1
|
Silva Terra AI, Taylor DA, Halse ME. Hyperpolarised benchtop NMR spectroscopy for analytical applications. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:153-178. [PMID: 39645349 DOI: 10.1016/j.pnmrs.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 12/09/2024]
Abstract
Benchtop NMR spectrometers, with moderate magnetic field strengths (B0=1-2.4T) and sub-ppm chemical shift resolution, are an affordable and portable alternative to standard laboratory NMR (B0≥7T). However, in moving to lower magnetic field instruments, sensitivity and chemical shift resolution are significantly reduced. The sensitivity limitation can be overcome by using hyperpolarisation to boost benchtop NMR signals by orders of magnitude. Of the wide range of hyperpolarisation methods currently available, dynamic nuclear polarisation (DNP), parahydrogen-induced polarisation (PHIP) and photochemically-induced dynamic nuclear polarisation (photo-CIDNP) have, to date, shown the most promise for integration with benchtop NMR for analytical applications. In this review we provide a summary of the theory of each of these techniques and discuss examples of how they have been integrated with benchtop NMR detection. Progress towards the use of hyperpolarised benchtop NMR for analytical applications, ranging from reaction monitoring to probing biomolecular interactions, is discussed, along with perspectives for the future.
Collapse
Affiliation(s)
| | - Daniel A Taylor
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Meghan E Halse
- Department of Chemistry, University of York, York, YO10 5DD, UK.
| |
Collapse
|
2
|
Jiang Z, Denisov S, Adjei D, Mostafavi M, Ma J. Overlooked Activation Role of Sulfite in Accelerating Hydrated Electron Treatment of Perfluorosulfonates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9427-9435. [PMID: 38747404 DOI: 10.1021/acs.est.4c01444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Photoexcitation of sulfite (SO32-) is often used to generate hydrated electrons (eaq-) in processes to degrade perfluoroalkyl and polyfluoroalkyl substances (PFASs). Conventional consensus discourages the utilization of SO32- concentrations exceeding 10 mM for effective defluorination. This has hindered our understanding of SO32- chemistry beyond its electron photogeneration properties. In contrast, the radiation-chemical study presented here, directly producing eaq- through water radiolysis, suggests that SO32- plays a previously overlooked activation role in the defluorination. Quantitative 60Co gamma irradiation experiments indicate that the increased SO32- concentration from 0.1 to 1 M enhances the defluorination rate by a remarkable 15-fold, especially for short-chain perfluoroalkyl sulfonate (PFSA). Furthermore, during the treatment of long-chain PFSA (C8F17-SO3-) with a higher concentration of SO32-, the intermediates of C8H17-SO3- and C3F7-COO- were observed, which are absent without SO32-. These observations highlight that a higher concentration of SO32- facilitates both reaction pathways: chain shortening and H/F exchange. Pulse radiolysis measurements show that elevated SO32- concentrations accelerate the bimolecular reaction between eaq- and PFSA by 2 orders of magnitude. 19F NMR measurements and theoretical simulations reveal the noncovalent interactions between SO32- and F atoms, which exceptionally reduce the C-F bond dissociation energy by nearly 40%. As a result, our study offers a more effective strategy for degrading highly persistent PFSA contaminants.
Collapse
Affiliation(s)
- Zhiwen Jiang
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
- Institute de Chimie Physique, UMR8000 CNRS/Université Paris-Saclay, Orsay 91405, France
| | - Sergey Denisov
- Institute de Chimie Physique, UMR8000 CNRS/Université Paris-Saclay, Orsay 91405, France
| | - Daniel Adjei
- Institute de Chimie Physique, UMR8000 CNRS/Université Paris-Saclay, Orsay 91405, France
| | - Mehran Mostafavi
- Institute de Chimie Physique, UMR8000 CNRS/Université Paris-Saclay, Orsay 91405, France
| | - Jun Ma
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
3
|
Downey K, Bermel W, Soong R, Lysak DH, Ronda K, Steiner K, Costa PM, Wolff WW, Decker V, Busse F, Goerling B, Haber A, Simpson MJ, Simpson AJ. Low-field, not low quality: 1D simplification, selective detection, and heteronuclear 2D experiments for improving low-field NMR spectroscopy of environmental and biological samples. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:345-360. [PMID: 37811556 DOI: 10.1002/mrc.5401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023]
Abstract
Understanding environmental change is challenging and requires molecular-level tools to explain the physicochemical phenomena behind complex processes. Nuclear magnetic resonance (NMR) spectroscopy is a key tool that provides information on both molecular structures and interactions but is underutilized in environmental research because standard "high-field" NMR is financially and physically inaccessible for many and can be overwhelming to those outside of disciplines that routinely use NMR. "Low-field" NMR is an accessible alternative but has reduced sensitivity and increased spectral overlap, which is especially problematic for natural, heterogeneous samples. Therefore, the goal of this study is to investigate and apply innovative experiments that could minimize these challenges and improve low-field NMR analysis of environmental and biological samples. Spectral simplification (JRES, PSYCHE, singlet-only, multiple quantum filters), selective detection (GEMSTONE, DREAMTIME), and heteronuclear (reverse and CH3/CH2/CH-only HSQCs) NMR experiments are tested on samples of increasing complexity (amino acids, spruce resin, and intact water fleas) at-high field (500 MHz) and at low-field (80 MHz). A novel experiment called Doubly Selective HSQC is also introduced, wherein 1H signals are selectively detected based on the 1H and 13C chemical shifts of 1H-13C J-coupled pairs. The most promising approaches identified are the selective techniques (namely for monitoring), and the reverse and CH3-only HSQCs. Findings ultimately demonstrate that low-field NMR holds great potential for biological and environmental research. The multitude of NMR experiments available makes NMR tailorable to nearly any research need, and low-field NMR is therefore anticipated to become a valuable and widely used analytical tool moving forward.
Collapse
Affiliation(s)
- Katelyn Downey
- Environmental NMR Centre, University of Toronto Scarborough, Toronto, Ontario, Canada
| | | | - Ronald Soong
- Environmental NMR Centre, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Daniel H Lysak
- Environmental NMR Centre, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Kiera Ronda
- Environmental NMR Centre, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Katrina Steiner
- Environmental NMR Centre, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Peter M Costa
- Environmental NMR Centre, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - William W Wolff
- Environmental NMR Centre, University of Toronto Scarborough, Toronto, Ontario, Canada
| | | | | | | | | | - Myrna J Simpson
- Environmental NMR Centre, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Andre J Simpson
- Environmental NMR Centre, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Sangaraju D, Nott KP, Kurita KL. High-Throughput, Nondestructive, and Biosafe Method to Accurately Quantify Water Content in Human Fecal Samples by Benchtop 1H TD-NMR Analysis for Downstream Bioanalytical and Clinical Uses. Anal Chem 2024; 96:3722-3726. [PMID: 38373266 DOI: 10.1021/acs.analchem.3c03529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Water or moisture content in human stool samples is an important parameter for bioanalytical and clinical purposes. For bioanalytical use, accurate quantitation of water content in stool can provide the extent of dilution within the stool sample which can further be used for absolute quantitation of various stool based biomarkers. For clinical use, water or moisture content in stool is an important indicator of gastrointestinal health, and its accurate determination can enable quantitative assessment of the Bristol Stool Form Scale. In general, accurate determination of water content of stool samples is cumbersome, low-throughput process and is prone to harmful stool pathogens biocontamination, sample cross-contamination using techniques such as gravimetry and karl fischer titration. Here, we report a novel user-friendly high-throughput method to quantitatively and accurately measure the overall water content in human fecal samples nondestructively and biocontained in a closed tube using benchtop a 1H time domain nuclear magnetic resonance analyzer. We used gravimetry and measurement of various bile acid metabolites in stool to verify the accuracy and robustness of the water content measurement using this technique.
Collapse
Affiliation(s)
| | - Kevin P Nott
- Oxford Instruments Magnetic Resonance, Halifax Road, High Wycombe HP12 3SE, United Kingdom
| | | |
Collapse
|
5
|
Silva Terra AI, Rossetto M, Dickson CL, Peat G, Uhrín D, Halse ME. Enhancing 19F Benchtop NMR Spectroscopy by Combining para-Hydrogen Hyperpolarization and Multiplet Refocusing. ACS MEASUREMENT SCIENCE AU 2023; 3:73-81. [PMID: 36817010 PMCID: PMC9936801 DOI: 10.1021/acsmeasuresciau.2c00055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/18/2023]
Abstract
Benchtop NMR spectrometers provide a promising alternative to high-field NMR for applications that are limited by instrument size and/or cost. 19F benchtop NMR is attractive due to the larger chemical shift range of 19F relative to 1H and the lack of background signal in most applications. However, practical applications of benchtop 19F NMR are limited by its low sensitivity due to the relatively weak field strengths of benchtop NMR spectrometers. Here we present a sensitivity-enhancement strategy that combines SABRE (Signal Amplification By Reversible Exchange) hyperpolarization with the multiplet refocusing method SHARPER (Sensitive, Homogeneous, And Resolved PEaks in Real time). When applied to a range of fluoropyridines, SABRE-SHARPER achieves overall signal enhancements of up to 5700-fold through the combined effects of hyperpolarization and line-narrowing. This approach can be generalized to the analysis of mixtures through the use of a selective variant of the SHARPER sequence, selSHARPER. The ability of SABRE-selSHARPER to simultaneously boost sensitivity and discriminate between two components of a mixture is demonstrated, where selectivity is achieved through a combination of selective excitation and the choice of polarization transfer field during the SABRE step.
Collapse
Affiliation(s)
| | | | - Claire L. Dickson
- EaStCHEM
School of Chemistry, University of Edinburgh, EdinburghEH9 3FJ, U.K.
| | - George Peat
- EaStCHEM
School of Chemistry, University of Edinburgh, EdinburghEH9 3FJ, U.K.
| | - Dušan Uhrín
- EaStCHEM
School of Chemistry, University of Edinburgh, EdinburghEH9 3FJ, U.K.
| | - Meghan E. Halse
- Department
of Chemistry, University of York, YorkYO10 5DD, U.K.
| |
Collapse
|
6
|
Mifkovic M, Pauling J, Vyas S. Computational protocol for predicting 19 F NMR chemical shifts for PFAS and connection to PFAS structure. J Comput Chem 2022; 43:1355-1361. [PMID: 35665946 DOI: 10.1002/jcc.26939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/14/2022] [Accepted: 05/08/2022] [Indexed: 11/09/2022]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are robust "forever" chemicals that have become global environmental contaminants due to their inability to degrade using traditional techniques. In addition to the persistent nature of PFAS, the structural and functional diversity in PFAS creates a unique challenge in identification and remediation. Their identification is further complicated by the absence of standards for many PFAS. This work is aimed at developing a protocol for computing and establishing accurate 19 F NMR chemical shifts for PFAS using density functional theory (DFT), which can aid in the identification of PFAS. The impact of solvation and basis sets was evaluated by comparing the computed data with the experimental measurements. Results showed the addition of dispersion corrections in the methodology improve the accuracy of calculated NMR parameters within 4 ppm of the experimental values. Adding a second diffuse function and additional polarization did not improve the accuracy, likely because of the electronegativity of fluorine which does not allow the electron density of fluorine atoms to be polarized. The inclusion of various implicit solvation (DMSO, chloroform, and water) yielded negligible differences in accuracy, and were overall less accurate than the gas phase calculations. The most accurate methodology was then applied to more environmentally relevant PFAS, and the impact of helical nature on the NMR signatures was evaluated. The implication of this work is to be able to improve the identification of structurally diverse PFAS using the 19 F NMR.
Collapse
Affiliation(s)
- Maleigh Mifkovic
- Department of Chemistry, Colorado School of Mines, Golden, Colorado, USA
| | - Jessica Pauling
- Department of Chemistry, Colorado School of Mines, Golden, Colorado, USA
| | - Shubham Vyas
- Department of Chemistry, Colorado School of Mines, Golden, Colorado, USA
| |
Collapse
|
7
|
Abstract
Benchtop nuclear magnetic resonance (NMR) spectroscopy uses small permanent magnets to generate magnetic fields and therefore offers the advantages of operational simplicity and reasonable cost, presenting a viable alternative to high-field NMR spectroscopy. In particular, the use of benchtop NMR spectroscopy for rapid in-field analysis, e.g., for quality control or forensic science purposes, has attracted considerable attention. As benchtop NMR spectrometers are sufficiently compact to be operated in a fume hood, they can be efficiently used for real-time reaction and process monitoring. This review introduces the recent applications of benchtop NMR spectroscopy in diverse fields, including food science, pharmaceuticals, process and reaction monitoring, metabolomics, and polymer materials.
Collapse
|