1
|
Niepsuj J, Piwowar A, Franik G, Bizoń A. The Concentration of Follistatin and Activin A in Serum and Selected Biochemical Parameters in Women with Polycystic Ovary Syndrome: Stratification by Tobacco Smoke Exposure, Insulin Resistance, and Overweight/Obesity. J Clin Med 2024; 13:5316. [PMID: 39274528 PMCID: PMC11396433 DOI: 10.3390/jcm13175316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/21/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024] Open
Abstract
Background/Objectives: The aim of the study was to investigate the concentrations of follistatin and activin A in the serum of women with polycystic ovary syndrome (PCOS) and to assess their relationship with selected biochemical parameters, specifically stratifying the analysis based on tobacco smoke, insulin resistance, and abnormal weight. Methods: The research was carried out within a cohort of 88 women (60 women with and 28 without PCOS). Results: We observed significant differences (p < 0.05) in follistatin concentrations between women with PCOS stratified by homeostatic model assessment for insulin resistance (HOMA-IR) values. These differences were consistent across both smoking and non-smoking subgroups with PCOS. Similar results were observed when comparing normal-weight women with PCOS to those with overweight or obesity. Additionally, activin A concentrations were significantly increased by higher body mass index (BMI) and HOMA-IR values in non-smoking women with PCOS. Moreover, we identified a negative correlation (r = -0.30; p < 0.023) between cotinine levels and Anti-Müllerian hormone. Among smoking women with PCOS, we noted decreased concentrations of sex hormone-binding globulin and high-density lipoproteins, alongside increased fasting glucose, insulin, HOMA-IR, and free androgen index values. Conclusions: Our findings suggest that activin A and follistatin concentrations are more strongly influenced by disruptions in glucose metabolism and BMI than by tobacco smoke exposure. The observed changes were more pronounced in follistatin than in activin A level.
Collapse
Affiliation(s)
- Justyna Niepsuj
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Grzegorz Franik
- Department of Endocrinological Gynecology, Medical University of Silesia, 40-752 Katowice, Poland
| | - Anna Bizoń
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
2
|
The Role of Serum Anti-Mullerian Hormone Measurement in the Diagnosis of Polycystic Ovary Syndrome. Diagnostics (Basel) 2023; 13:diagnostics13050907. [PMID: 36900051 PMCID: PMC10000702 DOI: 10.3390/diagnostics13050907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrinological disorder in women with significant reproductive, metabolic, and psychological health implications. The lack of a specific diagnostic test poses challenges in making the diagnosis of PCOS, resulting in underdiagnosis and undertreatment. Anti-Mullerian hormone (AMH) synthesized by the pre-antral and small antral ovarian follicles appears to play an important role in the pathophysiology of PCOS, and serum AMH levels are often elevated in women with PCOS. The aim of this review is to inform the possibility of utilizing anti-Mullerian hormone either as a diagnostic test for PCOS or as an alternative diagnostic criterion in place of polycystic ovarian morphology, hyperandrogenism, and oligo-anovulation. Increased levels of serum AMH correlate highly with PCOS, polycystic ovarian morphology, hyperandrogenism, and oligo/amenorrhea. Additionally, serum AMH has high diagnostic accuracy as an isolated marker for PCOS or as a replacement for polycystic ovarian morphology.
Collapse
|
3
|
Abstract
Anti-Müllerian Hormone (AMH) is a secreted glycoprotein hormone with critical roles in reproductive development and regulation. Its chemical and mechanistic similarities to members of the Transforming Growth Factor β (TGF-β) family have led to its placement within this signaling family. As a member of the TGF-β family, AMH exists as a noncovalent complex of a large N-terminal prodomain and smaller C-terminal mature signaling domain. To produce a signal, the mature domain will bind to the extracellular domains of two type I and two type II receptors which results in an intracellular SMAD signal. Interestingly, as will be discussed in this review, AMH possesses several unique characteristics which set it apart from other ligands within the TGF-β family. In particular, AMH has a dedicated type II receptor, Anti-Müllerian Hormone Receptor Type II (AMHR2), making this interaction intriguing mechanistically as well as therapeutically. Further, the prodomain of AMH has remained largely uncharacterized, despite being the largest prodomain within the family. Recent advancements in the field have provided valuable insight into the molecular mechanisms of AMH signaling, however there are still many areas of AMH signaling not understood. Herein, we will discuss what is known about the biochemistry of AMH and AMHR2, focusing on recent advances in understanding the unique characteristics of AMH signaling and the molecular mechanisms of receptor engagement.
Collapse
Affiliation(s)
- James A. Howard
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
| | - Kaitlin N. Hart
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
| | - Thomas B. Thompson
- Department of Molecular Genetics, Biochemistry, & Microbiology, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
4
|
Hart KN, Pépin D, Czepnik M, Donahoe PK, Thompson TB. Mutational Analysis of the Putative Anti-Müllerian Hormone (AMH) Binding Interface on its Type II Receptor, AMHR2. Endocrinology 2020; 161:5825248. [PMID: 32333774 PMCID: PMC7286617 DOI: 10.1210/endocr/bqaa066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/21/2020] [Indexed: 12/27/2022]
Abstract
Anti-Müllerian hormone (AMH) or Müllerian inhibiting substance is a unique member of the TGF-β family responsible for development and differentiation of the reproductive system. AMH signals through its own dedicated type II receptor, anti-Müllerian hormone receptor type II (AMHR2), providing an exclusive ligand-receptor pair within the broader TGF-β family. In this study, we used previous structural information to derive a model of AMH bound to AMHR2 to guide mutagenesis studies to identify receptor residues important for AMH signaling. Nonconserved mutations were introduced in AMHR2 and characterized in an AMH-responsive cell-based luciferase assay and native PAGE. Collectively, our results identified several residues important for AMH signaling within the putative ligand binding interface of AMHR2. Our results show that AMH engages AMHR2 at a similar interface to how activin and BMP class ligands bind the type II receptor, ACVR2B; however, there are significant molecular differences at the ligand interface of these 2 receptors, where ACVR2B is mostly hydrophobic and AMHR2 is predominately charged. Overall, this study shows that although the location of ligand binding on the receptor is similar to ACVR2A, ACVR2B, and BMPR2; AMHR2 uses unique ligand-receptor interactions to impart specificity for AMH.
Collapse
MESH Headings
- Activin Receptors, Type II/chemistry
- Activin Receptors, Type II/metabolism
- Anti-Mullerian Hormone/metabolism
- Disorder of Sex Development, 46,XY/genetics
- HEK293 Cells
- Humans
- Mutagenesis, Site-Directed
- Receptors, Peptide/chemistry
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- Receptors, Transforming Growth Factor beta/chemistry
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Kaitlin N Hart
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, USA
- Correspondence and Reprint Requests: Thomas B. Thompson, University of Cincinnati, 231 Albert Sabin Way, MolGen Department, MSB 2204, Cincinnati, OH 45267. E-mail: Kaitlin N. Hart (), 231 Albert Sabin Way, MolGen Department, CARE 4850, Cincinnati, OH 45267
| | - David Pépin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA
| | - Magdalena Czepnik
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, USA
| | - Patricia K Donahoe
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, USA
- Correspondence and Reprint Requests: Thomas B. Thompson, University of Cincinnati, 231 Albert Sabin Way, MolGen Department, MSB 2204, Cincinnati, OH 45267. E-mail: Kaitlin N. Hart (), 231 Albert Sabin Way, MolGen Department, CARE 4850, Cincinnati, OH 45267
| |
Collapse
|
5
|
Wissing ML, Mikkelsen AL, Kumar A, Kalra B, Pors SE, Flachs EM, Andersen CY. Associations of different molecular forms of antimüllerian hormone and biomarkers of polycystic ovary syndrome and normal women. Fertil Steril 2019; 112:149-155.e1. [DOI: 10.1016/j.fertnstert.2019.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 02/05/2019] [Accepted: 03/04/2019] [Indexed: 12/27/2022]
|
6
|
Nawaz MY, Jimenez-Krassel F, Steibel JP, Lu Y, Baktula A, Vukasinovic N, Neuder L, Ireland JLH, Ireland JJ, Tempelman RJ. Genomic heritability and genome-wide association analysis of anti-Müllerian hormone in Holstein dairy heifers. J Dairy Sci 2018; 101:8063-8075. [PMID: 30007805 DOI: 10.3168/jds.2018-14798] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/16/2018] [Indexed: 01/18/2023]
Abstract
Anti-Müllerian hormone (AMH) is an ovarian growth factor that plays an important role in regulation of ovarian follicle growth. The objectives of this study were to estimate the genomic heritability of AMH and identify genomic regions associated with AMH production in a genome-wide association (GWA) analysis. Concentrations of AMH were determined in 2,905 dairy Holstein heifers genotyped using the Zoetis medium density panel (Zoetis Inclusions, Kalamazoo, MI) with 54,519 single nucleotide polymorphism (SNP) markers remaining after standard genotype quality control edits. A linear mixed model was used to model the random effects of sampling day and genomics on the logarithm of AMH. The genomic heritability (± standard error of the mean) of AMH was estimated to be 0.36 ± 0.03. Our GWA analysis inferred significant associations between AMH and 11 SNP markers on chromosome 11 and 1 SNP marker on chromosome 20. Annotated genes with significant associations were identified using the Ensembl genome database (version 88) of the cow genome (version UMD 3.1; https://www.ensembl.org/biomart). Gene set enrichment analysis revealed that 2 gene ontology (GO) terms were significantly enriched in the list of candidate genes: G-protein coupled receptor signaling pathway (GO:0007186) and the detection of chemical stimulus involved in sensory perception (GO:0050907). The estimated high heritability and previously established associations between AMH and ovarian follicular reserve, fertility, longevity, and superovulatory response in cattle implies that AMH could be used as a biomarker for genetic improvement of reproductive potential.
Collapse
Affiliation(s)
- M Y Nawaz
- Department of Animal Science, Michigan State University, East Lansing 48823
| | - F Jimenez-Krassel
- Department of Animal Science, Michigan State University, East Lansing 48823
| | - J P Steibel
- Department of Animal Science, Michigan State University, East Lansing 48823
| | - Y Lu
- Department of Animal Science, Michigan State University, East Lansing 48823
| | - A Baktula
- Zoetis Inclusions, Kalamazoo, MI 49007
| | | | - L Neuder
- Green Meadow Dairy Farm, Elsie, MI 48831
| | - J L H Ireland
- Department of Animal Science, Michigan State University, East Lansing 48823
| | - J J Ireland
- Department of Animal Science, Michigan State University, East Lansing 48823
| | - R J Tempelman
- Department of Animal Science, Michigan State University, East Lansing 48823.
| |
Collapse
|
7
|
Bungum L, Tagevi J, Jokubkiene L, Bungum M, Giwercman A, Macklon N, Andersen CY, Klausen TW, Tørring N, Kumar A, Skouby SO. The Impact of the Biological Variability or Assay Performance on AMH Measurements: A Prospective Cohort Study With AMH Tested on Three Analytical Assay-Platforms. Front Endocrinol (Lausanne) 2018; 9:603. [PMID: 30459709 PMCID: PMC6232665 DOI: 10.3389/fendo.2018.00603] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/21/2018] [Indexed: 12/28/2022] Open
Abstract
This study examined longitudinal, age-related and intra-individual variation in Anti-Müllerian Hormone (AMH) in regular menstruating women and correlated the hormonal levels to the antral follicle count (AFC). The impact of variations on an algorithm for calculation of follitropin-dose for ovarian stimulation were also tested. The study was carried out at a fertility clinic of a tertiary university hospital and had a prospective trial design. Twenty-six healthy women not receiving infertility treatment aged 22 to 50 years participated. Blood sampling for hormonal analysis was done every fifth day throughout three consecutive menstrual cycles, AFC was determined with 3-dimentional ultrasound and AMH measured by different assays from Beckman Coulter, Roche and Ansh Labs. Outcome measures were maximum and minimum difference in absolute and relative terms for each study subject during the test-period, coefficient of variation (Cv) for AMH for each cycle and cycle-day and correlation between AMH and AFC. The impact from variable AMH levels on an algorithm calculating follitrophin-delta dose in ovarian stimulation was explored. A significant longitudinal age-independent variation in AMH-levels and coefficient of variation in cycles and cycle days was found. A strong correlation between AMH-levels and AFC was confirmed and a case of significant divergence between assays was seen. Variations in AMH had a significant impact on an algorithm calculated dosage of gonadotrophins in ovarian stimulation. The finding of a substantial longitudinal variation in AMH question one recording being sufficient in quantifying gonadotrophins for ovarian stimulation, decision making and prognostication related to infertility treatment and counseling. Occasionally, commercial assays may fail to recognize specific AMH cleavage-products.
Collapse
Affiliation(s)
- Leif Bungum
- Department of Obstetrics and Gynecology, Herlev Gentofte Hospital, Herlev, Denmark
- *Correspondence: Leif Bungum
| | - Julia Tagevi
- Department of Translational Medicine, Lund University, Lund, Sweden
| | - Ligita Jokubkiene
- Department of Obstetrics and Gynecology, Skåne University Hospital, Malmø, Sweden
| | - Mona Bungum
- Reproductive Medicine Centre, Skanes University Hospital, Malmø, Sweden
| | | | - Nick Macklon
- Obsterics and Gynecology, Denmark and London Women's Clinic, Zealand University Hospital, London, United Kingdom
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Niels Tørring
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Ajay Kumar
- Ansh Labs LLC, Medical Center Blvd, Webster, IA, United States
| | - Sven Olaf Skouby
- Department of Obstetrics and Gynecology, Herlev Gentofte Hospital, Herlev, Denmark
| |
Collapse
|
8
|
McLennan IS, Koishi K, Batchelor NJ, Pankhurst MW. Mice with either diminished or elevated levels of anti-Müllerian hormone have decreased litter sizes†. Biol Reprod 2017; 98:54-62. [DOI: 10.1093/biolre/iox151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/17/2017] [Indexed: 11/14/2022] Open
|