1
|
Umegawa Y, Kato S, Seo S, Shinoda W, Kawatake S, Matsuoka S, Murata M. Protein-lipid acyl chain interactions: Depth-dependent changes of segmental mobility of phospholipid in contact with bacteriorhodopsin. Biophys Chem 2024; 308:107204. [PMID: 38412762 DOI: 10.1016/j.bpc.2024.107204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
Boundary lipids surrounding membrane proteins play an essential role in protein function and structure. These protein-lipid interactions are mainly divided into electrostatic interactions between the polar amino acids of proteins and polar heads of phospholipids, and hydrophobic interactions between protein transmembrane sites and phospholipid acyl chains. Our previous report (Kawatake et al., Biochim. Biophys. Acta 1858 [2016] 2106-2115) covered a method for selectively analyzing boundary lipid interactions and showed differences in membrane protein-peripheral lipid interactions due to differences in their head group. Interactions in the hydrophobic acyl chains of phospholipids are relatively consistent among proteins, but the details of these interactions have not been elucidated. In this study, we reconstituted bacteriorhodopsin as a model protein into phospholipid membranes labeled with 2H and 13C for solid-state NMR measurement to investigate the depth-dependent effect of the head group structure on the lipid bilayer. The results showed that the position of the phospholipid near the carbonyl carbon was affected by the head group in terms of selectivity for protein surfaces, whereas in the deep interior of the bilayer near the leaflet interface, there was little difference between the head groups, indicating that the dependence of their interactions on the head group was much reduced.
Collapse
Affiliation(s)
- Yuichi Umegawa
- JST-ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | - Sho Kato
- JST-ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Sangjae Seo
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; Division of Supercomputing, Korea Institute of Science and Technology Information, 245 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Wataru Shinoda
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; Research Institute for Interdisciplinary Science, Okayama University, 3-1-1, Tsushima-naka, Okayama 700-8530, Japan
| | - Satoshi Kawatake
- JST-ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Shigeru Matsuoka
- JST-ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Michio Murata
- JST-ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
2
|
Umegawa Y, Kawatake S, Murata M, Matsuoka S. Combined effect of the head groups and alkyl chains of archaea lipids when interacting with bacteriorhodopsin. Biophys Chem 2023; 294:106959. [PMID: 36709544 DOI: 10.1016/j.bpc.2023.106959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Bacteriorhodopsin (bR), a transmembrane protein with seven α-helices, is highly expressed in the purple membrane (PM) of archaea such as Halobacterium salinarum. It is well known that bR forms two-dimensional crystals with acidic lipids such as phosphatidylglycerol phosphate methyl ester (PGP-Me)-a major component of PM lipids bearing unique chemical structures-methyl-branched alkyl chains, ether linkages, and divalent anionic head groups with two phosphodiester groups. Therefore, we aimed to determine which functional groups of PGP-Me are essential for the boundary lipids of bR and how these functionalities interact with bR. To this end, we compared various well-known phospholipids (PLs) that carry one of the structural features of PGP-Me, and evaluated the affinity of PLs to bR using the centerband-only analysis of rotor-unsynchronized spin echo (COARSE) method in solid-state NMR measurements and thermal shift assays. The results clearly showed that the branched methyl groups of alkyl chains and double negative charges in the head groups are important for PL interactions with bR. We then examined the effect of phospholipids on the monomer-trimer exchange of bR using circular dichroism (CD) spectra. The results indicated that the divalent negative charge in a head group stabilizes the trimer structure, while the branched methyl chains significantly enhance the PLs' affinity for bR, thus dispersing bR trimers in the PM even at high concentrations. Finally, we investigated the effects of PL on the proton-pumping activity of bR based on the decay rate constant of the M intermediate of a bR photocycle. The findings showed that bR activities decreased to 20% in 1,2-dimyristoyl-sn-glycero-3-phosphate (DMPA), and in 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) bilayers as compared to that in PM. Meanwhile, 1,2-Diphytanoyl-sn-glycero-3-phosphate (DPhPA) bilayers bearing both negative charges and branched methyl groups preserved over 80% of the activity. These results strongly suggest that the head groups and alkyl chains of phospholipids are essential for boundary lipids and greatly influence the biological function of bR.
Collapse
Affiliation(s)
- Yuichi Umegawa
- JST ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | - Satoshi Kawatake
- JST ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Michio Murata
- JST ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Shigeru Matsuoka
- JST ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
3
|
In-Cell Solid-State NMR: An Emerging Technique for the Study of Biological Membranes. Biophys J 2016; 109:2461-2466. [PMID: 26682804 DOI: 10.1016/j.bpj.2015.10.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/20/2015] [Accepted: 10/30/2015] [Indexed: 11/22/2022] Open
Abstract
Biological molecular processes are often studied in model systems, which simplifies their inherent complexity but may cause investigators to lose sight of the effects of the molecular environment. Information obtained in this way must therefore be validated by experiments in the cell. NMR has been used to study biological cells since the early days of its development. The first NMR structural studies of a protein inside a cell (by solution-state NMR) and of a membrane protein (by solid-state NMR) were published in 2001 and 2011, respectively. More recently, dynamic nuclear polarization, which has been used to enhance the signal in solid-state NMR, has also been applied to the study of frozen cells. Much progress has been made in the past 5 years, and in this review we take stock of this new technique, which is particularly appropriate for the study of biological membranes.
Collapse
|
4
|
Lu X, Zhang H, Lu M, Vega AJ, Hou G, Polenova T. Improving dipolar recoupling for site-specific structural and dynamics studies in biosolids NMR: windowed RN-symmetry sequences. Phys Chem Chem Phys 2016; 18:4035-44. [PMID: 26776070 DOI: 10.1039/c5cp07818k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Experimental characterization of one-bond heteronuclear dipolar couplings is essential for structural and dynamics characterization of molecules by solid-state NMR. Accurate measurement of heteronuclear dipolar tensor parameters in magic-angle spinning NMR requires that the recoupling sequences efficiently reintroduce the desired heteronuclear dipolar coupling term, fully suppress other interactions (such as chemical shift anisotropy and homonuclear dipolar couplings), and be insensitive to experimental imperfections, such as radio frequency (rf) field mismatch. In this study, we demonstrate that the introduction of window delays into the basic elements of a phase-alternating R-symmetry (PARS) sequence results in a greatly improved protocol, termed windowed PARS (wPARS), which yields clean dipolar lineshapes that are unaffected by other spin interactions and are largely insensitive to experimental imperfections. Higher dipolar scaling factors can be attained in this technique with respect to PARS, which is particularly useful for the measurement of relatively small dipolar couplings. The advantages of wPARS are verified experimentally on model molecules N-acetyl-valine (NAV) and a tripeptide Met-Leu-Phe (MLF). The incorporation of wPARS into 3D heteronuclear or homonuclear correlation experiments permits accurate site-specific determination of dipolar tensors in proteins, as demonstrated on dynein light chain 8 (LC8). Through 3D wPARS recoupling based spectroscopy we have determined both backbone and side chain dipolar tensors in LC8 in a residue-resolved manner. We discuss these in the context of conformational dynamics of LC8. We have addressed the effect of paramagnetic relaxant Cu(ii)-EDTA doping on the dipolar coupling parameters in LC8 and observed no significant differences with respect to the neat sample permitting fast data collection. Our results indicate that wPARS is advantageous with respect to the windowless version of the sequence and is applicable to a broad range of systems including but not limited to biomolecules.
Collapse
Affiliation(s)
- Xingyu Lu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| | | | | | | | | | | |
Collapse
|