1
|
Huang J, Feng L, Huang J, Zhang G, Liao S. Unveiling sialoglycans' immune mastery in pregnancy and their intersection with tumor biology. Front Immunol 2024; 15:1479181. [PMID: 39759524 PMCID: PMC11695303 DOI: 10.3389/fimmu.2024.1479181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Sialylation is a typical final step of glycosylation, which is a prevalent post-translational modification of proteins. Sialoglycans, the products of sialylation, are located on the outmost of cells and participate in pivotal biological processes. They have been identified as glyco-immune checkpoints and are currently under rigorous investigation in the field of tumor research. It is noteworthy that the exploration of sialoglycans in tumor and pregnancy contexts was both initiated in the 1960s. Mechanisms in these two conditions exhibit similarities. Trophoblast infiltration during pregnancy gets controlled, while tumor invasion is uncontrolled. The maternal-fetal immunotolerance balances acceptance of the semiallogeneic fetus and resistance against "non-self" antigen attack simultaneously. Tumors mask themselves with sialoglycans as "don't eat me" signals to escape immune surveillance. The trophoblastic epithelium is covered with sialoglycans, which have been demonstrated to play an immune regulatory role throughout the entire pregnancy. Immune abnormalities are commonly recognized as an important reason for miscarriages. Therapeutic strategies that desialylation and targeting receptors of sialoglycans have been studied in tumors, while agents that target glyco-immune checkpoints have not been studied in pregnancy. Thus, investigating the roles of sialoglycans in pregnancy and their intersection with tumors may facilitate the development of novel therapies targeting glyco-immune checkpoints for the treatment of pregnancy-related diseases, such as miscarriage and preeclampsia.
Collapse
Affiliation(s)
- Jianmei Huang
- Medical Genetic Institute of Henan Province, Henan Key Laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Lu Feng
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jianming Huang
- Biochemistry and Molecular Biology, Sichuan Cancer Institute, Chengdu, China
| | - Guonan Zhang
- Department of Gynecologic Oncology, Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shixiu Liao
- Medical Genetic Institute of Henan Province, Henan Key Laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Matsuno Y, Kusama K, Imakawa K. Characterization of lncRNA functioning in ovine conceptuses and endometria during the peri-implantation period. Biochem Biophys Res Commun 2022; 594:22-30. [PMID: 35066376 DOI: 10.1016/j.bbrc.2022.01.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 01/16/2022] [Indexed: 11/26/2022]
Abstract
In ruminants, RNA-sequence analyses have revealed many characteristics of transcripts expressed in conceptuses (embryo and extraembryonic membrane) during peri-implantation periods; however, lncRNA profiles are yet characterized. In this study, we aimed to characterize the lncRNA expression profile in conceptuses during peri-implantation periods in sheep. We analyzed the RNA-sequence data of ovine conceptuses and endometria obtained from pregnant animals on days 15, 17, 19 and 21 (day 0 = day of estrus, n = 3 or 4/day). We predicted the protein coding ability of the assembled transcripts to identify the lncRNA candidates. This analysis identified 8808 lncRNAs, 3423 of which were novel lncRNAs. Gene ontology analysis revealed that lncRNA target genes were enriched for biological processes involved in the respiratory electron transport chain (RETC). qPCR analysis demonstrated that the expression levels on transcripts encoding RETC such as mitochondrially encoded cytochrome c oxidase II (MTCO2) and mitochondria DNA copy number in conceptuses were not increased on P21, although western blotting analysis and immunohistochemistry demonstrated that MTCO2 protein in conceptuses was increased on P21. NAD/NADH assay revealed that NADH level in conceptuses was increased on P21. These results indicate that lncRNAs could regulate the RETC through post-transcriptional levels in the conceptuses. Therefore, lncRNA is a potential new regulator in ovine conceptus development during peri-implantation periods.
Collapse
Affiliation(s)
- Yuta Matsuno
- Laboratory of Molecular Reproduction, Research Institute of Agriculture, Tokai University, Kumamoto, Kumamoto, Japan
| | - Kazuya Kusama
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Kazuhiko Imakawa
- Laboratory of Molecular Reproduction, Research Institute of Agriculture, Tokai University, Kumamoto, Kumamoto, Japan.
| |
Collapse
|
3
|
Loch C, Haeger JD, Pfarrer C. IFNτ mediates chemotaxis, motility, metabolism and CK18 downregulation in bovine trophoblast cells in vitro via STAT1 and MAPK42/44 signaling. Placenta 2018; 64:17-26. [DOI: 10.1016/j.placenta.2018.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/19/2018] [Accepted: 02/19/2018] [Indexed: 10/18/2022]
|
4
|
Novel endogenous retrovirus-derived transcript expressed in the bovine placenta is regulated by WNT signaling. Biochem J 2017; 474:3499-3512. [PMID: 28899944 PMCID: PMC5633919 DOI: 10.1042/bcj20170531] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/22/2017] [Accepted: 09/07/2017] [Indexed: 01/11/2023]
Abstract
Endogenous retroviruses (ERVs) are involved in placentation; perhaps, the most well-known ERVs are the syncytins, actively transcribed env genes involved in cell–cell fusion and possible morphological variations. However, ERVs other than syncytins that play an important role in placental development have not been well characterized. To identify ERV genes expressed during the onset of placentation in the bovine species, we characterized the expression profiles of bovine conceptus transcripts during the peri-attachment period using RNA-seq analysis, and confirming some candidates through real-time PCR. Using in silico and PCR analyses, we identified a novel ERV proviral sequence derived from a gag region, designated bovine endogenous retroviruses (BERV)-K3, containing Gag_p10 and Gag_p24, zinc finger domain. Initial expression of this ERV in bovine conceptuses was on day 20 (day 0 = day of estrus), soon after conceptus attachment to the endometrial epithelium, and its high placental expression was maintained up to the middle of pregnancy. The BERV-K3 transcript was also found in the uterine luminal and glandular epithelia, liver, kidney, intestine, and skin. BERV-K3 is located on chromosome 7 and integrated within LOC100848658, from which noncoding RNA could be transcribed. Furthermore, the expression of endogenous BERV-K3 in bovine trophoblast cell lines was induced by a WNT agonist, a signaling system common to genes expressed in placentas. These data support the argument that during the evolutionary process, mammals incorporated not only similar ERV sequences, but also ERVs unique to individual species. BERV-K3 is in the latter case, likely providing functions unique to ruminant gestation.
Collapse
|
5
|
Bai H, Sakurai T, Bai R, Godkin JD, Imakawa K. Localization of GATA2 in the nuclear and cytoplasmic regions of ovine conceptuses. Anim Sci J 2014; 85:981-5. [PMID: 25163535 DOI: 10.1111/asj.12267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/22/2014] [Indexed: 11/30/2022]
Abstract
GATA transcription factors are emerging as critical regulators in trophoblast development and its gene regulation. The purpose of this study was to examine the expression and cellular localization of GATA2 in ovine conceptuses during the peri-implantation period. In Western blot analyses, GATA2 proteins were found in days 15, 17 and 21 ovine conceptuses (day 0=day of estrus). Using immunohistochemistry and immunofluorescence analyses, we found that GATA2 was localized in days 15, 17 and 21 ovine conceptuses, and more importantly, GATA2 protein was detected in both nuclear and cytoplasmic regions of the trophectoderm. To our knowledge, the present study is the first to demonstrate that GATA2 is localized in two cellular compartments of the trophectoderm in ovine and many other mammalian species, and suggests that the difference in GATA2 location plays a role in the regulation of down-stream genes during the early pregnancy period.
Collapse
Affiliation(s)
- Hanako Bai
- Laboratory of Theriogenology and Animal Breeding, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
6
|
Bai H, Sakurai T, Godkin JD, Imakawa K. Expression and in situ localization of GATA4, 5 and 6 mRNAs in ovine conceptuses and uterine endometria during the peri-implantation period. Anim Sci J 2013; 85:388-94. [PMID: 24329758 DOI: 10.1111/asj.12156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 09/05/2013] [Indexed: 10/25/2022]
Abstract
In vertebrates, six GATA transcription factors, GATA1 through GATA6, have been identified and GATA1-3 is known to be involved in hematopoietic developments, while GATA4-6 play roles in cardiac and endoderm developments. Recently, we and others have found that GATA2 and GATA3 found in the trophectoderm plays a role in gene expression specific to this cell type, but GATA4-6 have not been well characterized in early embryonic developments. Using quantitative polymerase chain reaction (qPCR) and in situ hybridization, we examined the expression of GATA4, 5 and 6 messenger RNAs (mRNAs) in ovine conceptuses and uteri during the peri-implantation period. In ovine conceptuses, GATA4, 5 and 6 transcripts were present on days 15, 17 and 21 (day 0 = day of mating), and high GATA5 and 6 mRNAs were found on day 21, most of which were localized in the trophectoderm and endoderm. Moreover, minute and substantial GATA4 and 5 mRNAs were found in days 15 and 21 uterine endometria, respectively. Increase in GATA4-6 transcripts in day 21 uteri indicates that in addition to GATA1-3, GATA4-6 may also play a potentially novel role in the development of ovine trophectoderm, endoderm and/or uterine endometria following conceptus attachment to the uterine epithelium.
Collapse
Affiliation(s)
- Hanako Bai
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
7
|
Bai H, Sakurai T, Godkin JD, Imakawa K. Expression and potential role of GATA factors in trophoblast development. J Reprod Dev 2013; 59:1-6. [PMID: 23428586 PMCID: PMC3943230 DOI: 10.1262/jrd.2012-100] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Despite exhaustive studies, molecular mechanisms governing blastocyst formation,
implantation to the uterine endometrium and placentation have not been definitively
characterized. GATA family proteins are a group of zinc finger transcription factors, for
which gene ablations eventually result in embryonic death later in pregnancy. These
findings suggested that GATA factors are not essential for early embryonic development.
However, recent studies from our laboratory and others have revealed that GATA proteins
are involved in the regulation of key genes expressed by the trophectoderm that underpin
the transition from the morula to trophoblast, and trophectoderm maintenance.
Consequently, it is important to consider the current understanding how GATA factors
govern early trophectoderm development.
Collapse
Affiliation(s)
- Hanako Bai
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
8
|
Foley C, Chapwanya A, Creevey CJ, Narciandi F, Morris D, Kenny EM, Cormican P, Callanan JJ, O'Farrelly C, Meade KG. Global endometrial transcriptomic profiling: transient immune activation precedes tissue proliferation and repair in healthy beef cows. BMC Genomics 2012; 13:489. [PMID: 22985206 PMCID: PMC3544567 DOI: 10.1186/1471-2164-13-489] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 09/07/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND All cows experience bacterial contamination and tissue injury in the uterus postpartum, instigating a local inflammatory immune response. However mechanisms that control inflammation and achieve a physiologically functioning endometrium, while avoiding disease in the postpartum cow are not succinctly defined. This study aimed to identify novel candidate genes indicative of inflammation resolution during involution in healthy beef cows. Previous histological analysis of the endometrium revealed elevated inflammation 15 days postpartum (DPP) which was significantly decreased by 30 DPP. The current study generated a genome-wide transcriptomic profile of endometrial biopsies from these cows at both time points using mRNA-Seq. The pathway analysis tool GoSeq identified KEGG pathways enriched by significantly differentially expressed genes at both time points. Novel candidate genes associated with inflammatory resolution were subsequently validated in additional postpartum animals using quantitative real-time PCR (qRT-PCR). RESULTS mRNA-Seq revealed 1,107 significantly differentially expressed genes, 73 of which were increased 15 DPP and 1,034 were increased 30 DPP. Early postpartum, enriched immune pathways (adjusted P < 0.1) included the T cell receptor signalling pathway, graft-versus-host disease and cytokine-cytokine receptor interaction pathways. However 30 DPP, where the majority of genes were differentially expressed, the enrichment (adjusted P < 0.1) of tissue repair and proliferative activity pathways was observed. Nineteen candidate genes selected from mRNA-Seq results, were independently assessed by qRT-PCR in additional postpartum cows (5 animals) at both time points. SAA1/2, GATA2, IGF1, SHC2, and SERPINA14 genes were significantly elevated 30 DPP and are functionally associated with tissue repair and the restoration of uterine homeostasis postpartum. CONCLUSIONS The results of this study reveal an early activation of the immune response which undergoes a temporal functional change toward tissue proliferation and regeneration during endometrial involution in healthy postpartum cows. These molecular changes mirror the activation and resolution of endometrial inflammation during involution previously classified by the degree of neutrophil infiltration. SAA1/2, GATA2, IGF1, SHC2, and SERPINA14 genes may become potential markers for resolution of endometrial inflammation in the postpartum cow.
Collapse
Affiliation(s)
- Cathriona Foley
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co, Meath, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bai H, Sakurai T, Fujiwara H, Ideta A, Aoyagi Y, Godkin JD, Imakawa K. Functions of interferon tau as an immunological regulator for establishment of pregnancy. Reprod Med Biol 2012; 11:109-116. [PMID: 29699116 DOI: 10.1007/s12522-011-0117-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 12/27/2011] [Indexed: 11/29/2022] Open
Abstract
The establishment of a successful pregnancy requires a "fine quality embryo", "maternal recognition of pregnancy", and a "receptive uterus" during the period of conceptus implantation to the uterine endometrium. In ruminants, a conceptus cytokine, interferon tau (IFNT), a major cytokine produced by the peri-implantation trophectoderm, is known as a key factor for maternal recognition of pregnancy. IFNT can be considered one of the main factors in conceptus-uterus cross-talk, resulting in the rescue of ovarian corpus luteum (CL), induction of endometrial gene expressions, activation of residual immune cells, and recruitment of immune cells. Much research on IFNT has focused on the CL life-span (pregnancy recognition) and uterine gene expression through IFNT and related genes; however, immunological acceptance of the conceptus by the mother has not been well characterized. In this review, we will discuss the progress in IFNT and implantation research made by us and others for over 10 years, and relate this progress to pregnancy in mammalian species other than ruminants.
Collapse
Affiliation(s)
- Hanako Bai
- Laboratory of Animal Breeding and Reproduction, Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku 113-8657 Tokyo Japan
| | - Toshihiro Sakurai
- Laboratory of Animal Breeding and Reproduction, Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku 113-8657 Tokyo Japan
| | - Hiroshi Fujiwara
- Department of Gynecology and Obstetrics, Faculty of Medicine Kyoto University Sakyo-ku 606-8397 Kyoto Japan
| | - Atsushi Ideta
- Zen-noh ET center 080-1407 Kamishihoro Hokkaido Japan
| | | | - James D Godkin
- Department of Animal Sciences University of Tennessee 37996-4588 Knoxville TN USA
| | - Kazuhiko Imakawa
- Laboratory of Animal Breeding and Reproduction, Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku 113-8657 Tokyo Japan
| |
Collapse
|