1
|
Abstract
Maternal effect genes (MEGs) encode factors (e.g., RNA) that are present in the oocyte and required for early embryonic development. Hence, while these genes and gene products are of maternal origin, their phenotypic consequences result from effects on the embryo. The first mammalian MEGs were identified in the mouse in 2000 and were associated with early embryonic loss in the offspring of homozygous null females. In humans, the first MEG was identified in 2006, in women who had experienced a range of adverse reproductive outcomes, including hydatidiform moles, spontaneous abortions, and stillbirths. Over 80 mammalian MEGs have subsequently been identified, including several that have been associated with phenotypes in humans. In general, pathogenic variants in MEGs or the absence of MEG products are associated with a spectrum of adverse outcomes, which in humans range from zygotic cleavage failure to offspring with multi-locus imprinting disorders. Although less established, there is also evidence that MEGs are associated with structural birth defects (e.g., craniofacial malformations, congenital heart defects). This review provides an updated summary of mammalian MEGs reported in the literature through early 2021, as well as an overview of the evidence for a link between MEGs and structural birth defects.
Collapse
|
2
|
Deutschmeyer VE, Richter AM. The ZAR1 protein in cancer; from epigenetic silencing to functional characterisation and epigenetic therapy of tumour suppressors. Biochim Biophys Acta Rev Cancer 2020; 1874:188417. [PMID: 32828887 DOI: 10.1016/j.bbcan.2020.188417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022]
Abstract
ZAR1, zygote arrest 1, is a zinc finger protein (C-terminus), which was initially identified in mouse oocytes. Later it was found that its expression is present in various human tissues e.g. lung and kidney. Interestingly, it was observed that in various tumour types the ZAR1 transcript is missing due to hypermethylation of its CpG island promoter, but not ZAR2. Since methylation of the ZAR1 promoter is described as a frequent event in tumourigenesis, ZAR1 could serve as a useful diagnostic marker in cancer screens. ZAR1 was described as a useful prognostic/diagnostic cancer marker for lung cancer, kidney cancer, melanoma and possibly liver carcinoma. Furthermore, ZAR1 was reactivated as a tumour suppressor by epigenetic therapy using CRISPR-dCas9 method. This method holds the potential to precisely target not only ZAR1 and reactivate tumour suppressors in a tailored cancer therapy. ZAR1 is highly conserved amongst vertebrates, especially its zinc finger, which is the relevant domain for its protein and RNA binding ability. ZAR1 is implicated in various cellular mechanisms including regulation of oocyte/embryo development, cell cycle control and mRNA binding, though little was known about the underlying mechanisms. ZAR1 was reported to regulate and activate translation through the binding to TCS translation control sequences in the 3'UTRs of its target mRNA the kinase WEE1. ZAR1 has a tumour suppressing function by inhibiting cell cycle progression. Here we review the current literature on ZAR1 focusing on structural, functional and epigenetic aspects. Characterising the cellular mechanisms that regulate the signalling pathways ZAR1 is involved in, could lead to a deeper understanding of tumour development and, furthermore, to new strategies in cancer treatment.
Collapse
Affiliation(s)
| | - Antje M Richter
- Institute for Genetics, University of Giessen, 35392 Giessen, Germany; Max-Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany.
| |
Collapse
|
3
|
Chakravarthi VP, Ghosh S, Roby KF, Wolfe MW, Rumi MAK. A Gatekeeping Role of ESR2 to Maintain the Primordial Follicle Reserve. Endocrinology 2020; 161:5788411. [PMID: 32141511 DOI: 10.1210/endocr/bqaa037] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 02/28/2020] [Indexed: 12/17/2022]
Abstract
Over the entire reproductive lifespan in mammals, a fixed number of primordial follicles serve as the source of mature oocytes. Uncontrolled and excessive activation of primordial follicles can lead to depletion of the ovarian reserve. We observed that disruption of estrogen receptor β (ESR2) signaling results in increased activation of primordial follicles in Esr2-null (Esr2-/-) rats. However, follicle assembly was unaffected, and the total number of follicles remained comparable between neonatal wild-type and Esr2-/- ovaries. While the activated follicle counts were increased in Esr2-/- ovary, the number of primordial follicles were markedly decreased. Excessive recruitment of primordial follicles led to premature ovarian senescence in Esr2-/- rats and was associated with reduced levels of serum AMH and estradiol. Disruption of ESR2 signaling through administration of a selective antagonist (PHTPP) increased the number of activated follicles in wildtype rats, whereas a selective agonist (DPN) decreased follicle activation. In contrast, primordial follicle activation was not increased in the absence of ESR1, indicating that the regulation of primordial follicle activation is ESR2 specific. Follicle activation was also increased in Esr2 mutants lacking the DNA binding domain, suggesting a role for the canonical transcriptional activation function. Both primordial and activated follicles express ESR2, suggesting a direct regulatory role for ESR2 within these follicles. We also detected that loss of ESR2 augmented the activation of AKT, ERK, and mTOR pathways. Our results indicate that the lack of ESR2 upregulated both granulosa and oocyte factors, which can facilitate AKT and mTOR activation in Esr2-/- ovaries leading to increased activation of primordial follicles.
Collapse
Affiliation(s)
- V Praveen Chakravarthi
- Deprartment of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Subhra Ghosh
- Deprartment of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Katherine F Roby
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Michael W Wolfe
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - M A Karim Rumi
- Deprartment of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
4
|
Specific activation of the hb4 gene in the Xenopus oocyte through a Nobox-binding element located at the proximal promoter sequence. ZYGOTE 2019; 27:195-202. [PMID: 31250783 DOI: 10.1017/s0967199419000017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We isolated and characterized Xenopus tropicalis hb4 flanking DNA and showed that the -3076/+29 sequence was able to drive stage-specific transcription in the developmental process. Transgenic reporter analysis indicated that green fluorescent protein was expressed in the ovaries of female frogs at 3 months of age and in both the ovaries and testis of frogs at 6 months of age. A series of experiments with deletion of the flanking sequence and a subsequent luciferase reporter assay revealed that there were two positive regulatory regions and that the most proximal sequence of the promoter region had a certain level of transcriptional activity in oocytes. Subsequently, we showed that a conserved sequence containing Nobox-binding element (NBE) was essential for transcriptional activation and that Nobox expressed in the ovary had a crucial role in hb4 transcription through the NBE sequence.
Collapse
|
5
|
Cheng H, Wang Y, Zhang J, Zhang S, Ma X, An X, Man X, Zhang X, Li Z, Tang B. Effects of PRDM14 Silencing on Parthenogenetically Activated Porcine Embryos. Cell Reprogram 2018; 20:382-388. [PMID: 30325654 DOI: 10.1089/cell.2018.0029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Hui Cheng
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yutian Wang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jian Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Sheng Zhang
- Academy of Translational Medicine, First Hospital, Jilin University, Changchun, China
| | - Xiaoling Ma
- Academy of Translational Medicine, First Hospital, Jilin University, Changchun, China
| | - Xinglan An
- Academy of Translational Medicine, First Hospital, Jilin University, Changchun, China
| | - Xiaxia Man
- Academy of Translational Medicine, First Hospital, Jilin University, Changchun, China
| | - Xueming Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ziyi Li
- Academy of Translational Medicine, First Hospital, Jilin University, Changchun, China
| | - Bo Tang
- College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
6
|
Richter AM, Kiehl S, Köger N, Breuer J, Stiewe T, Dammann RH. ZAR1 is a novel epigenetically inactivated tumour suppressor in lung cancer. Clin Epigenetics 2017; 9:60. [PMID: 28588743 PMCID: PMC5457737 DOI: 10.1186/s13148-017-0360-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/25/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related deaths with 1.8 million new cases each year and poor 5-year prognosis. Promoter hypermethylation of tumour suppressors leads to their inactivation and thereby can promote cancer development and progression. RESULTS In this study, we analysed ZAR1 (zygote arrest 1), which has been said to be a maternal-effect gene and its expression mostly limited to certain reproductive tissues. Our study shows that ZAR1 is expressed in normal lung but inactivated by promoter methylation in lung cancer. ZAR1 is hypermethylated in primary lung cancer samples (22% small cell lung carcinoma (SCLC) and 76% non-small cell lung carcinoma (NSCLC), p < 0.001) vs. normal control lung tissue (11%). In lung cancer cell lines, ZAR1 was significantly methylated in 75% of SCLC and 83% of NSCLC vs. normal tissue (p < 0.005/0.05). In matching tumours and control tissues, we observed that NSCLC primary tumour samples exhibited a tumour-specific promoter methylation of ZAR1 in comparison to the normal control lung tissue. Demethylation treatment of various lung cancer cell lines reversed ZAR1 promoter hypermethylation and subsequently re-established ZAR1 expression. In addition, we could show the growth inhibitory potential of ZAR1 in lung cancer cell lines and cancer cell lines. Exogenous expression of ZAR1 not only inhibited colony formation but also blocked cell cycle progression of cancer cell lines. CONCLUSIONS Our study shows for the first time the lung tumour-specific epigenetic inactivation of ZAR1 due to DNA methylation of its CpG island promoter. Furthermore, ZAR1 was characterised by the ability to block tumour growth through the inhibition of cell cycle progression in cancer cell lines. We propose that ZAR1 could serve as an epigenetically inactivated biomarker in lung cancer.
Collapse
Affiliation(s)
- Antje M. Richter
- Institute for Genetics, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Steffen Kiehl
- Institute for Genetics, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Nicole Köger
- Institute for Genetics, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Janina Breuer
- Institute for Genetics, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Philipps-University Marburg, 35043 Marburg, Germany
- German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, 35392 Giessen, Germany
| | - Reinhard H. Dammann
- Institute for Genetics, Justus-Liebig-University Giessen, 35392 Giessen, Germany
- German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, 35392 Giessen, Germany
| |
Collapse
|
7
|
Jin SG, Zhang ZM, Dunwell TL, Harter MR, Wu X, Johnson J, Li Z, Liu J, Szabó PE, Lu Q, Xu GL, Song J, Pfeifer GP. Tet3 Reads 5-Carboxylcytosine through Its CXXC Domain and Is a Potential Guardian against Neurodegeneration. Cell Rep 2016; 14:493-505. [PMID: 26774490 DOI: 10.1016/j.celrep.2015.12.044] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/06/2015] [Accepted: 12/04/2015] [Indexed: 11/29/2022] Open
Abstract
We report that the mammalian 5-methylcytosine (5mC) oxidase Tet3 exists as three major isoforms and characterized the full-length isoform containing an N-terminal CXXC domain (Tet3FL). This CXXC domain binds to unmethylated CpGs, but, unexpectedly, its highest affinity is toward 5-carboxylcytosine (5caC). We determined the crystal structure of the CXXC domain-5caC-DNA complex, revealing the structural basis of the binding specificity of this domain as a reader of CcaCG sequences. Mapping of Tet3FL in neuronal cells shows that Tet3FL is localized precisely at the transcription start sites (TSSs) of genes involved in lysosome function, mRNA processing, and key genes of the base excision repair pathway. Therefore, Tet3FL may function as a regulator of 5caC removal by base excision repair. Active removal of accumulating 5mC from the TSSs of genes coding for lysosomal proteins by Tet3FL in postmitotic neurons of the brain may be important for preventing neurodegenerative diseases.
Collapse
Affiliation(s)
- Seung-Gi Jin
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA; Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Zhi-Min Zhang
- Department of Biochemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Thomas L Dunwell
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Matthew R Harter
- Department of Biochemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Xiwei Wu
- Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Jennifer Johnson
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Zheng Li
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiancheng Liu
- Department of Neurosciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Piroska E Szabó
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA; Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Qiang Lu
- Department of Neurosciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Guo-Liang Xu
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, Riverside, CA 92521, USA.
| | - Gerd P Pfeifer
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA; Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
8
|
Pérez-Montero S, Carbonell A, Azorín F. Germline-specific H1 variants: the "sexy" linker histones. Chromosoma 2015; 125:1-13. [PMID: 25921218 DOI: 10.1007/s00412-015-0517-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 01/07/2023]
Abstract
The eukaryotic genome is packed into chromatin, a nucleoprotein complex mainly formed by the interaction of DNA with the abundant basic histone proteins. The fundamental structural and functional subunit of chromatin is the nucleosome core particle, which is composed by 146 bp of DNA wrapped around an octameric protein complex formed by two copies of each core histone H2A, H2B, H3, and H4. In addition, although not an intrinsic component of the nucleosome core particle, linker histone H1 directly interacts with it in a monomeric form. Histone H1 binds nucleosomes near the exit/entry sites of linker DNA, determines nucleosome repeat length and stabilizes higher-order organization of nucleosomes into the ∼30 nm chromatin fiber. In comparison to core histones, histone H1 is less well conserved through evolution. Furthermore, histone H1 composition in metazoans is generally complex with most species containing multiple variants that play redundant as well as specific functions. In this regard, a characteristic feature is the presence of specific H1 variants that replace somatic H1s in the germline and during early embryogenesis. In this review, we summarize our current knowledge about their structural and functional properties.
Collapse
Affiliation(s)
- Salvador Pérez-Montero
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028, Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Albert Carbonell
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028, Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Fernando Azorín
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028, Barcelona, Spain. .,Institute for Research in Biomedicine, IRB Barcelona, Baldiri Reixac, 10, 08028, Barcelona, Spain.
| |
Collapse
|
9
|
Datta TK, Rajput SK, Wee G, Lee K, Folger JK, Smith GW. Requirement of the transcription factor USF1 in bovine oocyte and early embryonic development. Reproduction 2014; 149:203-12. [PMID: 25385722 DOI: 10.1530/rep-14-0445] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Upstream stimulating factor 1 (USF1) is a basic helix-loop-helix transcription factor that specifically binds to E-box DNA motifs, known cis-elements of key oocyte expressed genes essential for oocyte and early embryonic development. However, the functional and regulatory role of USF1 in bovine oocyte and embryo development is not understood. In this study, we demonstrated that USF1 mRNA is maternal in origin and expressed in a stage specific manner during the course of oocyte maturation and preimplantation embryonic development. Immunocytochemical analysis showed detectable USF1 protein during oocyte maturation and early embryonic development with increased abundance at 8-16-cell stage of embryo development, suggesting a potential role in embryonic genome activation. Knockdown of USF1 in germinal vesicle stage oocytes did not affect meiotic maturation or cumulus expansion, but caused significant changes in mRNA abundance for genes associated with oocyte developmental competence. Furthermore, siRNA-mediated depletion of USF1 in presumptive zygote stage embryos demonstrated that USF1 is required for early embryonic development to the blastocyst stage. A similar (USF2) yet unique (TWIST2) expression pattern during oocyte and early embryonic development for related E-box binding transcription factors known to cooperatively bind USF1 implies a potential link to USF1 action. This study demonstrates that USF1 is a maternally derived transcription factor required for bovine early embryonic development, which also functions in regulation of JY1, GDF9, and FST genes associated with oocyte competence.
Collapse
Affiliation(s)
- Tirtha K Datta
- Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea
| | - Sandeep K Rajput
- Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea
| | - Gabbine Wee
- Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea
| | - KyungBon Lee
- Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea
| | - Joseph K Folger
- Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea
| | - George W Smith
- Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea Laboratory of Mammalian Reproductive Biology and GenomicsMichigan State University, East Lansing, Michigan 48824, USADepartments of Animal SciencePhysiologyMichigan State University, East Lansing, Michigan 48824, USAAnimal Genomics LaboratoryNational Dairy Research Institute, Animal Biotechnology Centre, Karnal 132001, Haryana, IndiaDepartment of Biology EducationCollege of Education, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
10
|
Ishizuka Y, Takeo T, Nakao S, Yoshimoto H, Hirose Y, Sakai Y, Horikoshi Y, Takeuji S, Tsuchiyama S, Nakagata N. Prolonged exposure to hyaluronidase decreases the fertilization and development rates of fresh and cryopreserved mouse oocytes. J Reprod Dev 2014; 60:454-9. [PMID: 25225080 PMCID: PMC4284320 DOI: 10.1262/jrd.2014-045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hyaluronidase is generally used to remove cumulus cells from mouse oocytes before oocyte cryopreservation, intracytoplasmic sperm injection or DNA injection. In general, use of cumulus-free mouse oocytes decreases in vitro fertilizing ability compared with cumulus-surrounded oocytes. The effect of hyaluronidase exposure on the quality of mouse oocytes is not fully understood. Here, we investigated the effect of hyaluronidase exposure time on the fertilization rate of fresh and vitrified mouse oocytes and their subsequent developmental ability in vitro. We found that the fertilization rate decreased with hyaluronidase treatments. This reduction in the fertilization rate following treatment with hyaluronidase was fully reversed by removal of the zona pellucida. In addition, oocytes treated with hyaluronidase for 5 min or longer had a reduced capacity to develop to the morula and blastocyst stage. The survival, fertilization, and
developmental rates of vitrified-warmed oocytes were also reduced by longer exposure to hyaluronidase. In conclusion, these results suggest that prolonged exposure to hyaluronidase decreases the quality of mouse oocytes and shorter hyaluronidase treatment times may help achieve a stable and high fertilization rate in fresh and cryopreserved oocytes.
Collapse
Affiliation(s)
- Yuta Ishizuka
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gautier A, Goupil AS, Le Gac F, Lareyre JJ. A promoter fragment of the sycp1 gene is sufficient to drive transgene expression in male and female meiotic germ cells in zebrafish. Biol Reprod 2013; 89:89. [PMID: 23966324 DOI: 10.1095/biolreprod.113.107706] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The synaptonemal complex protein 1 (Sycp1) is required for the formation of crossovers that occurs during the meiotic prophase. The tissue and cell-specific expression pattern of the Sycp1 protein have been studied in mammals and fish, but data on the corresponding transcript remain scarce. In this report, we described for the first time in zebrafish the tissue- and cell-specific expression pattern of the sycp1 gene. In ovary, the expression of the sycp1 transcript was restricted to the early primary oocytes. In testis, the sycp1 transcript was observed in primary spermatocytes in agreement with a previous report describing the localization of the Sycp1 protein in those cells. Unexpectedly, sycp1 transcript expression remained high in spermatids. To gain insight on the genomic region responsible for the sycp1 gene expression pattern, we generated four independent Dr_sycp1:eGFP transgenic zebrafish lines carrying the -1482/+338 gene fragment fused to the enhanced green fluorescent protein reporter gene. We demonstrate that this promoter fragment contains the information required for the cell-specific expression of the endogenous sycp1 gene in males and in females. However, the GFP protein and its associated fluorescence persist in spermatozoa and maturing oocytes. The Dr_sycp1:eGFP zebrafish lines have the potential to be valuable models to trace meiosis onset in zebrafish and constitute the first transgenic lines expressing the GFP reporter protein only in the male meiotic and postmeiotic cells in fish.
Collapse
Affiliation(s)
- Aude Gautier
- INRA, UR1037 SCRIBE, Spermatogenesis and Puberty Research Team, BIOSIT, Ouest-Genopole, Campus de Beaulieu, Rennes cedex, France
| | | | | | | |
Collapse
|
12
|
Ishizuka Y, Nishimura M, Matsumoto K, Miyashita M, Takeo T, Nakagata N, Hosoi Y, Anzai M. The influence of reduced glutathione in fertilization medium on the fertility of in vitro-matured C57BL/6 mouse oocytes. Theriogenology 2013; 80:421-6. [PMID: 23916252 DOI: 10.1016/j.theriogenology.2013.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 07/01/2013] [Accepted: 07/01/2013] [Indexed: 11/27/2022]
Abstract
It is well known that IVM oocytes show a decreased potential for fertility and development compared with in vivo-matured oocytes. In this study, we added reduced glutathione (GSH) to the fertilization medium during IVF to investigate its effect on the fertility and early embryo development of IVM oocytes. The fertilization rate for IVM oocytes and fresh sperm increased with the addition of GSH (0, 1.0, and 2.0 mM: 51%, 76%, and 70%). Moreover, the addition of GSH to the fertilization medium also improved the developmental potential compared with the control sample (0 mM). In addition, we performed IVF using IVM oocytes and frozen/thawed sperm that had been cryopreserved in a mouse bank. Results indicated a marked increase in the fertilization rate when 1.0 mM GSH was added to the fertilization medium compared with when no GSM was used (0.0 mM GSH: 2% (3/195); 1.0 mM GSH: 33% (156/468)). Furthermore, the fertilization rate improved dramatically via zona drilling using laser equipment (52%: 267/516), whereas normal offspring were obtainsed after transferring embryos created via IVF using IVM oocytes and frozen/thawed sperm. This is the first report in which offspring have been obtained via IVF using IVM oocytes and frozen/thawed sperm.
Collapse
Affiliation(s)
- Y Ishizuka
- Development of Biology-Oriented Science and Technology, Kinki University, Wakayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Ishida M, Okazaki E, Tsukamoto S, Kimura K, Aizawa A, Kito S, Imai H, Minami N. The promoter of the oocyte-specific gene, Oog1, functions in both male and female meiotic germ cells in transgenic mice. PLoS One 2013; 8:e68686. [PMID: 23894331 PMCID: PMC3718783 DOI: 10.1371/journal.pone.0068686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 06/02/2013] [Indexed: 12/05/2022] Open
Abstract
Oog1 is an oocyte-specific gene whose expression is turned on in mouse oocytes at embryonic day (E) 15.5, concomitant with the time when most of the female germ cells stop proliferating and enter meiotic prophase. Here, we characterize the Oog1 promoter, and show that transgenic GFP reporter expression driven by the 2.7 kb and 3.9 kb regions upstream of the Oog1 transcription start site recapitulates the intrinsic Oog1 expression pattern. In addition, the 3.9 kb upstream region exhibits stronger transcriptional activity than does the 2.7 kb region, suggesting that regulatory functions might be conserved in the additional 1.2 kb region found within the 3.9 kb promoter. Interestingly, the longer promoter (3.9 kb) also showed strong activity in male germ cells, from late pachytene spermatocytes to elongated spermatids. This is likely due to the aberrant demethylation of two CpG sites in the proximal promoter region. One was highly methylated in the tissues in which GFP expression was suppressed, and another was completely demethylated only in Oog1pro3.9 male and female germ cells. These results suggest that aberrant demethylation of the proximal promoter region induced ectopic expression in male germ cells under the control of 3.9 kb Oog1 promoter. This is the first report indicating that sex-dependent gene expression is altered according to the length and the methylation status of the promoter region. Additionally, our results show that individual CpG sites are differentially methylated and play different roles in regulating promoter activity and gene transcription.
Collapse
Affiliation(s)
- Miya Ishida
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Eriko Okazaki
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Satoshi Tsukamoto
- Laboratory of Animal and Genome Science Section, National Institute of Radiological Sciences, Chiba, Japan
| | - Koji Kimura
- Animal Reproduction Laboratory, National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Nasushiobara, Japan
| | | | - Seiji Kito
- Laboratory of Animal and Genome Science Section, National Institute of Radiological Sciences, Chiba, Japan
| | - Hiroshi Imai
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Naojiro Minami
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
14
|
Hatanaka Y, Shimizu N, Nishikawa S, Tokoro M, Shin SW, Nishihara T, Amano T, Anzai M, Kato H, Mitani T, Hosoi Y, Kishigami S, Matsumoto K. GSE is a maternal factor involved in active DNA demethylation in zygotes. PLoS One 2013; 8:e60205. [PMID: 23560077 PMCID: PMC3613368 DOI: 10.1371/journal.pone.0060205] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 02/21/2013] [Indexed: 11/17/2022] Open
Abstract
After fertilization, the sperm and oocyte genomes undergo extensive epigenetic reprogramming to form a totipotent zygote. The dynamic epigenetic changes during early embryo development primarily involve DNA methylation and demethylation. We have previously identified Gse (gonad-specific expression gene) to be expressed specifically in germ cells and early embryos. Its encoded protein GSE is predominantly localized in the nuclei of cells from the zygote to blastocyst stages, suggesting possible roles in the epigenetic changes occurring during early embryo development. Here, we report the involvement of GSE in epigenetic reprogramming of the paternal genome during mouse zygote development. Preferential binding of GSE to the paternal chromatin was observed from pronuclear stage 2 (PN2) onward. A knockdown of GSE by antisense RNA in oocytes produced no apparent effect on the first and second cell cycles in preimplantation embryos, but caused a significant reduction in the loss of 5-methylcytosine (5mC) and the accumulation of 5-hydroxymethylcytosine (5hmC) in the paternal pronucleus. Furthermore, DNA methylation levels in CpG sites of LINE1 transposable elements, Lemd1, Nanog and the upstream regulatory region of the Oct4 (also known as Pou5f1) gene were clearly increased in GSE-knockdown zygotes at mid-pronuclear stages (PN3-4), but the imprinted H19-differential methylated region was not affected. Importantly, DNA immunoprecipitation of 5mC and 5hmC also indicates that knockdown of GSE in zygotes resulted in a significant reduction of the conversion of 5mC to 5hmC on LINE1. Therefore, our results suggest an important role of maternal GSE for mediating active DNA demethylation in the zygote.
Collapse
Affiliation(s)
- Yuki Hatanaka
- Division of Biological Science, Kinki University Graduate School of Biology-Oriented Science and Technology, Kinokawa, Wakayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lim EJ, Choi Y. Transcription factors in the maintenance and survival of primordial follicles. Clin Exp Reprod Med 2012; 39:127-31. [PMID: 23346521 PMCID: PMC3548069 DOI: 10.5653/cerm.2012.39.4.127] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 12/26/2012] [Accepted: 12/26/2012] [Indexed: 11/25/2022] Open
Abstract
Primordial follicles are formed prenatally in mammalian ovaries, and at birth they are fated to be activated to primary follicles, to be dormant, or to die. During the early stage of folliclulogenesis, the oocyte undergoes dynamic alterations in expression of numerous genes, which are regulated by transcription factors. Several germ-cell specific transcriptional regulators are critical for formation and maintenance of follicles. These transcriptional regulators include: Figla, Lhx8, Nobox, Sohlh1, and Sohlh2. A subset of these transcriptional regulators is mutated in women with ovarian insufficiency and infertility. Establishment of this oocyte pool is essential for fertility. This review focuses on these transcriptional regulators of female primordial follicles.
Collapse
Affiliation(s)
- Eun-Jin Lim
- Department of Biomedical Science, CHA University, Seoul, Korea
| | | |
Collapse
|
16
|
Shin SW, Shimizu N, Tokoro M, Nishikawa S, Hatanaka Y, Anzai M, Hamazaki J, Kishigami S, Saeki K, Hosoi Y, Iritani A, Murata S, Matsumoto K. Mouse zygote-specific proteasome assembly chaperone important for maternal-to-zygotic transition. Biol Open 2012; 2:170-82. [PMID: 23429752 PMCID: PMC3575651 DOI: 10.1242/bio.20123020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 10/18/2012] [Indexed: 01/15/2023] Open
Abstract
During the maternal-to-zygotic transition (MZT), maternal proteins in oocytes are degraded by the ubiquitin–proteasome system (UPS), and new proteins are synthesized from the zygotic genome. However, the specific mechanisms underlying the UPS at the MZT are not well understood. We identified a molecule named zygote-specific proteasome assembly chaperone (ZPAC) that is specifically expressed in mouse gonads, and expression of ZPAC was transiently increased at the mouse MZT. ZPAC formed a complex with Ump1 and associated with precursor forms of 20S proteasomes. Transcription of ZPAC genes was also under the control of an autoregulatory feedback mechanism for the compensation of reduced proteasome activity similar to Ump1 and 20S proteasome subunit gene expression. Knockdown of ZPAC in early embryos caused a significant reduction of proteasome activity and decrease in Ump1 and mature proteasomes, leading to accumulation of proteins that need to be degraded at the MZT and early developmental arrest. Therefore, a unique proteasome assembly pathway mediated by ZPAC is important for progression of the mouse MZT.
Collapse
Affiliation(s)
- Seung-Wook Shin
- Division of Biological Science, Graduate School of Biology-Oriented Science and Technology, Kinki University , 930 Nishimitani, Kinokawa, Wakayama 649-6493 , Japan ; Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 , Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Roy B, Rajput S, Raghav S, Kumar P, Verma A, Kumar S, De S, Goswami SL, Datta TK. A reporter promoter assay confirmed the role of a distal promoter NOBOX binding element in enhancing expression of GDF9 gene in buffalo oocytes. Anim Reprod Sci 2012; 135:18-24. [PMID: 23078866 DOI: 10.1016/j.anireprosci.2012.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 08/28/2012] [Accepted: 09/13/2012] [Indexed: 11/26/2022]
Abstract
Growth differentiation factor 9 is primarily expressed in oocytes and plays a vital role in oocyte cumulus crosstalk. Earlier studies with buffalo oocytes revealed differential expression of this gene under different media stimulation conditions which, in turn, are correlated with the blastocyst yield. In this study, different germ cell specific cis elements including a NOBOX binding elements (NBE) and several E-boxes were identified at the 5' upstream region of buffalo GDF9 gene and their potential role in GDF9 expression was investigated. Transfecting oocytes with GDF9 promoter deletion constructs harbouring the NBE reporter gene revealed a 33% increase in GFP as well as the luciferase signal signifying its role in stimulating the minimal promoter activity of GDF9 in buffalo oocytes. Site directed mutation of core binding nucleotides at NBE at 1.8 kb upstream to TSS further confirmed its role for enhancing the basal transcriptional activity of GDF9 promoter in buffalo oocytes. Current work will provide important leads for understanding the role of GDF9 in oocytes competence and designing a more physiological IVF protocol in case of buffalo.
Collapse
Affiliation(s)
- Bhaskar Roy
- Animal Genomics Lab, ABTC, NDRI, Karnal, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Characterization of oocyte-expressed GDF9 gene in buffalo and mapping of its TSS and putative regulatory elements. ZYGOTE 2012; 21:115-24. [PMID: 22230197 DOI: 10.1017/s0967199411000712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Summary In spite of emerging evidence about the vital role of GDF9 in determination of oocyte competence, there is insufficient information about its regulation of oocyte-specific expression, particularly in livestock animals. Because of the distinct prominence of buffalo as a dairy animal, the present study was undertaken to isolate and characterize GDF9 cDNA using orthologous primers based on the bovine GDF9 sequence. GDF9 transcripts were found to be expressed in oocytes irrespective of their follicular origin, and shared a single transcription start site (TSS) at -57 base pairs (bp) upstream of ATG. Assignment of the TSS is consistent with the presence of a TATA element at -23 of the TSS mapped in this study. Localization of a buffalo-specific minimal promoter within 320 bp upstream of ATG was consolidated by identification of an E-box element at -113bp. Presence of putative transcription factor binding sites and other cis regulatory elements were analyzed at ~5 kb upstream of TSS. Various germ cell-specific cis-acting regulatory elements (BNCF, BRNF, NR2F, SORY, Foxh1, OCT1, LHXF etc.) have been identified in the 5' flanking region of the buffalo GDF9 gene, including NOBOX DNA binding elements and consensuses E-boxes (CANNTG). Presence of two conserved E-boxes found on buffalo sequence at -520 and -718 positions deserves attention in view of its sequence deviation from other species. Two NOBOX binding elements (NBE) were detected at the -3471 and -203 positions. The fall of the NBE within the putative minimal promoter territory of buffalo GDF9 and its unique non-core binding sequence could have a possible role in the control of the core promoter activity.
Collapse
|
19
|
Wang Q, Cao DH, Jin CL, Lin CK, Ma HW, Wu YY. A Method of Utrophin Up-Regulation through RNAi-Mediated Knockdown of the Transcription Factor EN1. J Int Med Res 2011; 39:161-71. [PMID: 21672318 DOI: 10.1177/147323001103900117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to induce up-regulation of the dystrophin-related gene UTRN that encodes the protein utrophin, to determine whether this could compensate for the lack of dystrophin function in Duchenne muscular dystrophy. The human UTRN promoter, which contains two putative binding sites for homeobox protein engrailed-1 (EN1), was analysed. It was found that EN1 binding site 2 in the UTRN gene promoter directly interacted with transcription factor EN1 in vitro. Chromatin immunoprecipitation assays of the EN1– UTRN promoter complex from rhabdomyosarcoma and HeLa cell lines confirmed that endogenous EN1 interacted with this region in vivo. The findings suggest that EN1 directly interacts with the UTRN promoter. Small interfering RNA was used to inhibit EN1 gene expression. Higher utrophin mRNA levels were observed in EN1-inhibited cells compared with controls. The increase in utrophin mRNA in rhabdomyosarcoma cells and HeLa cells may have resulted from inhibition of EN1 expression.
Collapse
Affiliation(s)
- Q Wang
- Senior Profession College, China Medical University, Shenyang, China
- Department of Medical Genetics, China Medical University, Shenyang, China
| | - D-H Cao
- Department of Laboratory Medicine, No. 202 Hospital of the People's Liberation Army, Shenyang, China
| | - C-L Jin
- Department of Medical Genetics, China Medical University, Shenyang, China
| | - C-K Lin
- Department of Medical Genetics, China Medical University, Shenyang, China
| | - H-W Ma
- Department of Paediatrics, Shengjing Hospital, China Medical University, Shenyang, China
| | - Y-Y Wu
- Department of Paediatrics, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
20
|
Kiessling AA, Bletsa R, Desmarais B, Mara C, Kallianidis K, Loutradis D. Genome-wide microarray evidence that 8-cell human blastomeres over-express cell cycle drivers and under-express checkpoints. J Assist Reprod Genet 2010; 27:265-76. [PMID: 20358275 PMCID: PMC2914593 DOI: 10.1007/s10815-010-9407-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 03/04/2010] [Indexed: 11/29/2022] Open
Abstract
PURPOSE To understand cell cycle controls in the 8-Cell human blastomere. METHODS Data from whole human genome (43,377 elements) microarray analyses of RNAs from normal 8-Cell human embryos were compiled with published microarrays of RNAs from human fibroblasts, before and after induced pluripotency, and embryonic stem cells. A sub database of 3,803 genes identified by high throughput RNA knock-down studies, plus genes that oscillate in human cells, was analyzed. RESULTS Thirty-five genes over-detected at least 7-fold specifically on the 8-Cell arrays were enriched for cell cycle drivers and for proteins that stabilize chromosome cohesion and spindle attachment and limit DNA and centrosome replication to once per cycle. CONCLUSIONS These results indicate that 8-cell human blastomere cleavage is guided by cyclic over-expression of key proteins, rather than canonical checkpoints, leading to rapidly increasing gene copy number and a susceptibility to chromosome and cytokinesis mishaps, well-noted characteristics of preimplantation human embryos.
Collapse
Affiliation(s)
- Ann A. Kiessling
- Bedford Stem Cell Research Foundation, 206 Elm St, Suite 106, Somerville, MA 02144 USA
| | - Ritsa Bletsa
- 1st Department of Obstetrics and Gynecology, Athens Medical School, “Alexandra” Maternity Hospital, Athens, Greece
| | - Bryan Desmarais
- Bedford Stem Cell Research Foundation, 206 Elm St, Suite 106, Somerville, MA 02144 USA
| | - Christina Mara
- 1st Department of Obstetrics and Gynecology, Athens Medical School, “Alexandra” Maternity Hospital, Athens, Greece
| | - Kostas Kallianidis
- 1st Department of Obstetrics and Gynecology, Athens Medical School, “Alexandra” Maternity Hospital, Athens, Greece
| | - Dimitris Loutradis
- 1st Department of Obstetrics and Gynecology, Athens Medical School, “Alexandra” Maternity Hospital, Athens, Greece
| |
Collapse
|
21
|
Abstract
Oocytes are sequestered in primordial follicles before birth and remain quiescent in the ovary, often for decades, until recruited into the growing pool throughout the reproductive years. Therefore, activation of follicle growth is a major biological checkpoint that controls female reproductive potential. However, we are only just beginning to elucidate the cellular mechanisms required for either maintenance of the quiescent primordial follicle pool or initiation of follicle growth. Understanding the intracellular signalling systems that control oocyte maintenance and activation has significant implications for improving female reproductive productivity and longevity in mammals, and has application in domestic animal husbandry, feral animal population control and infertility in women.
Collapse
Affiliation(s)
- Eileen A McLaughlin
- Reproductive Science Group, School of Environmental & Life Sciences and ARC Centre of Excellence in Biotechnology & Development, University of Newcastle, Callaghan, New South Wales, Australia.
| | | |
Collapse
|