1
|
Gao Y, Yu Q, Yang H, Zhang J, Wang W. The Enormous Potential of Sodium/Potassium-Ion Batteries as the Mainstream Energy Storage Technology for Large-Scale Commercial Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405989. [PMID: 38943573 DOI: 10.1002/adma.202405989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/10/2024] [Indexed: 07/01/2024]
Abstract
Cost-effectiveness plays a decisive role in sustainable operating of rechargeable batteries. As such, the low cost-consumption of sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) provides a promising direction for "how do SIBs/PIBs replace Li-ion batteries (LIBs) counterparts" based on their resource abundance and advanced electrochemical performance. To rationalize the SIBs/PIBs technologies as alternatives to LIBs from the unit energy cost perspective, this review gives the specific criteria for their energy density at possible electrode-price grades and various battery-longevity levels. The cost ($ kWh-1 cycle-1) advantage of SIBs/PIBs is ascertained by the cheap raw-material compensation for the cycle performance deficiency and the energy density gap with LIBs. Furthermore, the cost comparison between SIBs and PIBs, especially on cost per kWh and per cycle, is also involved. This review explicitly manifests the practicability and cost-effectiveness toward SIBs are superior to PIBs whose commercialization has so far been hindered by low energy density. Even so, the huge potential on sustainability of PIBs, to outperform SIBs, as the mainstream energy storage technology is revealed as long as PIBs achieve long cycle life or enhanced energy density, the related outlook of which is proceeded as the next development directions for commercial applications.
Collapse
Affiliation(s)
- Yanjun Gao
- State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing, 100081, China
| | - Qiyao Yu
- State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing, 100081, China
| | - Huize Yang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jianguo Zhang
- State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing, 100081, China
| | - Wei Wang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
2
|
Denikaev A, Kuznetsova Y, Bykov A, Zhilyakov A, Belova K, Abramov P, Moskalenko N, Skorb E, Grzhegorzhevskii K. Keplerate {Mo 132}-Stearic Acid Conjugates: Supramolecular Synthons for the Design of Dye-Loaded Nanovesicles, Langmuir-Schaefer Films, and Infochemical Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7430-7443. [PMID: 38299992 DOI: 10.1021/acsami.3c16374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Self-assembly gives rise to the versatile strategies of smart material design but requires precise control on the supramolecular level. Here, inorganic-organic synthons (conjugates) are produced by covalently grafting stearic acid tails to giant polyoxometalate (POM) Keplerate-type {Mo132} through an organosilicon linker (3-aminopropyltrimethoxysilane, APTMS). Using the liposome production approach, the synthons self-assemble to form hollow nanosized vesicles (100-200 nm in diameter), which can be loaded with organic dyes─eriochrome black T (ErChB) and fluorescein (FL)─where the POM layer serves as a membrane with subnanopores for cell-like communication. The dye structure plays an essential role in embedding dyes into the vesicle's shell, which opens the way to control the colloidal stability of the system. The produced vesicles are moved by an electric field and used for the creation of an infochemistry scheme with three types of logic gates (AND, OR, and IMP). To design 2D materials, synthons can form spread films, from simple addition on the water-air interface to lateral compression in the Langmuir bath, and highly ordered structures appear, demonstrating electron diffraction in Langmuir-Schaefer (LS) films. These results show the significant potential of POM-based synthons and nanosized vesicles to supramolecular design the diversity of smart materials.
Collapse
Affiliation(s)
- Andrey Denikaev
- Ural Federal University, 19 Mira St., 620002 Ekaterinburg, Russia
| | - Yulia Kuznetsova
- Institute of Solid State Chemistry of the Ural Branch of the RAS, 91, Pervomaiskaya St., 620990 Ekaterinburg, Russia
| | - Alexey Bykov
- Institute of Chemistry, St. Petersburg State University, Universitetsky pr. 26, 198504 St. Petersburg, Russia
| | - Arkadiy Zhilyakov
- Ural Federal University, 19 Mira St., 620002 Ekaterinburg, Russia
- M.N. Mikheev lnstitute of Metal Physics of Ural Branch of RAS,18 S. Kovalevskaya St., 620108 Ekaterinburg, Russia
| | - Ksenia Belova
- Ural Federal University, 19 Mira St., 620002 Ekaterinburg, Russia
- Institute of High Temperature Electrochemistry of the Ural Branch of RAS, 22 S. Kovalevskoy St./20 Akademicheskaya St., 620066 Ekaterinburg, Russia
| | - Pavel Abramov
- Ural Federal University, 19 Mira St., 620002 Ekaterinburg, Russia
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Nikolai Moskalenko
- Institute of High Temperature Electrochemistry of the Ural Branch of RAS, 22 S. Kovalevskoy St./20 Akademicheskaya St., 620066 Ekaterinburg, Russia
| | - Ekaterina Skorb
- Infochemistry Scientific Center, ITMO University, Kronverksky Pr. 49, bldg. A, 197101 St. Petersburg, Russia
| | | |
Collapse
|
3
|
Lai QS, Li XX, Zheng ST. All-inorganic POM cages and their assembly: A review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
4
|
Application of Heteronuclear NMR Spectroscopy to Bioinorganic and Medicinal Chemistry ☆. REFERENCE MODULE IN CHEMISTRY, MOLECULAR SCIENCES AND CHEMICAL ENGINEERING 2018. [PMCID: PMC7157447 DOI: 10.1016/b978-0-12-409547-2.10947-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Mahon E, Garai S, Müller A, Barboiu M. Biomimetic Approach for Ion Channels Based on Surfactant Encapsulated Spherical Porous Metal-Oxide Capsules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:5165-5170. [PMID: 26248195 DOI: 10.1002/adma.201501255] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/28/2015] [Indexed: 06/04/2023]
Abstract
Distinguished hybrid clusters with hydrophilic and hydrophobic interiors embedded within cationic surfactant shells are spontaneously inserted into lipid bilayers, showing well-defined ionic conductance behaviors. The transport via the narrow pore gates acting as selectivity filters is controlled by the dehydration energy of the cations.
Collapse
Affiliation(s)
- Eugene Mahon
- Adaptive Supramolecular Nanosystems Group, Institut Européen des Membranes, ENSCM-UMII-CNRS UMR-5635, Place Eugène Bataillon, CC 047, F-34095, Montpellier, France
| | - Somenath Garai
- Universität Bielefeld, Fakultät für Chemie, Postfach 100131, 33501, Bielefeld, Germany
| | - Achim Müller
- Universität Bielefeld, Fakultät für Chemie, Postfach 100131, 33501, Bielefeld, Germany
| | - Mihail Barboiu
- Adaptive Supramolecular Nanosystems Group, Institut Européen des Membranes, ENSCM-UMII-CNRS UMR-5635, Place Eugène Bataillon, CC 047, F-34095, Montpellier, France
| |
Collapse
|
6
|
Rubčić M, Korenev VS, Toma L, Bögge H, Fedin VP, Müller A. Molecular recognition of Ca2+cations by internal and external receptors/interfaces in a spherical porous molybdenum-oxide capsule: unusual coordination scenarios. Inorg Chem Front 2014. [DOI: 10.1039/c4qi00131a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Kobayashi T, Kuwajima S, Kurata T, Hayashi Y. Structural conversion from bowl- to ball-type polyoxovanadates: Synthesis of a spherical tetradecavanadate through a chloride-incorporated bowl-type dodecavanadate. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.03.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Zhang Z, Sadakane M, Murayama T, Sakaguchi N, Ueda W. Preparation, Structural Characterization, and Ion-Exchange Properties of Two New Zeolite-like 3D Frameworks Constructed by ε-Keggin-Type Polyoxometalates with Binding Metal Ions, H11.4[ZnMo12O40Zn2]1.5– and H7.5[Mn0.2Mo12O40Mn2]2.1–. Inorg Chem 2014; 53:7309-18. [DOI: 10.1021/ic500630h] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhenxin Zhang
- Catalysis
Research Center, Hokkaido University, N-21, W-10 Kita-ku, Sapporo 001-0021, Japan
| | - Masahiro Sadakane
- Department
of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi, Hiroshima 739-8527, Japan
- PRESTO, JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Toru Murayama
- Catalysis
Research Center, Hokkaido University, N-21, W-10 Kita-ku, Sapporo 001-0021, Japan
| | - Norihito Sakaguchi
- High
Voltage Electron Microscope Laboratory, Center for Advanced Research
of Energy Conversion Materials, Hokkaido University, N-13, W-8, Sapporo 060-8626, Japan
| | - Wataru Ueda
- Catalysis
Research Center, Hokkaido University, N-21, W-10 Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|
9
|
Müller A, Gouzerh P. Capsules with Highly Active Pores and Interiors: Versatile Platforms at the Nanoscale. Chemistry 2014; 20:4862-73. [DOI: 10.1002/chem.201305010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Müller A, Gouzerh P. From linking of metal-oxide building blocks in a dynamic library to giant clusters with unique properties and towards adaptive chemistry. Chem Soc Rev 2012; 41:7431-63. [DOI: 10.1039/c2cs35169b] [Citation(s) in RCA: 299] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Schäffer C, Todea AM, Bögge H, Petina OA, Rehder D, Haupt ETK, Müller A. Hydrophobic Interactions and Clustering in a Porous Capsule: Option to Remove Hydrophobic Materials from Water. Chemistry 2011; 17:9634-9. [DOI: 10.1002/chem.201101454] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Indexed: 11/11/2022]
|