1
|
Chen Z, Bian Y, Shen E, Fan L, Zhu W, Shi F, Shao C, Chen X, Xiang D. Moment-Consistent Contrastive CycleGAN for Cross-Domain Pancreatic Image Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:422-435. [PMID: 39167524 DOI: 10.1109/tmi.2024.3447071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
CT and MR are currently the most common imaging techniques for pancreatic cancer diagnosis. Accurate segmentation of the pancreas in CT and MR images can provide significant help in the diagnosis and treatment of pancreatic cancer. Traditional supervised segmentation methods require a large number of labeled CT and MR training data, which is usually time-consuming and laborious. Meanwhile, due to domain shift, traditional segmentation networks are difficult to be deployed on different imaging modality datasets. Cross-domain segmentation can utilize labeled source domain data to assist unlabeled target domains in solving the above problems. In this paper, a cross-domain pancreas segmentation algorithm is proposed based on Moment-Consistent Contrastive Cycle Generative Adversarial Networks (MC-CCycleGAN). MC-CCycleGAN is a style transfer network, in which the encoder of its generator is used to extract features from real images and style transfer images, constrain feature extraction through a contrastive loss, and fully extract structural features of input images during style transfer while eliminate redundant style features. The multi-order central moments of the pancreas are proposed to describe its anatomy in high dimensions and a contrastive loss is also proposed to constrain the moment consistency, so as to maintain consistency of the pancreatic structure and shape before and after style transfer. Multi-teacher knowledge distillation framework is proposed to transfer the knowledge from multiple teachers to a single student, so as to improve the robustness and performance of the student network. The experimental results have demonstrated the superiority of our framework over state-of-the-art domain adaptation methods.
Collapse
|
2
|
Xu W, Li C, Bian Y, Meng Q, Zhu W, Shi F, Chen X, Shao C, Xiang D. Cross-Modal Consistency for Single-Modal MR Image Segmentation. IEEE Trans Biomed Eng 2024; 71:2557-2567. [PMID: 38512744 DOI: 10.1109/tbme.2024.3380058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
OBJECTIVE Multi-modal magnetic resonance (MR) image segmentation is an important task in disease diagnosis and treatment, but it is usually difficult to obtain multiple modalities for a single patient in clinical applications. To address these issues, a cross-modal consistency framework is proposed for a single-modal MR image segmentation. METHODS To enable single-modal MR image segmentation in the inference stage, a weighted cross-entropy loss and a pixel-level feature consistency loss are proposed to train the target network with the guidance of the teacher network and the auxiliary network. To fuse dual-modal MR images in the training stage, the cross-modal consistency is measured according to Dice similarity entropy loss and Dice similarity contrastive loss, so as to maximize the prediction similarity of the teacher network and the auxiliary network. To reduce the difference in image contrast between different MR images for the same organs, a contrast alignment network is proposed to align input images with different contrasts to reference images with a good contrast. RESULTS Comprehensive experiments have been performed on a publicly available prostate dataset and an in-house pancreas dataset to verify the effectiveness of the proposed method. Compared to state-of-the-art methods, the proposed method can achieve better segmentation. CONCLUSION The proposed image segmentation method can fuse dual-modal MR images in the training stage and only need one-modal MR images in the inference stage. SIGNIFICANCE The proposed method can be used in routine clinical occasions when only single-modal MR image with variable contrast is available for a patient.
Collapse
|
3
|
Liu Z, Kainth K, Zhou A, Deyer TW, Fayad ZA, Greenspan H, Mei X. A review of self-supervised, generative, and few-shot deep learning methods for data-limited magnetic resonance imaging segmentation. NMR IN BIOMEDICINE 2024; 37:e5143. [PMID: 38523402 DOI: 10.1002/nbm.5143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/26/2024]
Abstract
Magnetic resonance imaging (MRI) is a ubiquitous medical imaging technology with applications in disease diagnostics, intervention, and treatment planning. Accurate MRI segmentation is critical for diagnosing abnormalities, monitoring diseases, and deciding on a course of treatment. With the advent of advanced deep learning frameworks, fully automated and accurate MRI segmentation is advancing. Traditional supervised deep learning techniques have advanced tremendously, reaching clinical-level accuracy in the field of segmentation. However, these algorithms still require a large amount of annotated data, which is oftentimes unavailable or impractical. One way to circumvent this issue is to utilize algorithms that exploit a limited amount of labeled data. This paper aims to review such state-of-the-art algorithms that use a limited number of annotated samples. We explain the fundamental principles of self-supervised learning, generative models, few-shot learning, and semi-supervised learning and summarize their applications in cardiac, abdomen, and brain MRI segmentation. Throughout this review, we highlight algorithms that can be employed based on the quantity of annotated data available. We also present a comprehensive list of notable publicly available MRI segmentation datasets. To conclude, we discuss possible future directions of the field-including emerging algorithms, such as contrastive language-image pretraining, and potential combinations across the methods discussed-that can further increase the efficacy of image segmentation with limited labels.
Collapse
Affiliation(s)
- Zelong Liu
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Komal Kainth
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alexander Zhou
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Timothy W Deyer
- East River Medical Imaging, New York, New York, USA
- Department of Radiology, Cornell Medicine, New York, New York, USA
| | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hayit Greenspan
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Xueyan Mei
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|