1
|
Symonová R, Jůza T, Tesfaye M, Brabec M, Bartoň D, Blabolil P, Draštík V, Kočvara L, Muška M, Prchalová M, Říha M, Šmejkal M, Souza AT, Sajdlová Z, Tušer M, Vašek M, Skubic C, Brabec J, Kubečka J. Transition to Piscivory Seen Through Brain Transcriptomics in a Juvenile Percid Fish: Complex Interplay of Differential Gene Transcription, Alternative Splicing, and ncRNA Activity. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:257-277. [PMID: 39629900 PMCID: PMC11788885 DOI: 10.1002/jez.2886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 02/04/2025]
Abstract
Pikeperch (Sander Lucioperca) belongs to main predatory fish species in freshwater bodies throughout Europe playing the key role by reducing planktivorous fish abundance. Two size classes of the young-of-the-year (YOY) pikeperch are known in Europe and North America. Our long-term fish survey elucidates late-summer size distribution of YOY pikeperch in the Lipno Reservoir (Czechia) and recognizes two distinct subcohorts: smaller pelagic planktivores heavily outnumber larger demersal piscivores. To explore molecular mechanisms accompanying the switch from planktivory to piscivory, we compared brain transcriptomes of both subcohorts and identified 148 differentially transcribed genes. The pathway enrichment analyses identified the piscivorous phase to be associated with genes involved in collagen and extracellular matrix generation with numerous Gene Ontology (GO), while the planktivorous phase was associated with genes for non-muscle-myosins (NMM) with less GO terms. Transcripts further upregulated in planktivores from the periphery of the NMM network were Pmchl, Pomcl, and Pyyb, all involved also in appetite control and producing (an)orexigenic neuropeptides. Noncoding RNAs were upregulated in transcriptomes of planktivores including three transcripts of snoRNA U85. Thirty genes mostly functionally unrelated to those differentially transcribed were alternatively spliced between the subcohorts. Our results indicate planktivores as potentially driven by voracity to initiate the switch to piscivory, while piscivores undergo a dynamic brain development. We propose a spatiotemporal spreading of juvenile development over a longer period and larger spatial scales through developmental plasticity as an adaptation to exploiting all types of resources and decreasing the intraspecific competition.
Collapse
Affiliation(s)
- Radka Symonová
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Tomáš Jůza
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Million Tesfaye
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
- South Bohemian Research Centre for Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of WatersUniversity of South Bohemia in České BudějoviceVodňanyCzech Republic
| | - Marek Brabec
- Institute of Computer ScienceCzech Academy of SciencesPragueCzech Republic
| | - Daniel Bartoň
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Petr Blabolil
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Vladislav Draštík
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Luboš Kočvara
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Milan Muška
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Marie Prchalová
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Milan Říha
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Marek Šmejkal
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Allan T. Souza
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
- Institute for Atmospheric and Earth System Research INARForest Sciences, Faculty of Agriculture and Forestry, University of HelsinkiHelsinkiFinland
| | - Zuzana Sajdlová
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Michal Tušer
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Mojmír Vašek
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Cene Skubic
- Institute for Biochemistry and Molecular Genetics, Centre for Functional Genomics and Bio‐Chips, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Jakub Brabec
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Jan Kubečka
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| |
Collapse
|
2
|
Tönißen K, Franz GP, Albrecht E, Lutze P, Bochert R, Grunow B. Pikeperch muscle tissues: a comparative study of structure, enzymes, genes, and proteins in wild and farmed fish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1527-1544. [PMID: 38733450 PMCID: PMC11286731 DOI: 10.1007/s10695-024-01354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Pikeperch (Sander lucioperca) is a freshwater species and an internationally highly demanded fish in aquaculture. Despite intensive research efforts on this species, fundamental knowledge of skeletal muscle biology and structural characteristics is missing. Therefore, we conducted a comprehensive analysis of skeletal muscle parameters in adult pikeperch from two different origins, wild-caught specimens from a lake and those reared in a recirculating aquaculture system. The analyses comprised the biochemical characteristics (nucleic acid, protein content), enzyme activities (creatine kinase, lactate dehydrogenase, NADP-dependent isocitrate dehydrogenase), muscle-specific gene and protein expression (related to myofibre formation, regeneration and permanent growth, muscle structure), and muscle fibre structure. The findings reveal distinct differences between the skeletal muscle of wild and farmed pikeperch. Specifically, nucleic acid content, enzyme activity, and protein expression varied significantly. The higher enzyme activity observed in wild pikeperch suggests greater metabolically activity in their muscles. Conversely, farmed pikeperch indicated a potential for pronounced muscle growth. As the data on pikeperch skeletal muscle characteristics is sparse, the purpose of our study is to gain fundamental insights into the characteristics of adult pikeperch muscle. The presented data serve as a foundation for further research on percids' muscle biology and have the potential to contribute to advancements and adaptations in aquaculture practices.
Collapse
Affiliation(s)
- Katrin Tönißen
- Fish Growth Physiology Workgroup, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| | - George P Franz
- Fish Growth Physiology Workgroup, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Elke Albrecht
- Working Group Muscle-Fat Crosstalk, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Philipp Lutze
- Fish Growth Physiology Workgroup, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Ralf Bochert
- Mecklenburg-Vorpommern Research Centre for Agriculture and Fisheries (LFA MV), Institute of Fisheries, Research Station Aquaculture, Born, Germany
| | - Bianka Grunow
- Fish Growth Physiology Workgroup, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
3
|
Panda A, Judycka S, Palińska-Żarska K, Debernardis R, Jarmołowicz S, Jastrzębski JP, Rocha de Almeida T, Błażejewski M, Hliwa P, Krejszeff S, Żarski D. Paternal-effect-genes revealed through sperm cryopreservation in Perca fluviatilis. Sci Rep 2024; 14:6396. [PMID: 38493223 PMCID: PMC10944473 DOI: 10.1038/s41598-024-56971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
Knowledge about paternal-effect-genes (PEGs) (genes whose expression in the progeny is influenced by paternal factors present in the sperm) in fish is very limited. To explore this issue, we used milt cryopreservation as a specific challenge test for sperm cells, thus enabling selection amidst cryo-sensitivity. We created two groups of Eurasian perch (Perca fluviatilis) as a model - eggs fertilized either with fresh (Fresh group) or cryopreserved (Cryo group) milt from the same male followed by phenotypic-transcriptomic examination of consequences of cryopreservation in obtained progeny (at larval stages). Most of the phenotypical observations were similar in both groups, except the final weight which was higher in the Cryo group. Milt cryopreservation appeared to act as a "positive selection" factor, upregulating most PEGs in the Cryo group. Transcriptomic profile of freshly hatched larvae sourced genes involved in the development of visual perception and we identified them as PEGs. Consequently, larvae from the Cryo group exhibited enhanced eyesight, potentially contributing to more efficient foraging and weight gain compared to the Fresh group. This study unveils, for the first time, the significant influence of the paternal genome on the development of the visual system in fish, highlighting pde6g, opn1lw1, and rbp4l as novel PEGs.
Collapse
Affiliation(s)
- Abhipsa Panda
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Sylwia Judycka
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Katarzyna Palińska-Żarska
- Department of Ichthyology, Hydrobiology and Aquatic Ecology, National Inland Fisheries Research Institute, Oczapowskiego 10, 10-719, Olsztyn, Poland
| | - Rossella Debernardis
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Sylwia Jarmołowicz
- Department of Ichthyology, Hydrobiology and Aquatic Ecology, National Inland Fisheries Research Institute, Oczapowskiego 10, 10-719, Olsztyn, Poland
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics, and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Taina Rocha de Almeida
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Maciej Błażejewski
- Department of Ichthyology and Aquaculture, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719, Olsztyn, Poland
| | - Piotr Hliwa
- Department of Ichthyology and Aquaculture, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719, Olsztyn, Poland
| | - Sławomir Krejszeff
- Department of Aquaculture, National Inland Fisheries Research Institute, Oczapowskiego 10, 10-719, Olsztyn, Poland
| | - Daniel Żarski
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| |
Collapse
|
4
|
Paul K, Restoux G, Phocas F. Genome-wide detection of positive and balancing signatures of selection shared by four domesticated rainbow trout populations (Oncorhynchus mykiss). Genet Sel Evol 2024; 56:13. [PMID: 38389056 PMCID: PMC10882880 DOI: 10.1186/s12711-024-00884-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Evolutionary processes leave footprints along the genome over time. Highly homozygous regions may correspond to positive selection of favorable alleles, while maintenance of heterozygous regions may be due to balancing selection phenomena. We analyzed data from 176 fish from four disconnected domestic rainbow trout populations that were genotyped using a high-density Axiom Trout genotyping 665K single nucleotide polymorphism array, including 20 from the US and 156 from three French lines. Using methods based on runs of homozygosity and extended haplotype homozygosity, we detected signatures of selection in these four populations. RESULTS Nine genomic regions that included 253 genes were identified as being under positive selection in all four populations Most were located on chromosome 2 but also on chromosomes 12, 15, 16, and 20. In addition, four heterozygous regions that contain 29 genes that are putatively under balancing selection were also shared by the four populations. These were located on chromosomes 10, 13, and 19. Regardless of the homozygous or heterozygous nature of the regions, in each region, we detected several genes that are highly conserved among vertebrates due to their critical roles in cellular and nuclear organization, embryonic development, or immunity. We identified new candidate genes involved in rainbow trout fitness, as well as 17 genes that were previously identified to be under positive selection, 10 of which in other fishes (auts2, atp1b3, zp4, znf135, igf-1α, brd2, col9a2, mrap2, pbx1, and emilin-3). CONCLUSIONS Using material from disconnected populations of different origins allowed us to draw a genome-wide map of signatures of positive selection that are shared between these rainbow trout populations, and to identify several regions that are putatively under balancing selection. These results provide a valuable resource for future investigations of the dynamics of genetic diversity and genome evolution during domestication.
Collapse
Affiliation(s)
- Katy Paul
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Gwendal Restoux
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Florence Phocas
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
| |
Collapse
|
5
|
Ljubobratović U, Fazekas G, Nagy Z, Kovács G, Tóth F, Dániel F, Żarski D. Fish with larger pre-seasonal oocytes yields lower egg quality in season – a case study of outdoor-cultured domesticated pikeperch (Sander lucioperca). Anim Reprod Sci 2022; 238:106936. [DOI: 10.1016/j.anireprosci.2022.106936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 11/25/2022]
|
6
|
Neurodevelopment vs. the immune system: Complementary contributions of maternally-inherited gene transcripts and proteins to successful embryonic development in fish. Genomics 2021; 113:3811-3826. [PMID: 34508856 DOI: 10.1016/j.ygeno.2021.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/12/2021] [Accepted: 09/07/2021] [Indexed: 11/22/2022]
Abstract
The aim of this study was to investigate the respective contribution of maternally-inherited mRNAs and proteins to egg molecular cargo and to its developmental competence in fish using pikeperch as a model. Our study provides novel insights into the understanding of type-specific roles of maternally-inherited molecules in fish. Here we show, for the first time, that transcripts and proteins have distinct, yet complementary, functions in the egg of teleost fish. Maternally-inherited mRNAs would shape embryo neurodevelopment, while maternally-inherited proteins would rather be responsible for protecting the embryo against pathogens. Additionally, we observed that processes directly preceding ovulation may considerably affect the reproductive success by modifying expression level of genes crucial for proper embryonic development, being novel fish egg quality markers (e.g., smarca4 or h3f3a). These results are of major importance for understanding the influence of external factors on reproductive fitness in both captive and wild-type fish species.
Collapse
|
7
|
Comprehensive Characterization of Multitissue Expression Landscape, Co-Expression Networks and Positive Selection in Pikeperch. Cells 2021; 10:cells10092289. [PMID: 34571938 PMCID: PMC8471114 DOI: 10.3390/cells10092289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 11/19/2022] Open
Abstract
Promising efforts are ongoing to extend genomics resources for pikeperch (Sander lucioperca), a species of high interest for the sustainable European aquaculture sector. Although previous work, including reference genome assembly, transcriptome sequence, and single-nucleotide polymorphism genotyping, added a great wealth of genomic tools, a comprehensive characterization of gene expression across major tissues in pikeperch still remains an unmet research need. Here, we used deep RNA-Sequencing of ten vital tissues collected in eight animals to build a high-confident and annotated trancriptome atlas, to detect the tissue-specificity of gene expression and co-expression network modules, and to investigate genome-wide selective signatures in the Percidae fish family. Pathway enrichment and protein–protein interaction network analyses were performed to characterize the unique biological functions of tissue-specific genes and co-expression modules. We detected strong functional correlations and similarities of tissues with respect to their expression patterns—but also significant differences in the complexity and composition of their transcriptomes. Moreover, functional analyses revealed that tissue-specific genes essentially play key roles in the specific physiological functions of the respective tissues. Identified network modules were also functionally coherent with tissues’ main physiological functions. Although tissue specificity was not associated with positive selection, several genes under selection were found to be involved in hypoxia, immunity, and gene regulation processes, that are crucial for fish adaption and welfare. Overall, these new resources and insights will not only enhance the understanding of mechanisms of organ biology in pikeperch, but also complement the amount of genomic resources for this commercial species.
Collapse
|
8
|
Palińska-Żarska K, Król J, Woźny M, Kamaszewski M, Szudrowicz H, Wiechetek W, Brzuzan P, Fopp-Bayat D, Żarski D. Domestication affected stress and immune response markers in Perca fluviatilis in the early larval stage. FISH & SHELLFISH IMMUNOLOGY 2021; 114:184-198. [PMID: 33940175 DOI: 10.1016/j.fsi.2021.04.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
It is already known that domestication modifies stress and immune responses in juveniles and adults of several fish species. However, there is a lack of information on whether these modulations result from adaptability along the life cycle or if they are pre-determined in very early developmental stages. To shed light on mechanisms that help to explain the process of domestication, a study was conducted to analyze comparatively Eurasian perch larval performance, stress, and immune status between wild and domesticated specimens. Eurasian perch larvae obtained from wild and domesticated (generation F5 reared in recirculating aquaculture systems) spawners were reared in the same conditions during the main rearing trial (MRT) and also subjected to a thermal challenge (TC). During the study, larval performance (including survival, growth performance, swim bladder inflation effectiveness, deformity rate), the expression of genes involved in immune and stress response, and the specific activity of oxidative stress enzymes (during MRT only) were analyzed. No significant differences in hatching rate, deformity rate, or swim bladder inflation effectiveness between wild and domesticated larvae were found, whereas specific growth rate, final total length, and wet body weight were significantly lower in wild larvae. Higher mortality was also observed in wild larvae during both MRT and TC. The data obtained in this study clearly indicated that during domestication, significant modifications in stress and immune response, such as complement component c3, were noted as early as just after hatching. Generally, domesticated fish were characterized by a lower stress response and improved immune response in comparison to the wild fish. This probably resulted from the domesticated larvae being better adapted to the conditions of artificial aquaculture. The data obtained provided information on how domestication affects fish in aquaculture, and they contribute to the development of efficient selective breeding programs of Eurasian perch and other freshwater teleosts.
Collapse
Affiliation(s)
- Katarzyna Palińska-Żarska
- Department of Ichthyology, Hydrobiology and Aquatic Ecology, Stanislaw Sakowicz Inland Fisheries Institute, Oczapowskiego 10, 10-719, Olsztyn, Poland.
| | - Jarosław Król
- Department of Salmonid Research, Stanislaw Sakowicz Inland Fisheries Institute, Oczapowskiego 10, 10-719, Olsztyn, Poland
| | - Maciej Woźny
- Department of Environmental Biotechnology, Institute of Engineering and Environment Protection, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45G, 10-709, Olsztyn, Poland
| | - Maciej Kamaszewski
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Sciences, University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Hubert Szudrowicz
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Sciences, University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Wiktoria Wiechetek
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Sciences, University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland; Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Science, Instytucka 3, 05-110, Jabłonna, Poland
| | - Paweł Brzuzan
- Department of Environmental Biotechnology, Institute of Engineering and Environment Protection, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45G, 10-709, Olsztyn, Poland
| | - Dorota Fopp-Bayat
- Department of Ichthyology and Aquaculture, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719, Olsztyn, Poland
| | - Daniel Żarski
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| |
Collapse
|