1
|
Gong Z, Li J, Han Y, Chen S, Wang L. Nomogram combining dual-energy computed tomography features and radiomics for differentiating parotid warthin tumor from pleomorphic adenoma: a retrospective study. Front Oncol 2025; 15:1505385. [PMID: 40104493 PMCID: PMC11914106 DOI: 10.3389/fonc.2025.1505385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/27/2025] [Indexed: 03/20/2025] Open
Abstract
Introduction Accurate differentiation between pleomorphic adenomas (PA) and Warthin tumors (WT) in the parotid gland is challenging owing to overlapping imaging features. This study aimed to evaluate a nomogram combining dual-energy computed tomography (DECT) quantitative parameters and radiomics to enhance diagnostic precision. Methods This retrospective study included 120 patients with pathologically confirmed PA or WT, randomly divided into training and test sets (7:3). DECT features, including tumor CT values from 70 keV virtual monochromatic images (VMIs), iodine concentration (IC), and normalized IC (NIC), were analyzed. Independent predictors were identified via logistic regression. Radiomic features were extracted from segmented regions of interest and filtered using the K-best and least absolute shrinkage and selection operator. Radiomic models based on 70 keV VMIs and material decomposition images were developed using logistic regression (LR), support vector machine (SVM), and random forest (RF). The best-performing radiomics model was combined with independent DECT predictors to construct a model and nomogram. Model performance was assessed using ROC curves, calibration curves, and decision curve analysis (DCA). Results IC (venous phase), NIC (arterial phase), and NIC (venous phase) were independent DECT predictors. The DECT feature model achieved AUCs of 0.842 and 0.853 in the training and test sets, respectively, outperforming the traditional radiomics model (AUCs 0.836 and 0.834, respectively). The DECT radiomics model using arterial phase water-based images with LR showed improved performance (AUCs 0.883 and 0.925). The combined model demonstrated the highest discrimination power, with AUCs of 0.910 and 0.947. The combined model outperformed the DECT features and conventional radiomics models, with AUCs of 0.910 and 0.947, respectively (P<0.05). While the difference in AUC between the combined model and the DECT radiomics model was not statistically significant (P>0.05), it showed higher specificity, accuracy, and precision. DCA found that the nomogram gave the greatest net therapeutic effect across a broad range of threshold probabilities. Discussion The nomogram combining DECT features and radiomics offers a promising non-invasive tool for differentiating PA and WT in clinical practice.
Collapse
Affiliation(s)
- Zhiwei Gong
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jianying Li
- CT Imaging Research Center, GE Healthcare, Shanghai, China
| | - Yilin Han
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shiyu Chen
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lijun Wang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Sun H, Sun Z, Wang W, Cha X, Jiang Q, Wang X, Li Q, Liu S, Liu H, Chen Q, Yuan W, Xiao Y. The value of T1- and FST2-Weighted-based radiomics nomogram in differentiating pleomorphic adenoma and Warthin tumor. Transl Oncol 2024; 49:102087. [PMID: 39159554 PMCID: PMC11380391 DOI: 10.1016/j.tranon.2024.102087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/23/2024] [Accepted: 08/11/2024] [Indexed: 08/21/2024] Open
Abstract
PURPOSE To establish a radiomics nomogram based on MRI radiomics features combined with clinical characteristics for distinguishing pleomorphic adenoma (PA) from warthin tumor (WT). METHODS 294 patients with PA (n = 159) and WT (n = 135) confirmed by histopathology were included in this study between July 2017 and June 2023. Clinical factors including clinical data and MRI features were analyzed to establish clinical model. 10 MRI radiomics features were extracted and selected from T1WI and FS-T2WI, used to establish radiomics model and calculate radiomics scores (Rad-scores). Clinical factors and Rad-scores were combined to serve as crucial parameters for combined model. Through Receiver operator characteristics (ROC) curve and decision curve analysis (DCA), the discriminative values of the three models were qualified and compared, the best-performing combined model was visualized in the form of a radiomics nomogram. RESULTS The combined model demonstrated excellent discriminative performance for PA and WT in the training set (AUC=0.998) and testing set (AUC=0.993) and performed better compared with the clinical model and radiomics model in the training set (AUC=0.996, 0.952) and testing model (AUC=0.954, 0.849). The DCA showed that the combined model provided more overall clinical usefulness in distinguishing parotid PA from WT than another two models. CONCLUSION An analytical radiomics nomogram based on MRI radiomics features, incorporating clinical factors, can effectively distinguish between PA and WT.
Collapse
Affiliation(s)
- Hongbiao Sun
- Department of Radiology, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Zuoheng Sun
- Department of Otolaryngology, Changzheng Hospital, Navy Medical University, Shanghai, China; Department of Otolaryngology, Naval Specialty Medical Center, Naval Medical University, Shanghai, China
| | - Wenwen Wang
- Department of Neurology, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Xudong Cha
- Department of Otolaryngology, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Qinling Jiang
- Department of Radiology, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Xiang Wang
- Department of Radiology, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Qingchu Li
- Department of Radiology, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Shiyuan Liu
- Department of Radiology, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Huanhai Liu
- Department of Otolaryngology, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Qi Chen
- Department of Radiology, Changzheng Hospital, Navy Medical University, Shanghai, China; Department of Radiology, Kunshan Third People's Hospital, Kunshan, Jiangsu, China
| | - Weimin Yuan
- Department of Radiology, Changzheng Hospital, Navy Medical University, Shanghai, China; Department of Radiology, Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao, China
| | - Yi Xiao
- Department of Radiology, Changzheng Hospital, Navy Medical University, Shanghai, China.
| |
Collapse
|
3
|
Mao Y, Jiang LP, Wang JL, Diao YH, Chen FQ, Zhang WP, Chen L, Liu ZX. Multi-feature Fusion Network on Gray Scale Ultrasonography: Effective Differentiation of Adenolymphoma and Pleomorphic Adenoma. Acad Radiol 2024; 31:4396-4407. [PMID: 38871552 DOI: 10.1016/j.acra.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
RATIONALE AND OBJECTIVES to develop a deep learning radiomics graph network (DLRN) that integrates deep learning features extracted from gray scale ultrasonography, radiomics features and clinical features, for distinguishing parotid pleomorphic adenoma (PA) from adenolymphoma (AL) MATERIALS AND METHODS: A total of 287 patients (162 in training cohort, 70 in internal validation cohort and 55 in external validation cohort) from two centers with histologically confirmed PA or AL were enrolled. Deep transfer learning features and radiomics features extracted from gray scale ultrasound images were input to machine learning classifiers including logistic regression (LR), support vector machines (SVM), KNN, RandomForest (RF), ExtraTrees, XGBoost, LightGBM, and MLP to construct deep transfer learning radiomics (DTL) models and Rad models respectively. Deep learning radiomics (DLR) models were constructed by integrating the two features and DLR signatures were generated. Clinical features were further combined with the signatures to develop a DLRN model. The performance of these models was evaluated using receiver operating characteristic (ROC) curve analysis, calibration, decision curve analysis (DCA), and the Hosmer-Lemeshow test. RESULTS In the internal validation cohort and external validation cohort, comparing to Clinic (AUC=0.767 and 0.777), Rad (AUC=0.841 and 0.748), DTL (AUC=0.740 and 0.825) and DLR (AUC=0.863 and 0.859), the DLRN model showed greatest discriminatory ability (AUC=0.908 and 0.908) showed optimal discriminatory ability. CONCLUSION The DLRN model built based on gray scale ultrasonography significantly improved the diagnostic performance for benign salivary gland tumors. It can provide clinicians with a non-invasive and accurate diagnostic approach, which holds important clinical significance and value. Ensemble of multiple models helped alleviate overfitting on the small dataset compared to using Resnet50 alone.
Collapse
Affiliation(s)
- Yi Mao
- Department of Ultrasonography, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Li-Ping Jiang
- Department of Ultrasonography, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Jing-Ling Wang
- Department of Ultrasonography, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Yu-Hong Diao
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Fang-Qun Chen
- Department of Ultrasonography, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Wei-Ping Zhang
- Department of Ultrasonography, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Li Chen
- Department of Ultrasonography, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Zhi-Xing Liu
- Department of Ultrasonography, The First Affiliated Hospital of Nanchang University, Nanchang, China; Department of Ultrasonography, GanJiang New District Peoples Hospital, Nanchang, China.
| |
Collapse
|
4
|
Rao Y, Ma Y, Wang J, Xiao W, Wu J, Shi L, Guo L, Fan L. Performance of radiomics in the differential diagnosis of parotid tumors: a systematic review. Front Oncol 2024; 14:1383323. [PMID: 39119093 PMCID: PMC11306159 DOI: 10.3389/fonc.2024.1383323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Purpose A systematic review and meta-analysis were conducted to evaluate the diagnostic precision of radiomics in the differential diagnosis of parotid tumors, considering the increasing utilization of radiomics in tumor diagnosis. Although some researchers have attempted to apply radiomics in this context, there is ongoing debate regarding its accuracy. Methods Databases of PubMed, Cochrane, EMBASE, and Web of Science up to May 29, 2024 were systematically searched. The quality of included primary studies was assessed using the Radiomics Quality Score (RQS) checklist. The meta-analysis was performed utilizing a bivariate mixed-effects model. Results A total of 39 primary studies were incorporated. The machine learning model relying on MRI radiomics for diagnosis malignant tumors of the parotid gland, demonstrated a sensitivity of 0.80 [95% CI: 0.74, 0.86], SROC of 0.89 [95% CI: 0.27-0.99] in the validation set. The machine learning model based on MRI radiomics for diagnosis malignant tumors of the parotid gland, exhibited a sensitivity of 0.83[95% CI: 0.76, 0.88], SROC of 0.89 [95% CI: 0.17-1.00] in the validation set. The models also demonstrated high predictive accuracy for benign lesions. Conclusion There is great potential for radiomics-based models to improve the accuracy of diagnosing benign and malignant tumors of the parotid gland. To further enhance this potential, future studies should consider implementing standardized radiomics-based features, adopting more robust feature selection methods, and utilizing advanced model development tools. These measures can significantly improve the diagnostic accuracy of artificial intelligence algorithms in distinguishing between benign and malignant tumors of the parotid gland. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023434931.
Collapse
Affiliation(s)
- Yilin Rao
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuxi Ma
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Jinghan Wang
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Weiwei Xiao
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Jiaqi Wu
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Liang Shi
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Ling Guo
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Liyuan Fan
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
5
|
Mao Y, Jiang L, Wang JL, Chen FQ, Zhang WP, Liu ZX, Li C. Radiomic nomogram for discriminating parotid pleomorphic adenoma from parotid adenolymphoma based on grayscale ultrasonography. Front Oncol 2024; 13:1268789. [PMID: 38273852 PMCID: PMC10808803 DOI: 10.3389/fonc.2023.1268789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Objectives To differentiate parotid pleomorphic adenoma (PA) from adenolymphoma (AL) using radiomics of grayscale ultrasonography in combination with clinical features. Methods This retrospective study aimed to analyze the clinical and radiographic characteristics of 162 cases from December 2019 to March 2023. The study population consisted of a training cohort of 113 patients and a validation cohort of 49 patients. Grayscale ultrasonography was processed using ITP-Snap software and Python to delineate regions of interest (ROIs) and extract radiomic features. Univariate analysis, Spearman's correlation, greedy recursive elimination strategy, and least absolute shrinkage and selection operator (LASSO) correlation were employed to select relevant radiographic features. Subsequently, eight machine learning methods (LR, SVM, KNN, RandomForest, ExtraTrees, XGBoost, LightGBM, and MLP) were employed to build a quantitative radiomic model using the selected features. A radiomic nomogram was developed through the utilization of multivariate logistic regression analysis, integrating both clinical and radiomic data. The accuracy of the nomogram was assessed using receiver operating characteristic (ROC) curve analysis, calibration, decision curve analysis (DCA), and the Hosmer-Lemeshow test. Results To differentiate PA from AL, the radiomic model using SVM showed optimal discriminatory ability (accuracy = 0.929 and 0.857, sensitivity = 0.946 and 0.800, specificity = 0.921 and 0.897, positive predictive value = 0.854 and 0.842, and negative predictive value = 0.972 and 0.867 in the training and validation cohorts, respectively). A nomogram incorporating rad-Signature and clinical features achieved an area under the ROC curve (AUC) of 0.983 (95% confidence interval [CI]: 0.965-1) and 0.910 (95% CI: 0.830-0.990) in the training and validation cohorts, respectively. Decision curve analysis showed that the nomogram and radiomic model outperformed the clinical-factor model in terms of clinical usefulness. Conclusion A nomogram based on grayscale ultrasonic radiomics and clinical features served as a non-invasive tool capable of differentiating PA and AL.
Collapse
Affiliation(s)
- Yi Mao
- Department of Ultrasound, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - LiPing Jiang
- Department of Ultrasound, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jing-Ling Wang
- Department of Ultrasound, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Fang-Qun Chen
- Department of Ultrasound, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Wie-Ping Zhang
- Department of Ultrasound, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhi-Xing Liu
- Department of Ultrasound, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Ultrasound, GanJiang New District Peoples Hospital, Nanchang, Jiangxi, China
| | - Chen Li
- Department of Ultrasound, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Sunnetci KM, Kaba E, Celiker FB, Alkan A. Deep Network-Based Comprehensive Parotid Gland Tumor Detection. Acad Radiol 2024; 31:157-167. [PMID: 37271636 DOI: 10.1016/j.acra.2023.04.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 06/06/2023]
Abstract
RATIONALE AND OBJECTIVES Salivary gland tumors constitute 2%-6% of all head and neck tumors and are most common in the parotid gland. Magnetic resonance (MR) imaging is the most sensitive imaging modality for diagnosis. Tumor type, localization, and relationship with surrounding structures are important factors for treatment. Therefore, parotid gland tumor segmentation is important. Specialists widely use manual segmentation in diagnosis and treatment. However, considering the development of artificial intelligence-based models today, it is seen that artificial intelligence-based automatic segmentation models can be used instead of manual segmentation, which is a time-consuming technique. Therefore, we segmented parotid gland tumor (PGT) using deep learning-based architectures in the paper. MATERIALS AND METHODS The dataset used in the study includes 102 T1-w, 102 contrast-enhanced T1-w (T1C-w), and 102 T2-w MR images. After cropping the raw and manually segmented images by experts, we obtained the masks of these images. After standardizing the image sizes, we split these images into approximately 80% training set and 20% test set. Hereabouts, we trained six models for these images using ResNet18 and Xception-based DeepLab v3+. We prepared a user-friendly Graphical User Interface application that includes each of these models. RESULTS From the results, the accuracy and weighted Intersection over Union values of the ResNet18-based DeepLab v3+ architecture trained for T1C-w, which is the most successful model in the study, are equal to 0.96153 and 0.92601, respectively. Regarding the results and the literature, it can be seen that the proposed system is competitive in terms of both using MR images and training the models independently for T1-w, T1C-w, and T2-w. Expressing that PGT is usually segmented manually in the literature, we predict that our study can contribute significantly to the literature. CONCLUSION In this study, we prepared and presented a software application that can be easily used by users for automatic PGT segmentation. In addition to predicting the reduction of costs and workload through the study, we developed models with meaningful performance metrics according to the literature.
Collapse
Affiliation(s)
- Kubilay Muhammed Sunnetci
- Osmaniye Korkut Ata University, Department of Electrical and Electronics Engineering, Osmaniye 80000, Turkey (K.M.S.); Kahramanmaraş Sütçü İmam University, Department of Electrical and Electronics Engineering, Kahramanmaraş 46050, Turkey (K.M.S., A.A.).
| | - Esat Kaba
- Recep Tayyip Erdogan University, Department of Radiology, Rize, Turkey (E.K., F.B.C.)
| | - Fatma Beyazal Celiker
- Recep Tayyip Erdogan University, Department of Radiology, Rize, Turkey (E.K., F.B.C.)
| | - Ahmet Alkan
- Kahramanmaraş Sütçü İmam University, Department of Electrical and Electronics Engineering, Kahramanmaraş 46050, Turkey (K.M.S., A.A.)
| |
Collapse
|
7
|
Yimit Y, Yasin P, Tuersun A, Abulizi A, Jia W, Wang Y, Nijiati M. Differentiation between cerebral alveolar echinococcosis and brain metastases with radiomics combined machine learning approach. Eur J Med Res 2023; 28:577. [PMID: 38071384 PMCID: PMC10709961 DOI: 10.1186/s40001-023-01550-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Cerebral alveolar echinococcosis (CAE) and brain metastases (BM) share similar in locations and imaging appearance. However, they require distinct treatment approaches, with CAE typically treated with chemotherapy and surgery, while BM is managed with radiotherapy and targeted therapy for the primary malignancy. Accurate diagnosis is crucial due to the divergent treatment strategies. PURPOSE This study aims to evaluate the effectiveness of radiomics and machine learning techniques based on magnetic resonance imaging (MRI) to differentiate between CAE and BM. METHODS We retrospectively analyzed MRI images of 130 patients (30 CAE and 100 BM) from Xinjiang Medical University First Affiliated Hospital and The First People's Hospital of Kashi Prefecture, between January 2014 and December 2022. The dataset was divided into training (91 cases) and testing (39 cases) sets. Three dimensional tumors were segmented by radiologists from contrast-enhanced T1WI images on open resources software 3D Slicer. Features were extracted on Pyradiomics, further feature reduction was carried out using univariate analysis, correlation analysis, and least absolute shrinkage and selection operator (LASSO). Finally, we built five machine learning models, support vector machine, logistic regression, linear discrimination analysis, k-nearest neighbors classifier, and Gaussian naïve bias and evaluated their performance via several metrics including sensitivity (recall), specificity, positive predictive value (precision), negative predictive value, accuracy and the area under the curve (AUC). RESULTS The area under curve (AUC) of support vector classifier (SVC), linear discrimination analysis (LDA), k-nearest neighbors (KNN), and gaussian naïve bias (NB) algorithms in training (testing) sets are 0.99 (0.94), 1.00 (0.87), 0.98 (0.92), 0.97 (0.97), and 0.98 (0.93), respectively. Nested cross-validation demonstrated the robustness and generalizability of the models. Additionally, the calibration plot and decision curve analysis demonstrated the practical usefulness of these models in clinical practice, with lower bias toward different subgroups during decision-making. CONCLUSION The combination of radiomics and machine learning approach based on contrast enhanced T1WI images could well distinguish CAE and BM. This approach holds promise in assisting doctors with accurate diagnosis and clinical decision-making.
Collapse
Affiliation(s)
- Yasen Yimit
- Medical Imaging Center, The First People's Hospital of Kashi (Kashgar) Prefecture, Kashi, 844000, People's Republic of China
| | - Parhat Yasin
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Abuduresuli Tuersun
- Medical Imaging Center, The First People's Hospital of Kashi (Kashgar) Prefecture, Kashi, 844000, People's Republic of China
| | - Abudoukeyoumujiang Abulizi
- Medical Imaging Center, The First People's Hospital of Kashi (Kashgar) Prefecture, Kashi, 844000, People's Republic of China
| | - Wenxiao Jia
- Medical Imaging Center, Xinjiang Medical University Affiliated First Hospital, Urumqi, 830054, People's Republic of China
| | - Yunling Wang
- Medical Imaging Center, Xinjiang Medical University Affiliated First Hospital, Urumqi, 830054, People's Republic of China
| | - Mayidili Nijiati
- Medical Imaging Center, The First People's Hospital of Kashi (Kashgar) Prefecture, Kashi, 844000, People's Republic of China.
| |
Collapse
|