1
|
Gebauer B, Gantz S, Kunath D, Hoffmann A, Pawelke J, Horst F. Characterization of a Commercial Ionization Chamber Array With Scanned Proton Beams for Applications in MRI-Guided Proton Therapy. Med Phys 2025. [PMID: 40358657 DOI: 10.1002/mp.17875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 03/20/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND The integration of MRI-guidance and proton therapy is a current research topic. Proton therapy with the patient being placed inside an in-beam MR scanner would require the presence of its static magnetic (B 0 $B_0$ ) field to be taken into account in dose calculation and treatment planning. Therefore, dosimetric tools are needed to characterize dose distributions in presence of theB 0 $B_0$ field of the MR scanner. Furthermore, patient-specific quality assurance (QA) and treatment plan verification measurements should also be performed within the magnetic field. PURPOSE In this work, the PTW Octavius 1500M R $^{MR}$ ionization chamber array was characterized experimentally and tested for its suitability as a dosimetric tool for beam characterization and QA in MRI-guided proton therapy. METHODS The dose rate response, response homogeneity and effective measurement depth of the detector were determined in experiments with scanned proton beams delivered by a horizontal beamline at OncoRay, Dresden. A patient-specific QA test including gamma analysis was performed for a realistic proton patient treatment plan at two different distances from the beam nozzle. In addition, experiments were performed in a0.32 T $0.32 \ \mathrm{T}$ in-beam MR scanner. These included measurements of square reference scanning patterns at different proton energies as well as measurements of a two-field patient treatment plan at different water equivalent depths. RESULTS The dose rate response was found to be linear up to80 Gy/min $80 \ \text{Gy/min}$ . The effective measurement depth was determined to be8.1 ± 0.2 mm $8.1 \pm 0.2 \ \mathrm{mm}$ . The response homogeneity was found to be suitable for the verification of proton treatment plans. The patient-specific QA test without magnetic field was satisfactory and also the measurements inside the0.32 T $0.32 \ \mathrm{T}$ in-beam MR scanner provided reasonable results. Their comparison allowed an assessment of the magnetic field effects on the dose distributions. CONCLUSIONS Concluding from these tests, the Octavius 1500M R $^{MR}$ was found to be suitable for use as a dosimetric tool in MRI-guided proton therapy.
Collapse
Affiliation(s)
- Benjamin Gebauer
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Sebastian Gantz
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Daniela Kunath
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Aswin Hoffmann
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jörg Pawelke
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Felix Horst
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| |
Collapse
|
2
|
Klüter S, Milewski K, Johnen W, Brons S, Naumann J, Dorsch S, Beyer C, Paul K, Dietrich KA, Platt T, Debus J, Bauer J. First dosimetric evaluation of clinical raster-scanned proton, helium and carbon ion treatment plan delivery during simultaneous real-time magnetic resonance imaging. Phys Imaging Radiat Oncol 2025; 33:100722. [PMID: 40026908 PMCID: PMC11870259 DOI: 10.1016/j.phro.2025.100722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/23/2025] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
This work presents an experimental dosimetric evaluation of raster-scanning particle beam delivery during simultaneous in-beam magnetic resonance (MR) imaging. Using an open MR scanner at an experimental treatment room, radiochromic film comparisons for protons, helium and carbon ions, each with and without simultaneous in-beam cine MR imaging, yielded 2D gamma pass rates ≥ 98.8 % for a 3 % / 1.5 mm criterion, and ≥ 99.9 % for 5 % / 1.5 mm. These results constitute a first experimental confirmation that time varying magnetic fields of MR gradients do not result in clinically relevant additional dose perturbations.
Collapse
Affiliation(s)
- Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Baden-Württemberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Baden-Württemberg, Germany
| | - Karolin Milewski
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Baden-Württemberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Baden-Württemberg, Germany
| | - Wibke Johnen
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Baden-Württemberg, Germany
- Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Stephan Brons
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Baden-Württemberg, Germany
| | - Jakob Naumann
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Baden-Württemberg, Germany
| | - Stefan Dorsch
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Baden-Württemberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Baden-Württemberg, Germany
| | - Cedric Beyer
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Baden-Württemberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Baden-Württemberg, Germany
| | - Katharina Paul
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Baden-Württemberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Baden-Württemberg, Germany
| | - Kilian A. Dietrich
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Baden-Württemberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Baden-Württemberg, Germany
- Medical Physics in Radiology, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Tanja Platt
- Medical Physics in Radiology, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Baden-Württemberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Baden-Württemberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Baden-Württemberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Baden-Württemberg, Germany
- German Cancer Consortium (DKTK), Core-center Heidelberg, Heidelberg, Baden-Württemberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - Julia Bauer
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Baden-Württemberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Baden-Württemberg, Germany
| |
Collapse
|
3
|
Fujii Y, Ueda H, Takayanagi T, Nishioka K, Mori T, Hashimoto T, Aoyama H, Umegaki K, Matsuura T. A simulation study of MR-guided proton therapy system using iron-yoked superconducting open MRI: a conceptual study. JOURNAL OF RADIATION RESEARCH 2024; 65:824-835. [PMID: 39365681 PMCID: PMC11629991 DOI: 10.1093/jrr/rrae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/20/2024] [Indexed: 10/06/2024]
Abstract
Radiotherapy platforms integrated with magnetic resonance imaging (MRI) have been significantly successful and widely used in X-ray therapy over the previous decade. MRI provides greater soft-tissue contrast than conventional X-ray techniques, which enables more precise radiotherapy with on-couch adaptive treatment planning and direct tracking of moving tumors. The integration of MRI into a proton beam irradiation system (PBS) is still in the research stage. However, this could be beneficial as proton therapy is more sensitive to anatomical changes and organ motion. In this simulation study, we considered the integration of PBS into the 0.3-T superconducting open MRI system. Our proposed design involves proton beams traversing a hole at the center of the iron yoke, which allows for a reduced fringe field in the irradiation nozzle while maintaining a large proton scan field of the current PBS. The shape of the bipolar MRI magnets was derived to achieve a large MRI field-of-view. To monitor the beam position and size accurately while maintaining a small beam size, the beam monitor installation was redesigned from the current system. The feasibility of this system was then demonstrated by the treatment plan quality, which showed that the magnetic field did not deteriorate the plan quality from that without the magnetic field for both a rectangular target and a prostate case. Although numerous challenges remain before the proposed simulation model can be implemented in a clinical setting, the presented conceptual design could assist in the initial design for the realization of the MR-guided proton therapy.
Collapse
Affiliation(s)
- Yusuke Fujii
- Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
- Hitachi Ltd., 1-1 7-chome, Omika-cho, Hitachi-shi, Ibaraki, 319-1292, Japan
| | - Hideaki Ueda
- Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Taisuke Takayanagi
- Hitachi Ltd., 1-1 7-chome, Omika-cho, Hitachi-shi, Ibaraki, 319-1292, Japan
| | - Kentaro Nishioka
- Department of Radiation Oncology, Faculty and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Takashi Mori
- Department of Radiation Oncology, Faculty and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Takayuki Hashimoto
- Department of Radiation Oncology, Faculty and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hidefumi Aoyama
- Department of Radiation Oncology, Faculty and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Kikuo Umegaki
- Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Taeko Matsuura
- Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
- Department of Medical Physics, Hokkaido University Hospital, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| |
Collapse
|
4
|
Blum I, Wong JS, Godino Padre K, Stolzenberg J, Fuchs H, Baumann KS, Poppe B, Looe HK. Fano cavity test and investigation of the response of the Roos chamber irradiated by proton beams in perpendicular magnetic fields up to 1 T. Phys Med Biol 2024; 69:085021. [PMID: 38452383 DOI: 10.1088/1361-6560/ad311a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
Objective. The aim of this work is to investigate the response of the Roos chamber (type 34001) irradiated by clinical proton beams in magnetic fields.Approach. At first, a Fano test was implemented in Monte Carlo software package GATE version 9.2 (based on Geant4 version 11.0.2) using a cylindrical slab geometry in a magnetic field up to 1 T. In accordance to an experimental setup (Fuchset al2021), the magnetic field correction factorskQB⃗of the Roos chamber were determined at different energies up to 252 MeV and magnetic field strengths up to 1 T, by separately simulating the ratios of chamber signalsMQ/MQB⃗,without and with magnetic field, and the dose-conversion factorsDw,QB⃗/Dw,Qin a small cylinder of water, with and without magnetic field. Additionally, detailed simulations were carried out to understand the observed magnetic field dependence.Main results. The Fano test was passed with deviations smaller than 0.25% between 0 and 1 T. The ratios of the chamber signals show both energy and magnetic field dependence. The maximum deviation of the dose-conversion factors from unity of 0.22% was observed at the lowest investigated proton energy of 97.4 MeV andB⃗= 1 T. The resultingkQB⃗factors increase initially with the applied magnetic field and decrease again after reaching a maximum at around 0.5 T; except for the lowest 97.4 MeV beam that show no observable magnetic field dependence. The deviation from unity of the factors is also larger for higher proton energies, where the maximum lies at 1.0035(5), 1.0054(7) and 1.0069(7) for initial energies ofE0= 152, 223.4 and 252 MeV, respectively.Significance. Detailed Monte Carlo studies showed that the observed effect can be mainly attributed to the differences in the transport of electrons produced both outside and inside of the air cavity in the presence of a magnetic field.
Collapse
Affiliation(s)
- Isabel Blum
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Jing Syuen Wong
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Krishna Godino Padre
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Jessica Stolzenberg
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Hermann Fuchs
- Division of Medical Physics, Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Kilian-Simon Baumann
- University Hospital Giessen-Marburg, Department of Radiotherapy and Radiooncology, Marburg, Germany
- University of Applied Sciences, Institute of Medical Physics and Radiation Protection, Giessen, Germany
- Marburg Ion-Beam Therapy Center, Marburg, Germany
| | - Björn Poppe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Hui Khee Looe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
5
|
Gebauer B, Baumann KS, Fuchs H, Georg D, Oborn BM, Looe HK, Lühr A. Proton dosimetry in a magnetic field: Measurement and calculation of magnetic field correction factors for a plane-parallel ionization chamber. Med Phys 2024; 51:2293-2305. [PMID: 37898105 DOI: 10.1002/mp.16797] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND The combination of magnetic resonance imaging and proton therapy offers the potential to improve cancer treatment. The magnetic field (MF)-dependent change in the dosage of ionization chambers in magnetic resonance imaging-integrated proton therapy (MRiPT) is considered by the correction factork B ⃗ , M , Q $k_{\vec{B},M,Q}$ , which needs to be determined experimentally or computed via Monte Carlo (MC) simulations. PURPOSE In this study,k B ⃗ , M , Q $k_{\vec{B},M,Q}$ was both measured and simulated with high accuracy for a plane-parallel ionization chamber at different clinical relevant proton energies and MF strengths. MATERIAL AND METHODS The dose-response of the Advanced Markus chamber (TM34045, PTW, Freiburg, Germany) irradiated with homogeneous 10 × $\times$ 10 cm2 $^2$ quasi mono-energetic fields, using 103.3, 128.4, 153.1, 223.1, and 252.7 MeV proton beams was measured in a water phantom placed in the MF of an electromagnet with MF strengths of 0.32, 0.5, and 1 T. The detector was positioned at a depth of 2 g/cm2 $^2$ in water, with chamber electrodes parallel to the MF lines and perpendicular to the proton beam incidence direction. The measurements were compared with TOPAS MC simulations utilizing COMSOL-calculated 0.32, 0.5, and 1 T MF maps of the electromagnet.k B ⃗ , M , Q $k_{\vec{B},M,Q}$ was calculated for the measurements for all energies and MF strengths based on the equation:k B ⃗ , M , Q = M Q M Q B ⃗ $k_{\vec{B},M,Q}=\frac{M_\mathrm{Q}}{M_\mathrm{Q}^{\vec{B}}}$ , whereM Q B ⃗ $M_\mathrm{Q}^{\vec{B}}$ andM Q $M_\mathrm{Q}$ were the temperature and air-pressure corrected detector readings with and without the MF, respectively. MC-based correction factors were determined ask B ⃗ , M , Q = D det D det B ⃗ $k_{\vec{B},M,Q}=\frac{D_\mathrm{det}}{D_\mathrm{det}^{\vec{B}}}$ , whereD det B ⃗ $D_\mathrm{det}^{\vec{B}}$ andD det $D_\mathrm{det}$ were the doses deposited in the air cavity of the ionization chamber model with and without the MF, respectively. Furthermore, MF effects on the chamber dosimetry are studied using MC simulations, examining the impact on the absorbed dose-to-water (D W $D_{W}$ ) and the shift in depth of the Bragg peak. RESULTS The detector showed a reduced dose-response for all measured energies and MF strengths, resulting in experimentally determinedk B ⃗ , M , Q $k_{\vec{B},M,Q}$ values larger than unity. For all energies and MF strengths examined,k B ⃗ , M , Q $k_{\vec{B},M,Q}$ ranged between 1.0065 and 1.0205. The dependence on the energy and the MF strength was found to be non-linear with a maximum at 1 T and 252.7 MeV. The MC simulatedk B ⃗ , M , Q $k_{\vec{B},M,Q}$ values agreed with the experimentally determined correction factors within their standard deviations with a maximum difference of 0.6%. The MC calculated impact onD W $D_{W}$ was smaller 0.2 %. CONCLUSION For the first time, measurements and simulations were compared for proton dosimetry within MFs using an Advanced Markus chamber. Good agreement ofk B ⃗ , M , Q $k_{\vec{B},M,Q}$ was found between experimentally determined and MC calculated values. The performed benchmarking of the MC code allows for calculatingk B ⃗ , M , Q $k_{\vec{B},M,Q}$ for various ionization chamber models, MF strengths and proton energies to generate the data needed for a proton dosimetry protocol within MFs and is, therefore, a step towards MRiPT.
Collapse
Affiliation(s)
- Benjamin Gebauer
- OncoRay National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Institute of Radiooncology-OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Kilian-Simon Baumann
- Department of Radiotherapy and Radiooncology, University Medical Center Giessen-Marburg, Marburg, Germany
- University of Applied Sciences, Institute of Medical Physics and Radiation Protection, Giessen, Germany
- Ion-Beam Therapy Center, Marburg, Germany
| | - Hermann Fuchs
- Department of Radiation Oncology, Medical University of Vienna, Wien, Austria
- MedAustron Iontherapy centre, Wiener Neustadt, Austria
| | - Dietmar Georg
- Department of Radiation Oncology, Medical University of Vienna, Wien, Austria
- MedAustron Iontherapy centre, Wiener Neustadt, Austria
| | - Brad M Oborn
- Institute of Radiooncology-OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
- Illawarra Cancer Care Centre, Wollongong, New South Wales, Australia
| | - Hui-Khee Looe
- Department for Radiotherapy and Radiooncology, Pius Hospital, Medical Campus Carl von Ossietzky University, Oldenburg, Germany
| | - Armin Lühr
- Department of Physics, TU Dortmund University, Dortmund, Germany
| |
Collapse
|