Sciences, School of Medicine, Loma Linda University
| | - Shing Shimizu
- Department of Carbon Ion Radiotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kristin Stützer
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden – Rossendorf, Institute of Radiooncology – OncoRay, Dresden, Germany
| | - Xiaodong Zhang
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Katarzyna Czerska
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland
| |
Collapse
|