Sakai M, Tamaki S, Murata I, Parajuli RK, Matsumura A, Kubo N, Tashiro M. Experimental study on Compton camera for boron neutron capture therapy applications.
Sci Rep 2023;
13:22883. [PMID:
38129553 PMCID:
PMC10739814 DOI:
10.1038/s41598-023-49955-9]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is a high-dose-intensive radiation therapy that has gained popularity due to advancements in accelerator neutron sources. To determine the dose for BNCT, it is necessary to know the difficult-to-determine boron concentration and neutron fluence. To estimate this dose, we propose a method of measuring the prompt γ-rays (PGs) from the boron neutron capture reaction (BNCR) using a Compton camera. We performed a fundamental experiment to verify basic imaging performance and the ability to discern the PGs from 511 keV annihilation γ-rays. A Si/CdTe Compton camera was used to image the BNCR and showed an energy peak of 478 keV PGs, separate from the annihilation γ-ray peak. The Compton camera could visualize the boron target with low neutron intensity and high boron concentration. This study experimentally confirms the ability of Si/CdTe Compton cameras to image BNCRs.
Collapse