1
|
Wei S, Kang X, Yang C, Wang F, Dai T, Guo X, Ma Z, Li C, Zhao H, Dan X. Analysis of reproduction-related transcriptomes on pineal-hypothalamic-pituitary-ovarian tissues during estrus and anestrus in Tan sheep. Front Vet Sci 2022; 9:1068882. [PMID: 36504859 PMCID: PMC9729709 DOI: 10.3389/fvets.2022.1068882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Seasonal estrus is an important factor limiting the fertility of some animals such as sheep. Promoting estrus in the anestrus season is one of the major ways in improving the fecundity of seasonally breeding animals. The pineal-hypothalamus-pituitary-ovary (PHPO) axis plays a decisive role in regulating animal reproduction. However, the molecular mechanisms by which the PHPO axis regulates seasonal reproduction in animals are not well understood, especially in Tan sheep. To this end, we collected pineal, hypothalamus, pituitary and ovary tissues from Tan sheep during estrus and anestrus for RNA-Sequencing, and performed bioinformatics analysis on the entire regulatory axis of the pineal-hypothalamic-pituitary-ovary (PHPO). The results showed that 940, 1,638, 750, and 971 DEGs (differentially expressed genes, DEGs) were identified in pineal, hypothalamus, pituitary and ovary, respectively. GO analysis showed that DEGs from PHPO axis-related tissues were mainly enriched in "biological processes" such as transmembrane transport, peptide and amide biosynthesis and DNA synthesis. Meanwhile, KEGG enrichment analysis showed that the bile acid secretion pathway and the neuroactive ligand-receptor interaction pathway were significantly enriched. Additionally, four potential candidate genes related to seasonal reproduction (VEGFA, CDC20, ASPM, and PLCG2) were identified by gene expression profiling and protein-protein interaction (PPI) analysis. These findings will contribute to be better understanding of seasonal reproduction regulation in Tan sheep and will serve as a useful reference for molecular breeding of high fertility Tan sheep.
Collapse
|
2
|
Madan B, Virshup DM, Nes WD, Leaver DJ. Unearthing the Janus-face cholesterogenesis pathways in cancer. Biochem Pharmacol 2021; 196:114611. [PMID: 34010597 DOI: 10.1016/j.bcp.2021.114611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/23/2022]
Abstract
Cholesterol biosynthesis, primarily associated with eukaryotes, occurs as an essential component of human metabolism with biosynthetic deregulation a factor in cancer viability. The segment that partitions between squalene and the C27-end cholesterol yields the main cholesterogenesis branch subdivided into the Bloch and Kandutsch-Russell pathways. Their importance in cell viability, in normal growth and development originates primarily from the amphipathic property and shape of the cholesterol molecule which makes it suitable as a membrane insert. Cholesterol can also convert to variant oxygenated product metabolites of distinct function producing a complex interplay between cholesterol synthesis and overall steroidogenesis. In this review, we disassociate the two sides of cholesterogenesisis affecting the type and amounts of systemic sterols-one which is beneficial to human welfare while the other dysfunctional leading to misery and disease that could result in premature death. Our focus here is first to examine the cholesterol biosynthetic genes, enzymes, and order of biosynthetic intermediates in human cholesterogenesis pathways, then compare the effect of proximal and distal inhibitors of cholesterol biosynthesis against normal and cancer cell growth and metabolism. Collectively, the inhibitor studies of druggable enzymes and specific biosynthetic steps, suggest a potential role of disrupted cholesterol biosynthesis, in coordination with imported cholesterol, as a factor in cancer development and as discussed some of these inhibitors have chemotherapeutic implications.
Collapse
Affiliation(s)
- Babita Madan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore; Department of Pediatrics, Duke University, Durham, NC, USA
| | - W David Nes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.
| | - David J Leaver
- Department of Biology, Geology, and Physical Sciences, Sul Ross State University, Alpine, TX, USA.
| |
Collapse
|
3
|
Li Y, Liang Z, Liang Z, Yang X, Xia H, Yu H. Abnormal PIWI-interacting RNA profile and its association with the deformed extracellular matrix of oocytes from recurrent oocyte maturation arrest patients. Fertil Steril 2021; 115:1318-1326. [PMID: 33622565 DOI: 10.1016/j.fertnstert.2020.11.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/19/2020] [Accepted: 11/30/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To depict the PIWI-interacting RNA (piRNA) profile in oocytes from patients with recurrent oocyte maturation arrest (ROMA) and explore the piRNA candidates associated with the disease. DESIGN An observational study. SETTING Academic research unit. PATIENT(S) Sixteen ROMA patients who provided 140 immature oocytes that arrested at metaphase I, and 146 control patients who provided 420 oocytes for in vitro culture that were collected at the stages of germinal vesicle (GV), metaphase I (MI), and MII. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Expression profiles of piRNA and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) validating data of piR-hsa-17139 and its target genes. RESULT(S) After the piRNA profile was established using piRNA sequencing and hierarchical clustering, the target genes of the piRNA were predicted by bioinformatics databases and matched with mRNA sequencing data. The piRNA expression profiles showed a greater quantity of differentially expressed piRNAs in the older-stage oocytes compared with the early-stage oocytes. The piRNA and mRNA sequencing data indicated that the most affected genes were mainly concentrated in the extracellular matrix (ECM) pathway. Based on the comparison of the piRNA and mRNA sequencing data, four differentially expressed piRNAs were associated with modulation of those ECM pathway genes. The qRT-PCR validation confirmed that piR-hsa-17139 was the only up-regulated piRNA, and its target ECM genes were suppressed in ROMA oocytes. The expression level of piR-hsa-17139 declined slightly while the expression of its target ECM genes plunged dramatically during the development of normal oocytes. CONCLUSION(S) As the important genome monitors in gametogenesis, abnormally expressed piRNAs may affect the expression of ECM modulating genes, which subsequently contributes to ROMA.
Collapse
Affiliation(s)
- Yi Li
- Center for Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.
| | - Zhenjie Liang
- Center for Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhongkun Liang
- Center for Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xi Yang
- Center for Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Huayang Xia
- Center for Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hao Yu
- Urological Surgery Department, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
4
|
Wang J, Peng X, Yang H, Lv B, Wang Z, Song Q. Mul-tiomics analysis of cadmium stress on the ovarian function of the wolf spider Pardosa pseudoannulata. CHEMOSPHERE 2020; 248:125904. [PMID: 32014633 DOI: 10.1016/j.chemosphere.2020.125904] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) pollution is widespread in paddy filed soil in China. In this study, the toxicity of Cd with regard to the female reproductive system of paddy spider Pardosa pseudoannulata was investigated by means of multi-omics analyses (transcriptome, proteome, and miRNAs). Decreased activities of detoxifying enzymes including peroxidase (POD), Glutathione S-transferases (GST), and superoxide dismutase were detected in the ovary of P. pseudoannulata. Of these, GST and POD were consistently down-regulated at the transcriptional and translational levels. Vitellogenin content and fecundity of the spider were also reduced by Cd burden. Five vitellogenin encodes genes were down-regulated while only vitellogenin-6 protein was up-regulated. But protein lipovitellin-1, the main composition of vitellin, was down-regulated. In addition, the correlation between the mitogen-activated protein kinase (MAPK) signaling pathway and Cd stress was identified. A down-regulated gene that encoding connector of kinase to AP-1 in the MAPK signaling pathway was regulated by the up-regulated miRNA (miRNA id: miRNA dan-miR- 318>der-miR-318>dgr-miR-318>dme-miR-318-3p > dmo-miR-318>dpe-miR-318>dps-miR-318>dse-miR-318>dsi-miR-318>dvi-miR-318>dwi-miR-318>dya-miR-318). In conclusion, Cd stress possesses distinct female reproductive toxicity on P. pseudoannulata through impairing antioxidant system and synthesis of vitellin.
Collapse
Affiliation(s)
- Juan Wang
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Xianjin Peng
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Huilin Yang
- College of Resources & Environment, Hunan Agriculture University, Changsha, Hunan, 410128, China
| | - Bo Lv
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Zhi Wang
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
5
|
Guo R, Wang X, Li Q, Sun X, Zhang J, Hao R. Follicular fluid meiosis-activating sterol (FF-MAS) promotes meiotic resumption via the MAPK pathway in porcine oocytes. Theriogenology 2019; 148:186-193. [PMID: 31757483 DOI: 10.1016/j.theriogenology.2019.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 11/17/2022]
Abstract
Follicular fluid meiosis-activating sterol (FF-MAS) exerts beneficial effects on the meiotic resumption of mammalian oocytes and their subsequent early embryonic development, but the signaling pathway underlying these effects has not been elucidated. Therefore, the objective of the present study was to investigate whether the mitogen-activated protein kinase (MAPK) pathway is involved in the FF-MAS-induced in vitro resumption of meiosis in porcine oocytes. Porcine cumulus oocyte complexes (COCs) were allocated in several groups cultured in TCM-199 medium with different concentration of AY 9944-A-7 (20, 30, 40 μmol/L) or ketoconazole (20 μmol/L) to increase or decrease endogenous accumulation of FF-MAS. Each experimental condition was repeated at least six times. After maturation for 44 h, the resumption of meiosis was assessed by the frequency of germinal vesicle breakdown (GVBD) and the first polar body (PBI) extrusion, The relative expressions of related genes in MAPK pathway [c-mos, mitogen-activated protein kinase kinase (MEK) and extracellular signal-regulated kinase 1/2 (ERK1/2)] at both transcriptional and translational levels were detected to investigate the kinetic trend of expression throughout oocyte maturation in vitro in response to the addition of AY 9944-A-7 or ketoconazole to the maturation medium. Results indicated that AY 9944-A-7 promoted, while ketoconazole inhibited, the in vitro maturation (IVM) of porcine oocytes. Relative expression of meiosis related genes was upregulated by AY 9944-A-7 and downregulated by ketoconazole. With extended culturing time, c-mos mRNA expression levels reached their peak at 12 h of maturation and decreased gradually thereafter, while MEK, ERK1 and ERK2 expression increased after an initial decrease peaking at 44 h of culture in the AY 9944-A-7-group. And the trend of the protein expression of c-mos, MEK, ERK1/2 was basically consistent with the mRNA expression of these genes. These results imply that the endogenous accumulation of FF-MAS is beneficial to resumption of meiosis in porcine oocytes and that MAPK signaling is involved in FF-MAS-induced meiotic resumption.
Collapse
Affiliation(s)
- Ruijie Guo
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Xiaorong Wang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Qinghong Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, PR China; Shanxi Collaborative Innovation Center for High-Productive and Safe Livestock, Taigu, 030801, PR China
| | - Xiaojiang Sun
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Junlan Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Ruirong Hao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, PR China; Shanxi Collaborative Innovation Center for High-Productive and Safe Livestock, Taigu, 030801, PR China.
| |
Collapse
|
6
|
Lee SH, Oh HJ, Kim MJ, Kim GA, Choi YB, Jo YK, Setyawan EMN, Lee BC. Oocyte maturation-related gene expression in the canine oviduct, cumulus cells, and oocytes and effect of co-culture with oviduct cells on in vitro maturation of oocytes. J Assist Reprod Genet 2017; 34:929-938. [PMID: 28386814 DOI: 10.1007/s10815-017-0910-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/29/2016] [Indexed: 01/01/2023] Open
Abstract
PURPOSE In contrast to most other mammals, canine oocytes are ovulated in an immature state and undergo oocyte maturation within the oviduct during the estrus stage. The aim of the study was to investigate whether oviduct cells from the estrus stage affect the maturation of oocytes and show gene expression patterns related to oocyte maturation. METHODS We analyzed MAPK1/3, SMAD2/3, and BMP6/15 expression in oviduct cells, cumulus cells, and oocytes from anestrus, estrus, and diestrus stages. Next, we investigated the effect of co-culture with oviduct cells derived from the estrus stage upon in vitro maturation (IVM) of canine oocytes. RESULTS There was significantly higher MAPK1/3 (1.42 ± 0.02 and 2.23 ± 0.06), SMAD2/3 (0.77 ± 0.03 and 2.39 ± 0.07), and BMP15 (2.21 ± 0.16) expression in oviduct cells at the estrus stage (P < 0.05). In cumulus cells, MAPK1 (1.26 ± 0.07), SMAD2/3 (0.82 ± 0.01, 1.04 ± 0.01), and BMP6 (13.09 ± 0.11) expression was significantly higher in the estrus stage (P < 0.05). In oocytes, significant upregulation of MAPK1/3 (14,960 ± 3121 and 1668 ± 253.4), SMAD3 (774.6 ± 79.62), and BMP6 (8500 ± 895.4) expression was found in the estrus stage (P < 0.05). After 72 h of IVM culture, a significantly higher maturation rate was observed in oocytes co-cultured with oviduct cells (10.0 ± 1.5%) than in the control group (3.2 ± 1.4%). CONCLUSIONS We demonstrate that oviduct cells at the estrus stage highly expressed MAPK1/3, SMAD2/3, and BMP15. Furthermore, canine oviduct cells from the estrus stage enhance the culture environment for canine oocyte maturation.
Collapse
Affiliation(s)
- Seok Hee Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyun Ju Oh
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Min Jung Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Geon A Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yoo Bin Choi
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Young Kwang Jo
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Erif Maha Nugraha Setyawan
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
7
|
Xu W, Li H, Zhang N, Dong Z, Wang N, Shao C, Chen S. Expression analysis and characterization of an autosome-localized tesk1 gene in half-smooth tongue sole (Cynoglossus semilaevis). Gene 2016; 582:161-7. [PMID: 26869317 DOI: 10.1016/j.gene.2016.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/21/2016] [Accepted: 02/04/2016] [Indexed: 01/29/2023]
Abstract
Testis-specific protein kinase 1 (tesk1) represents a conserved gene family functioning in many cellular processes. In this study, we cloned and characterized an autosome-localized tesk1 gene (Altesk1) from Cynoglossus semilaevis. The open reading frame consists of 2088 nucleotides and encodes a 665 amino acid polypeptide. Phylogenetic analyses show that vertebrate Tesk1s are divided into two clusters based on protein length and AlTesk1 belongs to "long-type" group. Semi-quantitative PCR reveals that Altesk1 is predominantly expressed in ovary, despite of relatively low detection in some other tissues. Among different development stages, Altesk1 transcripts are only observed in ovary samples of 210-day and 1-year fish. In situ hybridization analyses have further confirmed its major localization in oocyte cells. Comparison of methylation patterns in different sexual genotypes reveals the low methylation level of Altesk1 promoter in female, which is consistent with Altesk1 high expression level in female. Taken together, this is the first time that tesk1 gene has been found to show female-biased expression and in view of this, we postulate that AlTesk1 might be involved in some cellular processes specific in ovary, e.g. oogenesis.
Collapse
Affiliation(s)
- Wenteng Xu
- Yellow Sea Fisheries Research Institute, CAFS, Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Hailong Li
- Yellow Sea Fisheries Research Institute, CAFS, Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Ning Zhang
- Yellow Sea Fisheries Research Institute, CAFS, Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Zhongdian Dong
- Yellow Sea Fisheries Research Institute, CAFS, Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Na Wang
- Yellow Sea Fisheries Research Institute, CAFS, Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Changwei Shao
- Yellow Sea Fisheries Research Institute, CAFS, Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Songlin Chen
- Yellow Sea Fisheries Research Institute, CAFS, Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
8
|
Cheng Y, Zhong Z, Latham KE. Strain-specific spontaneous activation during mouse oocyte maturation. Fertil Steril 2012; 98:200-6. [PMID: 22584025 DOI: 10.1016/j.fertnstert.2012.03.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/19/2012] [Accepted: 03/27/2012] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To examine whether spontaneous oocyte activation is determined by genetic differences and interacts with culture environment. DESIGN Experimental study. SETTING Temple University School of Medicine. ANIMAL(S) C57BL/6, DBA/2, C3H/HeJ, and A/J strains, along with reciprocal F1 hybrid female mice (5-6 weeks). INTERVENTION(S) Immature oocytes from different mouse strains collected and cultured in different maturation conditions, including different serum, serum replacement, bovine serum albumin (BSA), and follicle-stimulation hormone (FSH). MAIN OUTCOME MEASURE(S) The emission of first polar body, pronucleus formation, meiotic arrest, spontaneous activation, and expression of maturation regulators. RESULT(S) Oocytes from C57BL/6 mice display a high rate of delayed first meiotic division and spontaneous activation after the first meiotic division with in vitro maturation (IVM), and the second meiotic division with in vivo maturation (VVM) after superovulation. Spontaneous activation with IVM is sensitive to culture environment. Oocytes that spontaneously activated during the first meiotic division with IVM have unusual replicated sister chromatid pairs with slight connections at centromeres at first mitosis, whereas oocytes that activated in vivo display haploidization from the second meiotic division. Spontaneous activation is also seen in F1 hybrid oocytes, indicating a dominant trait from C57BL/6. Delayed meiosis was associated with reduced cyclin B and securin expression. CONCLUSION(S) Both mouse strain and culture environment have a statistically significant effect on the incidence of meiotic defects and spontaneous activation. Reduced expression of meiotic regulators may underlie this effect.
Collapse
Affiliation(s)
- Yong Cheng
- The Fels Institute for Cancer Research and Molecular Biology, Temple University Medical School, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
9
|
Abstract
Regulation of maturation in meiotically competent mammalian oocytes is a complex process involving the carefully coordinated exchange of signals between the somatic and germ cell compartments of the ovarian follicle via paracrine and cell-cell coupling pathways. This review highlights recent advances in our understanding of how such signaling controls both meiotic arrest and gonadotropin-triggered meiotic resumption in competent oocytes and relates them to the historical context. Emphasis will be on rodent systems, where many of these new findings have taken place. A regulatory scheme is then proposed that integrates this information into an overall framework for meiotic regulation that demonstrates the complex interplay between different follicular compartments.
Collapse
Affiliation(s)
- Stephen M Downs
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53233, USA.
| |
Collapse
|
10
|
Tkachenko OY, Delimitreva S, Isachenko E, Valle RR, Michelmann HW, Berenson A, Nayudu PL. Epidermal growth factor effects on marmoset monkey (Callithrix jacchus) oocyte in vitro maturation, IVF and embryo development are altered by gonadotrophin concentration during oocyte maturation. Hum Reprod 2010; 25:2047-58. [DOI: 10.1093/humrep/deq148] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|