1
|
Fazeli E, Hosseini A, Heidari MH, Farifteh-Nobijari F, Salehi M, Abbaszadeh HA, Nazarian H, Shams Mofarahe Z, Ayoubi S, Hosseini S, Shayeghpour M, Bandehpour M, Ghaffari Novin M. Meiosis Resumption of Immature Human Oocytes following Treatment with Calcium Ionophore In Vitro. CELL JOURNAL 2021; 23:109-118. [PMID: 33650827 PMCID: PMC7944122 DOI: 10.22074/cellj.2021.7130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/13/2019] [Indexed: 11/10/2022]
Abstract
Objective: In vitro maturation (IVM) of human oocytes is used to induce meiosis progression in immature retrieved
oocytes. Calcium (Ca2+) has a central role in oocyte physiology. Passage through meiosis phase to another phase
is controlled by increasing intracellular Ca2+. Therefore, the current research was conducted to evaluate the role of
calcium ionophore (CI) on human oocyte IVM. Materials and Methods: In this clinical trial study, immature human oocytes were obtained from 216 intracytoplasmic
sperm injection (ICSI) cycles. After ovarian stimulation, germinal vesicle (GV) stage oocytes were collected and
categorized into two groups: with and without 10 µM CI treatment. Next, oocyte nuclear maturation was assessed after
24–28 hours of culture. Real-time reverse transcription polymerase chain reaction (RT-PCR) was used to assess the
transcript profile of several oocyte maturation-related genes (MAPK3, CCNB1, CDK1, and cyclin D1 [CCND1]) and
apoptotic-related genes (BCL-2, BAX, and Caspase-3). Oocyte glutathione (GSH) and reactive oxygen species (ROS)
levels were assessed using Cell Tracker Blue and 2’,7’-dichlorodihydrofluorescein diacetate (H2DCFDA) fluorescent
dye staining. Oocyte spindle configuration and chromosome alignment were analysed by immunocytochemistry. Results: The metaphase II (MII) oocyte rate was higher in CI‐treated oocytes (73.53%) compared to the control
(67.43%) group, but this difference was not statistically significant (P=0.13). The mRNA expression profile of oocyte
maturation-related genes (MAPK3, CCNB1, CDK1, and CCND1) (P<0.05) and the anti-apoptotic BCL-2 gene was
remarkably up-regulated after treatment with CI (P=0.001). The pro-apoptotic BAX and Caspase-3 relative expression
levels did not change significantly. The CI‐treated oocyte cytoplasm had significantly higher GSH and lower ROS
(P<0.05). There was no statistically significant difference in meiotic spindle assembly and chromosome alignment
between CI treatment and the control group oocytes. Conclusion: The finding of the current study supports the role of CI in meiosis resumption of human oocytes.
(Registration Number: IRCT20140707018381N4)
Collapse
Affiliation(s)
- Elham Fazeli
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Mehr Fertility Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Ahmad Hosseini
- Mehr Fertility Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad-Hasan Heidari
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fattaneh Farifteh-Nobijari
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Genetics and In Vitro Assisted Reproductive (GIVAR) Center, Erfan Hospital, Tehran, Iran
| | - Mohammad Salehi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran Iran
| | - Hojjat-Allah Abbaszadeh
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Shams Mofarahe
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saman Ayoubi
- Infertility and Reproductive Health Research Centre, Sara Hospital, Tehran, Iran
| | - Sara Hosseini
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Shayeghpour
- Genetics and In Vitro Assisted Reproductive (GIVAR) Center, Erfan Hospital, Tehran, Iran
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Premkumar KV, Chaube SK. An insufficient increase of cytosolic free calcium level results postovulatory aging-induced abortive spontaneous egg activation in rat. J Assist Reprod Genet 2012; 30:117-23. [PMID: 23239129 DOI: 10.1007/s10815-012-9908-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/29/2012] [Indexed: 11/27/2022] Open
Abstract
PURPOSE The present study was aimed to find out whether postovulatory aging-induced abortive spontaneous egg activation (SEA) is due to insufficient increase of cytosolic free Ca(2+) level. METHODS Immature female rats (22-24 days old) were subjected to superovulation induction protocol. Eggs were collected 14, 17 and 19 h post-hCG surge to induce in vivo egg aging. The eggs were collected 14 h post-hCG surge and cultured in vitro for 3, 5 and 7 h to induce in vitro egg aging. The morphological changes, rate of abortive SEA, chromosomal status and cytosolic free Ca(2+) levels were analyzed. RESULTS Postovulatory aging induced morphological features characteristics of abortive SEA in a time-dependent manner in vivo as well as in vitro. The extracellular Ca(2+) increased rate of abortive SEA during initial period of culture, while co-addition of a nifedipine (L-type Ca(2+) channel blocker) protected against postovulatory aging-induced abortive SEA. However, CI induced morphological features characteristics of egg activation (EA) in a dose-dependent manner. As compare to control, an increase of cytosolic free Ca(2+) level (1.42 times) induced abortive SEA, while further increase of cytosolic free Ca(2+) level (2.55 times) induced EA. CONCLUSION Our results show that an insufficient cytosolic free Ca(2+) level is associated with postovulatory aging -induced abortive SEA, while furthermore increase is required to induce EA in rat.
Collapse
Affiliation(s)
- Karuppanan V Premkumar
- Cell Physiology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | | |
Collapse
|
4
|
Regulation of fusion of the nucleolar precursor bodies following activation of mouse oocytes: roles of the maturation-promoting factors and mitogen-activated protein kinases. ZYGOTE 2011; 20:291-303. [PMID: 21554769 DOI: 10.1017/s0967199411000219] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fusion of nucleoli or nucleolus precursor bodies (NPBs) has been observed during somatic cell interphase and pronuclear development of human zygotes; however, the underlying mechanism is unknown. NPB fusion and its regulation by mitogen-activated protein kinase (MAPK) and maturation-promoting factor (MPF) were studied in activated mouse oocytes. Small NPBs appeared about 4 h after ethanol activation, and took about 1.5 h to fuse into a large NPB, which persisted for about 10 h before disappearance. Analysis of the temporal windows for kinase action indicated that a high MAPK activity during the first 2 h and a low MPF activity during the first 3-4 h after activation were essential for subsequent NPB fusion. A preactivation decline in MAPK activity was associated with decreased NPB fusion following activation of aged oocytes. While MAPK inactivation by regulator U0126 prevented NPB fusion in oocytes activated by ethanol or 5 min Sr2+ treatments, it had no effect on oocytes fertilized or activated by 6 h Sr2+ treatment. In most cases, while rates of pronuclear formation did not differ, rates of NPB fusion differed significantly between different treatments. Our results suggest that: (i) the MAPK and MPF activities at the initial stage of activation regulate NPB fusion after pronuclear formation; (ii) pronuclear assembly and NPB fusion are two separable events that might be controlled by different mechanisms; and (iii) high MAPK activity and low MPF activity at the initial stage of activation is essential for NPB fusion when only one calcium rise is induced by ethanol, while inhibition of MAPK activity does not affect NPB fusion when the repetitive intracellular Ca2+ rises are induced after fertilization.
Collapse
|
6
|
Chaube SK, Khatun S, Misra SK, Shrivastav TG. Calcium ionophore-induced egg activation and apoptosis are associated with the generation of intracellular hydrogen peroxide. Free Radic Res 2008; 42:212-20. [PMID: 18344115 DOI: 10.1080/10715760701868352] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The present study was designed to investigate whether calcium ionophore-induced activation and apoptosis are associated with the generation of hydrogen peroxide (H(2)O(2)) in rat eggs cultured in vitro. Culture of metaphase-II (M-II) arrested eggs in Ca(2+)/Mg(2+)-deficient medium did not induce egg activation, while a second polar body was observed in 20% of eggs when cultured in Ca(2+)/Mg(2+)-supplemented medium. In Ca(2+)/Mg(2+)-deficient medium, lower concentrations of calcium ionophore (0.2,0.4 and 0.8 microm) not only induced egg activation in a dose-dependent manner but also generation of intracellular H(2)O(2) (84.40+/-0.50 ng/egg) when compared to control eggs (80.46+/-1.34 ng/egg). The higher concentration of calcium ionophore (1.6 microm) induced apoptosis and pronounced generation of intracellular H(2)O(2) (92.43+/-0.93 ng/egg) in treated eggs. Conversely, cell-permeant antioxidant such as 2(3)-tert-butyl-4-hydroxyanisole (BHA) reduced intracellular H(2)O(2) level (81.20+/-1.42 ng/egg) and protected against calcium ionophore-induced morphological changes characteristics of egg activation and apoptosis. These results clearly suggest that calcium ionophore-induced activation and apoptosis are associated with the generation of intracellular H(2)O(2) in rat eggs.
Collapse
Affiliation(s)
- S K Chaube
- Cell Physiology, Centre of Advanced Study, Department of Zoology, Banaras Hindu University, Varanasi, India.
| | | | | | | |
Collapse
|
7
|
Lan GC, Han D, Wu YG, Han ZB, Ma SF, Liu XY, Chang CL, Tan JH. Effects of duration, concentration, and timing of ionomycin and 6-dimethylaminopurine (6-DMAP) treatment on activation of goat oocytes. Mol Reprod Dev 2005; 71:380-8. [PMID: 15806561 DOI: 10.1002/mrd.20267] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The protocol of ionomycin followed by 6-dimethylaminopurine (6-DMAP) is commonly used for activation of oocytes and reconstituted embryos. Since numerous abnormalities and impaired development were observed when oocytes were activated with 6-DMAP, this protocol needs optimization. Effects of concentration and treatment duration of both drugs on activation and development of goat oocytes were examined in this study. The best oocyte activation (87-95%), assessed by pronuclear formation, was obtained when oocytes matured in vitro for 27 hr were treated with 0.625-20 microM ionomycin for 1 min before 6-hr incubation in 2 mM 6-DMAP. Progressional reduction of time for 6-DMAP-exposure showed that the duration of 6-DMAP treatment can be reduced to 1 hr from the second up to the fourth hour after ionomycin, to produce activation rates greater than 85%. Activation rates of oocytes in vitro matured for 27, 30, and 33 hr were higher (P < 0.05) than that of oocytes matured for 24 hr when treated with ionomycin plus 1-hr (the third hour) 6-DMAP, but a 4-hr incubation in 6-DMAP enhanced activation of the 24-hr oocytes. Goat activated oocytes began pronuclear formation at 3 hr and completed it by 5-hr post ionomycin. An extended incubation in 6-DMAP (a) impaired the development of goat parthenotes, (b) quickened both the release from metaphase arrest and the pronuclear formation, and (c) inhibited the chromosome movement at anaphase II (A-II) and telophase II (T-II), leading to the formation of one pronucleus without extrusion of PB2. In conclusion, duration, concentration, and timing of ionomycin and 6-DMAP treatment had marked effects on goat oocyte activation, and to obtain better activation and development, goat oocytes matured in vitro for 27 hr should be activated by 1 min exposure to 2.5 microM ionomycin followed by 2 mM 6-DMAP treatment for the third hour.
Collapse
Affiliation(s)
- Guo-Cheng Lan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Ito J, Hirabayashi M, Kato M, Takeuchi A, Ito M, Shimada M, Hochi S. Contribution of high p34cdc2 kinase activity to premature chromosome condensation of injected somatic cell nuclei in rat oocytes. Reproduction 2005; 129:171-80. [PMID: 15695611 DOI: 10.1530/rep.1.00431] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The present study was undertaken to clarify the relationship between the p34cdc2 kinase activity of in vitro-aged or enucleated rat oocytes and the premature chromosome condensation (PCC) of microinjected cumulus cell nuclei. Wistar rat oocytes were placed in vitro up to 120 min after the animal was killed. The p34cdc2 kinase activity of the oocytes decreased in a time-dependent manner. The incidence of PCC was higher when nuclear injection into intact oocytes was completed in 15-45 min rather than 46-120 min. When rat oocytes were enucleated for subsequent nuclear injection, the p34cdc2 kinase activity transiently increased soon after enucleation but drastically decreased after 30 min. Removal of the cytoplasm instead of the meta-phase-plate did not affect the p34cdc2 kinase activity even after 60 min. PCC occurred in intact and cytoplasm-removed oocytes but not in enucleated oocytes. In contrast, oocytes from BDF1 mice exhibited a p34cdc2 kinase level twice that of rat oocytes and supported PCC despite enucleation. The p34cdc2 kinase level of intact rat oocytes was reduced to the equivalent level of aged (120 min) or enucleated (+60 min) oocytes by a 45 min treatment with roscovitine, an inhibitor of p34cdc2 kinase. None of the roscovitine-treated oocytes supported PCC while half of the control oocytes did. When rat oocytes were treated with MG132, a proteasome inhibitor, delayed inactivation of the p34cdc2 kinase was observed in the MG132-treated oocytes. A significantly higher proportion of the MG132-treated oocytes supported PCC when compared with the control oocytes. Moreover, a higher proportion of MG132-treated and enucleated oocytes carried two pseudo-pronuclei after cumulus cell injection and developed to the two-cell stage when compared with the enucleated oocytes at the telophase-II stage. These results suggest that the decreased level of p34cdc2 kinase activity in aged or enucleated rat oocytes is responsible for their inability to support PCC of microinjected donor cell nuclei and that inhibition of p34cdc2 kinase inactivation by chemicals such as MG132 is in part effective for rat oocytes to promote PCC and further development.
Collapse
Affiliation(s)
- Junya Ito
- National Institute for Physiological Sciences, Okazaki 444-8787, Japan
| | | | | | | | | | | | | |
Collapse
|