1
|
Ohno Y, Hanamatsu S, Obama Y, Ueda T, Ikeda H, Hattori H, Murayama K, Toyama H. Overview of MRI for pulmonary functional imaging. Br J Radiol 2021; 95:20201053. [PMID: 33529053 DOI: 10.1259/bjr.20201053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Morphological evaluation of the lung is important in the clinical evaluation of pulmonary diseases. However, the disease process, especially in its early phases, may primarily result in changes in pulmonary function without changing the pulmonary structure. In such cases, the traditional imaging approaches to pulmonary morphology may not provide sufficient insight into the underlying pathophysiology. Pulmonary imaging community has therefore tried to assess pulmonary diseases and functions utilizing not only nuclear medicine, but also CT and MR imaging with various technical approaches. In this review, we overview state-of-the art MR methods and the future direction of: (1) ventilation imaging, (2) perfusion imaging and (3) biomechanical evaluation for pulmonary functional imaging.
Collapse
Affiliation(s)
- Yoshiharu Ohno
- Department of Radiology, Fujita Health University, School of Medicine, Toyoake, Japan.,Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan
| | - Satomu Hanamatsu
- Department of Radiology, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Yuki Obama
- Department of Radiology, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Takahiro Ueda
- Department of Radiology, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Hirotaka Ikeda
- Department of Radiology, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Hidekazu Hattori
- Department of Radiology, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Kazuhiro Murayama
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University, School of Medicine, Toyoake, Japan
| |
Collapse
|
2
|
Non-Invasive Renal Perfusion Imaging Using Arterial Spin Labeling MRI: Challenges and Opportunities. Diagnostics (Basel) 2018; 8:diagnostics8010002. [PMID: 29303965 PMCID: PMC5871985 DOI: 10.3390/diagnostics8010002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/25/2017] [Accepted: 01/02/2018] [Indexed: 12/28/2022] Open
Abstract
Tissue perfusion allows for delivery of oxygen and nutrients to tissues, and in the kidneys is also a key determinant of glomerular filtration. Quantification of regional renal perfusion provides a potential window into renal (patho) physiology. However, non-invasive, practical, and robust methods to measure renal perfusion remain elusive, particularly in the clinic. Arterial spin labeling (ASL), a magnetic resonance imaging (MRI) technique, is arguably the only available method with potential to meet all these needs. Recent developments suggest its viability for clinical application. This review addresses several of these developments and discusses remaining challenges with the emphasis on renal imaging in human subjects.
Collapse
|
3
|
Repeatability of renal arterial spin labelling MRI in healthy subjects. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2012; 25:145-53. [PMID: 22246289 DOI: 10.1007/s10334-011-0300-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 12/15/2011] [Accepted: 12/15/2011] [Indexed: 01/08/2023]
Abstract
OBJECT Arterial spin labelling (ASL) can be used to measure renal perfusion non-invasively. The aim of this study was to determine the repeatability of this technique in healthy kidneys to vindicate its use in clinic. MATERIALS AND METHODS Two groups of healthy volunteers were imaged two different days to assess intra- and inter-session repeatability. Oblique-coronal data volumes were acquired on a 1.5 T scanner with a dedicated abdominal 32-channel body phased array coil. ASL was performed using a multi-TI FAIR labelling scheme and 3D GRASE imaging module. Background suppression and respiratory triggering were used. T(1) maps of the kidney were acquired using the same sequence with background suppression disabled. RESULTS For the group with multiple intra-session ASL measurements, the average cortical perfusion was 197 mL min(-1)100 g(-1) and average cortical T(1) was 1265 ms. For both perfusion and T(1) the variation shown by the within-subject standard deviation (SDws) (14.6 mL min(-1)100 g(-1) and 33.4 ms) and coefficient of variation (CVws) (7.52 and 2.69%, respectively) was small for all the analyses carried out. Bland-Altman plots were also used to visualise the variation between the same parameters collected from the different scanning sessions in both groups, and demonstrated good reproducibility. CONCLUSION We have shown that in healthy volunteers, ASL parameters are repeatable over a short and long period. This supports the overall aim of using ASL in the clinic to assess longitudinal renal perfusion changes in patients.
Collapse
|
4
|
Song R, Loeffler RB, Hillenbrand CM. Improved renal perfusion measurement with a dual navigator-gated Q2TIPS fair technique. Magn Reson Med 2011; 64:1352-9. [PMID: 20593428 DOI: 10.1002/mrm.22532] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A dual navigator-gated, flow-sensitive alternating inversion recovery (FAIR) true fast imaging with steady precession (True-FISP) sequence has been developed for accurate quantification of renal perfusion. FAIR methods typically overestimate renal perfusion when respiratory motion causes the inversion slice to move away from the imaging slice, which then incorporates unlabeled spins from static tissue. To overcome this issue, the dual navigator scheme was introduced to track inversion and imaging slices, and thus to ensure the same position for both slices. Accuracy was further improved by a well-defined bolus length, which was achieved by a modification version of Q2TIPS (quantitative imaging of perfusion using a single subtraction, second version with interleaved thin-slice TI(1) periodic saturation): a series of saturation pulses was applied to both sides of the imaging slice at a certain time after the inversion. The dual navigator-gated technique was tested in eight volunteers. The measured renal cortex perfusion rates were between 191 and 378 mL/100 g/min in the renal cortex with a mean of 376 mL/100 g/min. The proposed technique may prove most beneficial for noncontrast-based renal perfusion quantification in young children and patients who may have difficulty holding their breath for prolonged periods or are sedated/anesthetized.
Collapse
Affiliation(s)
- Ruitian Song
- Department of Radiological Sciences, Division of Translational Imaging Research, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, USA
| | | | | |
Collapse
|
5
|
Abstract
MRI offers the ability to visualise and measure blood flow in the human body non-invasively. MR angiography (MRA) provides images of the arterial blood vessels within the body and allows measurement of blood velocities along these arteries. Arterial spin labelling (ASL) is a method for measuring the perfusion of blood into tissue (i.e. blood flow at the capillary level). This provides a key indicator of nutrient supply to the tissue. In this chapter, we have described the technical basis and practical implementation of these methods, emphasising their non-invasive (no contrast agents required) and quantitative nature.
Collapse
Affiliation(s)
- David Thomas
- Department of Medical Physics and Bioengineering, University College London, London, UK.
| | | |
Collapse
|
6
|
Martirosian P, Boss A, Schraml C, Schwenzer NF, Graf H, Claussen CD, Schick F. Magnetic resonance perfusion imaging without contrast media. Eur J Nucl Med Mol Imaging 2010; 37 Suppl 1:S52-64. [PMID: 20461372 DOI: 10.1007/s00259-010-1456-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Principles of magnetic resonance imaging techniques providing perfusion-related contrast weighting without administration of contrast media are reported and analysed systematically. Especially common approaches to arterial spin labelling (ASL) perfusion imaging allowing quantitative assessment of specific perfusion rates are described in detail. The potential of ASL for perfusion imaging was tested in several types of tissue. METHODS After a systematic comparison of technical aspects of continuous and pulsed ASL techniques the standard kinetic model and tissue properties of influence to quantitative measurements of perfusion are reported. For the applications demonstrated in this paper a flow-sensitive alternating inversion recovery (FAIR) ASL perfusion preparation approach followed by true fast imaging with steady precession (true FISP) data recording was developed and implemented on whole-body scanners operating at 0.2, 1.5 and 3 T for quantitative perfusion measurement in various types of tissue. RESULTS ASL imaging provides a non-invasive tool for assessment of tissue perfusion rates in vivo. Images recorded from kidney, lung, brain, salivary gland and thyroid gland provide a spatial resolution of a few millimetres and sufficient signal to noise ratio in perfusion maps after 2-5 min of examination time. CONCLUSIONS Newly developed ASL techniques provide especially high image quality and quantitative perfusion maps in tissues with relatively high perfusion rates (as also present in many tumours). Averaging of acquisitions and image subtraction procedures are mandatory, leading to the necessity of synchronization of data recording to breathing in abdominal and thoracic organs.
Collapse
|
7
|
Levin DL, Buxton RB, Spiess JP, Arai T, Balouch J, Hopkins SR. Effects of age on pulmonary perfusion heterogeneity measured by magnetic resonance imaging. J Appl Physiol (1985) 2007; 102:2064-70. [PMID: 17303711 DOI: 10.1152/japplphysiol.00512.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Normal aging is associated with a decline in pulmonary function and efficiency of gas exchange, although the effects on the spatial distribution of pulmonary perfusion are poorly understood. We hypothesized that spatial pulmonary perfusion heterogeneity would increase with increasing age. Fifty-six healthy, nonsmoking subjects (ages 21-76 yr) underwent magnetic resonance imaging with arterial spin labeling (ASL) using a Vision 1.5-T whole body scanner (Siemens Medical Systems, Erlangen, Germany). ASL uses a magnetically tagged bolus to generate perfusion maps where signal intensity is proportional to regional pulmonary perfusion. The spatial heterogeneity of pulmonary blood flow was quantified by the relative dispersion (RD = SD/mean, a global index of heterogeneity) of signal intensity for voxels within the right lung and by the fractal dimension (D(s)). There were no significant sex differences for RD (P = 0.81) or D(s) (P = 0.43) when age was considered as a covariate. RD increased significantly with increasing age by approximately 0.1/decade until age 50-59 yr, and there was a significant positive relationship between RD and age (R = 0.48, P < 0.0005) and height (R = 0.39, P < 0.01), but not body mass index (R = 0.07, P = 0.67). Age and height combined in a multiple regression were significantly related to RD (R = 0.66, P < 0.0001). There was no significant relationship between RD and spirometry or arterial oxygen saturation. D(s) was not related to age, height, spirometry, or arterial oxygen saturation. The lack of relationship between age and D(s) argues against an intrinsic alteration in the pulmonary vascular branching with age as being responsible for the observed increase in global spatial perfusion heterogeneity measured by the RD.
Collapse
Affiliation(s)
- David L Levin
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093-0623, USA
| | | | | | | | | | | |
Collapse
|
8
|
Donahue MJ, Lu H, Jones CK, Pekar JJ, van Zijl PCM. An account of the discrepancy between MRI and PET cerebral blood flow measures. A high-field MRI investigation. NMR IN BIOMEDICINE 2006; 19:1043-54. [PMID: 16948114 DOI: 10.1002/nbm.1075] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
There is controversy concerning the discrepancy between absolute cerebral blood flow (CBF) values measured using positron emission tomography (PET) and magnetic resonance imaging (MRI). To gain insight into this problem, the increased signal-to-noise ratio (SNR) and extended T(1) relaxation times of blood and tissue at 3.0 T were exploited to perform pulsed arterial spin labeling (PASL) MRI measurements as a function of spatial resolution and post-labeling delay. The results indicate that, when using post-labeling delays shorter than 1500 ms, MRI gray matter flow values may become as high as several times the correct CBF values owing to tissue signal contamination by remaining arterial blood water label. For delays above 1500 ms, regional PASL-based CBF values (n = 5; frontal gray matter: 48.8 +/- 3.3(SD) ml/100 g/min; occipital gray matter: 49.3 +/- 4.5 ml/100 g/min) comparable with PET-based measurements can be obtained by using spatial resolutions comparable with PET (5-7.5 mm in-plane). At very high resolution (2.5 x 2.5 x 3 mm(3)), gray matter CBF values were found to increase by 10-20%, a consequence attributed to reduction in partial volume effects with cerebrospinal fluid and white matter. The recent availability of MRI field strengths of 3.0 T and higher will facilitate the use of MRI-based CBF measurements in the clinic.
Collapse
Affiliation(s)
- Manus J Donahue
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
9
|
Bolar DS, Levin DL, Hopkins SR, Frank LF, Liu TT, Wong EC, Buxton RB. Quantification of regional pulmonary blood flow using ASL-FAIRER. Magn Reson Med 2006; 55:1308-17. [PMID: 16680681 DOI: 10.1002/mrm.20891] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pulsed arterial spin labeling (ASL) techniques have been theoretically and experimentally validated for cerebral blood flow (CBF) quantification. In this study ASL-FAIRER was used to measure regional pulmonary blood flow (rPBF) in seven healthy subjects. Two general ASL strategies were investigated: 1) a single-subtraction approach using one tag-control pair acquisition at an inversion time (TI) matched to the RR-interval, and 2) a multiple-subtraction approach using tag-control pairs acquired at various TIs. The mean rPBF averaged 1.70 +/- 0.38 ml/min/ml when measured with the multiple-subtraction approach, and was approximately 2% less when measured with the single-subtraction method (1.66 +/- 0.24 ml/min/ml). Assuming an average lung density of 0.33 g/ml, this translates into a regional perfusion of approximately 5.5 ml/g/min, which is comparable to other measures of pulmonary perfusion. As with other ASL applications, a key problem with quantitative interpretation of the results is the physical gap between the tagging region and imaged slice. Because of the high pulsatility of PBF, ASL acquisition and data analysis differ significantly between the lung and the brain. The advantages and drawbacks of the single- vs. multiple-subtraction approaches are considered within a theoretical framework tailored to PBF.
Collapse
Affiliation(s)
- D S Bolar
- Department of Radiology, University of California-San Diego, 92103, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Petersen ET, Zimine I, Ho YCL, Golay X. Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques. Br J Radiol 2006; 79:688-701. [PMID: 16861326 DOI: 10.1259/bjr/67705974] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The non-invasive nature of arterial spin labelling (ASL) has opened a unique window into human brain function and perfusion physiology. High spatial and temporal resolution makes the technique very appealing not only for the diagnosis of vascular diseases, but also in basic neuroscience where the aim is to develop a more comprehensive picture of the physiological events accompanying neuronal activation. However, low signal-to-noise ratio and the complexity of flow quantification make ASL one of the more demanding disciplines within MRI. In this review, the theoretical background and main implementations of ASL are revisited. In particular, the perfusion quantification methods, including the problems and pitfalls involved, are thoroughly discussed in this article. Finally, a brief summary of applications is provided.
Collapse
Affiliation(s)
- E T Petersen
- Department of Neuroradiology, National Neuroscience Institute, Singapore
| | | | | | | |
Collapse
|
11
|
Prasad PV. Functional MRI of the kidney: tools for translational studies of pathophysiology of renal disease. Am J Physiol Renal Physiol 2006; 290:F958-74. [PMID: 16601297 PMCID: PMC2919069 DOI: 10.1152/ajprenal.00114.2005] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Magnetic resonance imaging (MRI) provides exquisite anatomic detail of various organs and is capable of providing additional functional information. This combination allows for comprehensive diagnostic evaluation of pathologies such as ischemic renal disease. Noninvasive MRI techniques could facilitate translation of many studies performed in controlled animal models using technologies that are invasive to humans. Such a translation is being recognized as essential because many proposed interventions and drugs that prove efficacious in animal models fail to do so in humans. In this article, we review the state-of-the-art functional MRI technique as applied to the kidneys.
Collapse
Affiliation(s)
- Pottumarthi V Prasad
- Dept. of Radiology, Walgreen Jr. Bldg., Suite 507, Evanston Northwestern Healthcare, 2650 Ridge Ave., Evanston, IL 60201, USA.
| |
Collapse
|
12
|
Fenchel M, Martirosian P, Langanke J, Giersch J, Miller S, Stauder NI, Kramer U, Claussen CD, Schick F. Perfusion MR Imaging with FAIR True FISP Spin Labeling in Patients with and without Renal Artery Stenosis: Initial Experience. Radiology 2006; 238:1013-21. [PMID: 16439565 DOI: 10.1148/radiol.2382041623] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The purpose of this study was to prospectively evaluate an arterial spin-labeling technique, flow-sensitive alternating inversion-recovery (FAIR) true fast imaging with steady-state precession (FISP), for noninvasive quantification of renal perfusion in patients without a history of renal artery stenosis (RAS) and in patients with proved RAS. The study was approved by the local ethics committee, and all participants provided written informed consent. Six patients with hypertension but no history of renal artery disease and 12 patients with RAS underwent FAIR true FISP magnetic resonance (MR) imaging in a whole-body 1.5-T unit. RAS grade and scintigraphic perfusion data served as the reference standards. On the FAIR true FISP perfusion images, severe RAS (>70% luminal narrowing) could be clearly distinguished from no or mild RAS and moderate RAS (< or =70% luminal narrowing) (P < .005). Significant correlations between FAIR perfusion data and stenosis grade (r = -0.76) and between FAIR and single photon emission computed tomographic perfusion values (r = 0.83) were observed. FAIR true FISP was found to be suitable for quantitative perfusion imaging of the kidneys in patients with RAS.
Collapse
Affiliation(s)
- Michael Fenchel
- Department of Diagnostic Radiology, Eberhard-Karls-University Tuebingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lövblad KO, Baird AE. Actual diagnostic approach to the acute stroke patient. Eur Radiol 2005; 16:1253-69. [PMID: 16372164 DOI: 10.1007/s00330-005-0103-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 11/18/2005] [Accepted: 11/25/2005] [Indexed: 10/25/2022]
Abstract
Since acute stroke is now considered a potentially treatable medical emergency, a rapid and correct diagnosis must be made. The first step is to exclude hemorrhage, then to visualize any early ischemic changes, demonstrate the presence of hypoperfusion and locate the presence of a vascular underlying pathology as well as elucidate the presence of a potential penumbra (tissue at risk). Thanks to improvements and advances in both MR and CT technology, this can now be done in a number of ways. At the moment, CT is the most widely available and fast method for obtaining imaging of the brain and neck vessels of patients presenting with acute stroke. MRI can provide more precise information, although it remains slightly more time-consuming, but is, however, the method of choice for follow-up imaging. The main point is to take the one-stop-shopping approach where imaging of the vessels and brain is done from the aortic arch to the circle of Willis in one single session in order to have all the necessary information in the acute phase.
Collapse
Affiliation(s)
- Karl-Olof Lövblad
- Neuroradiology Unit, Radiology Department, SRRI, HUG Geneva University Hospital, 24 rue Micheli-du-Crest, 1211 Geneva 14, Switzerland.
| | | |
Collapse
|
14
|
Abstract
Arterial spin labeling is a magnetic resonance method for the measurement of cerebral blood flow. In its simplest form, the perfusion contrast in the images gathered by this technique comes from the subtraction of two successively acquired images: one with, and one without, proximal labeling of arterial water spins after a small delay time. Over the last decade, the method has moved from the experimental laboratory to the clinical environment. Furthermore, numerous improvements, ranging from new pulse sequence implementations to extensive theoretical studies, have broadened its reach and extended its potential applications. In this review, the multiple facets of this powerful yet difficult technique are discussed. Different implementations are compared, the theoretical background is summarized, and potential applications of various implementations in research as well as in the daily clinical routine are proposed. Finally, a summary of the new developments and emerging techniques in this field is provided.
Collapse
Affiliation(s)
- Xavier Golay
- Department of Neuroradiology, National Neuroscience Institute, Singapore.
| | | | | |
Collapse
|
15
|
Wang J, Li L, Roc AC, Alsop DC, Tang K, Butler NS, Schnall MD, Detre JA. Reduced susceptibility effects in perfusion fMRI with single-shot spin-echo EPI acquisitions at 1.5 tesla. Magn Reson Imaging 2004; 22:1-7. [PMID: 14972387 DOI: 10.1016/s0730-725x(03)00210-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2002] [Revised: 05/12/2003] [Accepted: 05/13/2003] [Indexed: 10/26/2022]
Abstract
Arterial spin labeling (ASL) perfusion contrast is not based on susceptibility effects and can therefore be used to study brain function in regions of high static inhomogeneity. As a proof of concept, single-shot spin-echo echo-planar imaging (EPI) acquisition was carried out with a multislice continuous ASL (CASL) method at 1.5T. A bilateral finger tapping paradigm was used in the presence of an exogenously induced susceptibility artifact over left motor cortex. The spin-echo CASL technique was compared with a regular gradient-echo EPI sequence with the same slice thickness, as well as other imaging methods using thin slices and spin-echo acquisitions. The results demonstrate improved functional sensitivity and efficiency of the spin-echo CASL approach as compared with gradient-echo EPI techniques, and a trend of improved sensitivity as compared with spin-echo EPI approach in the brain regions affected by the susceptibility artifact. ASL images, either with or without subtraction of the control, provide a robust alternative to blood oxygenation level dependant (BOLD) methods for activation imaging in regions of high static field inhomogeneity.
Collapse
Affiliation(s)
- Jiongjiong Wang
- Metabolic Magnetic Resonance Research & Computing Center, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Martirosian P, Klose U, Mader I, Schick F. FAIR true-FISP perfusion imaging of the kidneys. Magn Reson Med 2004; 51:353-61. [PMID: 14755661 DOI: 10.1002/mrm.10709] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Most arterial spin labeling (ASL) techniques apply echoplanar imaging (EPI) because this strategy provides relatively high SNR in short measuring times. Unfortunately, those techniques are very susceptible to static magnetic field inhomogeneities and perfusion signals from organs with fast transverse relaxation might decrease due to the exchange of water molecules in capillaries and organ tissue combined with relatively long echo times of EPI sequences. To overcome these problems a novel imaging technique, FAIR True-FISP, was developed. It combines a FAIR (flow-sensitive alternating inversion recovery) perfusion preparation and a true fast imaging with steady precession (True-FISP) data acquisition strategy. True-FISP was chosen since this sequence type does not show the mentioned disadvantages of EPI, but provides a similar SNR per measuring time. An important problem of this approach is that True-FISP sequences usually work in a steady state which is independent of a previous preparation of magnetization. For this reason a sequence structure had to be developed which keeps the advantages of True-FISP and makes the signal intensity sensitive to the FAIR preparation. Breathhold and nonbreathhold examinations of kidneys are presented and possible strategies to quantitative flow measurements are reported. It is shown that correction of spatially inhomogeneous receiver coil characteristics is easily feasible and leads to clinically valuable perfusion examinations of kidneys without application of potentially nephrotoxic contrast media.
Collapse
Affiliation(s)
- Petros Martirosian
- Section on Experimental Radiology, Department of Diagnostic Radiology, University of Tübingen, Germany.
| | | | | | | |
Collapse
|
17
|
Wang J, Alsop DC, Li L, Listerud J, Gonzalez-At JB, Schnall MD, Detre JA. Comparison of quantitative perfusion imaging using arterial spin labeling at 1.5 and 4.0 Tesla. Magn Reson Med 2002; 48:242-54. [PMID: 12210932 DOI: 10.1002/mrm.10211] [Citation(s) in RCA: 281] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
High-field arterial spin labeling (ASL) perfusion MRI is appealing because it provides not only increased signal-to-noise ratio (SNR), but also advantages in terms of labeling due to the increased relaxation time T(1) of labeled blood. In the present study, we provide a theoretical framework for the dependence of the ASL signal on the static field strength, followed by experimental validation in which a multislice pulsed ASL (PASL) technique was carried out at 4T and compared with PASL and continuous ASL (CASL) techniques at 1.5T, both in the resting state and during motor activation. The resting-state data showed an SNR ratio of 2.3:1.4:1 in the gray matter and a contrast-to-noise ratio (CNR) of 2.7:1.1:1 between the gray and white matter for the difference perfusion images acquired using 4T PASL, 1.5T CASL, and 1.5T PASL, respectively. However, the functional data acquired using 4T PASL did not show significantly improved sensitivity to motor cortex activation compared with the 1.5T functional data, with reduced fractional perfusion signal change and increased intersubject variability. Possible reasons for these experimental results, including susceptibility effects and physiological noise, are discussed.
Collapse
Affiliation(s)
- Jiongjiong Wang
- Department of Radiology, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Functional magnetic resonance imaging (fMRI) is an emerging methodology which provides various approaches to visualizing regional brain activity non-invasively. Although the exact mechanisms underlying the coupling between neural function and fMRI signal changes remain unclear, fMRI studies have been successful in confirming task-specific activation in a variety of brain regions, providing converging evidence for functional localization. In particular, fMRI methods based on blood oxygenation level dependent (BOLD) contrast and arterial spin labeling (ASL) perfusion contrast have enabled imaging of changes in blood oxygenation and cerebral blood flow (CBF). While BOLD contrast has been widely used as the surrogate marker for neural activation and can provide reliable information on the neuroanatomy underlying transient sensorimotor and cognitive functions, recent evidence suggests perfusion contrast is suitable for studying relatively long term effects on CBF both at rest or during activation. New developments in combining or simultaneously measuring the electrophysiological and fMRI signals allow a new class of studies that capitalize on dynamic imaging with high spatiotemporal resolution. This article reviews the biophysical bases and methodologies of fMRI and its applications to the clinical neurosciences, with emphasis on the spatiotemporal resolution of fMRI and its coupling with neurophysiology under both normal and pathophysiological conditions.
Collapse
Affiliation(s)
- John A Detre
- Department of Neurology, University of Pennsylvania School of Medicine, 3400 Spruce Street, Philadelphia 19104, USA.
| | | |
Collapse
|
19
|
Günther M, Bock M, Schad LR. Arterial spin labeling in combination with a look-locker sampling strategy: inflow turbo-sampling EPI-FAIR (ITS-FAIR). Magn Reson Med 2001; 46:974-84. [PMID: 11675650 DOI: 10.1002/mrm.1284] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Arterial spin labeling (ASL) permits quantification of tissue perfusion without the use of MR contrast agents. With standard ASL techniques such as flow-sensitive alternating inversion recovery (FAIR) the signal from arterial blood is measured at a fixed inversion delay after magnetic labeling. As no image information is sampled during this delay, FAIR measurements are inefficient and time-consuming. In this work the FAIR preparation was combined with a Look-Locker acquisition to sample not one but a series of images after each labeling pulse. This new method allows monitoring of the temporal dynamics of blood inflow. To quantify perfusion, a theoretical model for the signal dynamics during the Look-Locker readout was developed and applied. Also, the imaging parameters of the new ITS-FAIR technique were optimized using an expression for the variance of the calculated perfusion. For the given scanner hardware the parameters were: temporal resolution 100 ms, 23 images, flip-angle 25.4 degrees. In a normal volunteer experiment with these parameters an average perfusion value of 48.2 +/- 12.1 ml/100 g/min was measured in the brain. With the ability to obtain ITS-FAIR time series with high temporal resolution arterial transit times in the range of -138 - 1054 ms were measured, where nonphysical negative values were found in voxels containing large vessels.
Collapse
Affiliation(s)
- M Günther
- Deutsches Krebsforschungszentrum (DKFZ), Forschungsschwerpunkt Radiologische Diagnostik und Therapie (E0201), Heidelberg, Germany.
| | | | | |
Collapse
|
20
|
Raynaud JS, Duteil S, Vaughan JT, Hennel F, Wary C, Leroy-Willig A, Carlier PG. Determination of skeletal muscle perfusion using arterial spin labeling NMRI: validation by comparison with venous occlusion plethysmography. Magn Reson Med 2001; 46:305-11. [PMID: 11477634 DOI: 10.1002/mrm.1192] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
T(1)-based determination of perfusion was performed with the high temporal and spatial resolution that monitoring of exercise physiology requires. As no data were available on the validation of this approach in human muscles, T(1)-based NMRI of perfusion was compared to standard strain-gauge venous occlusion plethysmography performed simultaneously within a 4 T magnet. Two different situations were investigated in 21 healthy young volunteers: 1) a 5-min ischemia of the leg, or 2) a 2-3 min ischemic exercise consisting of a plantar flexion on an amagnetic ergometer. Leg perfusion was monitored over 5-15 min of the recovery phase, after the air-cuff arterial occlusion had been released. The interesting features of the sequence were the use of a saturation-recovery module for the introduction of a T(1) modulation and of single-shot spin echo for imaging. Spatial resolution was 1.7 x 2.0 mm and temporal resolution was 2 s. For data analysis, ROIs were traced on different muscles and perfusion was calculated from the differences in muscle signal intensity in successive images. To allow comparison with the global measurement of perfusion by plethysmography, the T(1)-based NMR measurements in exercising muscles were rescaled to the leg cross-section. The perfusion measurements obtained by plethysmography and NMRI were in close agreement with a correlation coefficient between 0.87 and 0.92. This indicates that pulsed arterial techniques provide determination of muscle perfusion not only with superior spatial and temporal resolution but also with exactitude.
Collapse
Affiliation(s)
- J S Raynaud
- NMR Unit (AFM, CEA and INSERM), Institute of Myology, Pitié-Salpêtrièere University Hospital, Paris, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Preibisch C, Haase A. Perfusion imaging using spin-labeling methods: contrast-to-noise comparison in functional MRI applications. Magn Reson Med 2001; 46:172-82. [PMID: 11443724 DOI: 10.1002/mrm.1173] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this study the performance of FLASH imaging with selective inversion preparation for functional perfusion studies was investigated. In addition to the absolute quantification of perfusion by measurement of the longitudinal relaxation times with global (T(1glob)) and selective (T(1sel)) inversion, the measurement of absolute (BASE) and relative (FAIR) perfusion increases by subtraction of appropriately weighted images was also considered. The subject averages of absolute perfusion obtained by the quantitative method were 70.7 +/- 4.0 ml/100g/min in gray matter, 10.2 +/- 3.4 ml/100g/min in white matter, and 89.0 +/- 3.1 ml/100g/min in visual cortex. These values, as well as the average increase of perfusion due to visual stimulation (44.4 +/- 3.7 ml/100g/min), agree well with respective data reported by PET and other MRI studies. However, for individual subjects the standard deviations over single ROIs inside the visual cortex lay around 100% which prevented the detection of significant activation. BASE and FAIR, on the other hand, were able to detect significant activation in single subjects. The measured average perfusion increases were 51.7 +/- 6.6 ml/100g/min and 56.5 +/- 13.8%, respectively. Magn Reson Med 46:172-182, 2001.
Collapse
Affiliation(s)
- C Preibisch
- Klinikum der Universität Frankfurt, ZRAD - Institut für Neuroradiologie, Frankfurt, Germany
| | | |
Collapse
|
22
|
Abstract
Numerous techniques have been proposed in the last 15 years to measure various perfusion-related parameters in the brain. In particular, two approaches have proven extremely successful: injection of paramagnetic contrast agents for measuring cerebral blood volumes (CBV) and arterial spin labeling (ASL) for measuring cerebral blood flows (CBF). This review presents the methodology of the different magnetic resonance imaging (MRI) techniques in use for CBV and CBF measurements and briefly discusses their limitations and potentials.
Collapse
Affiliation(s)
- E L Barbier
- Laboratoire mixte INSERM U438, Université Joseph Fourier: RMN Bioclinique, LRC-CEA, Hôpital Albert Michallon, Grenoble, France
| | | | | |
Collapse
|
23
|
Liu HL, Kochunov P, Hou J, Pu Y, Mahankali S, Feng CM, Yee SH, Wan YL, Fox PT, Gao JH. Perfusion-weighted imaging of interictal hypoperfusion in temporal lobe epilepsy using FAIR-HASTE: comparison with H(2)(15)O PET measurements. Magn Reson Med 2001; 45:431-5. [PMID: 11241700 DOI: 10.1002/1522-2594(200103)45:3<431::aid-mrm1056>3.0.co;2-e] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To detect perfusion abnormalities in areas of high magnetic susceptibility in the brain, an arterial spin-labeling MRI technique utilizing flow-sensitive alternating inversion recovery (FAIR) and half-Fourier single shot turbo spin-echo (HASTE) for spin preparation and image acquisition, respectively, was developed. It was initially tested in a functional study involving visual stimulation, and was able to detect significant activation with an increase (approximately 70%) in relative cerebral blood flow. Subsequently, it was applied in a clinical situation in eight patients with temporal lobe epilepsy (TLE). The perfusion-weighted images obtained showed no susceptibility artifacts even in the region of the inferior temporal lobe and were able to detect interictal hypoperfusion in TLE. The results were compared with those derived from H(2)(15)O PET perfusion imaging in each patient. A statistically significant correlation (r = 0.75, P < 0.05) was found between results acquired from these two modalities. Magn Reson Med 45:431-435, 2001.
Collapse
Affiliation(s)
- H L Liu
- Research Imaging Center, University of Texas Health Science Center, San Antonio, Texas 78284-6240, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Tadamura E, Hatabu H. Assessment of pulmonary perfusion using a subtracted HASTE image between diastole and systole. Eur J Radiol 2001; 37:179-83. [PMID: 11274846 DOI: 10.1016/s0720-048x(00)00297-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The MR signal intensity change in the pulmonary parenchyma during the cardiac cycle was studied using HASTE sequence in volunteers. In addition, the potential to assess pulmonary perfusion abnormality by subtraction between diastolic and systolic HASTE images was tested in a pig model of pulmonary embolism. Signal intensity decreased in systole while it increased gradually in diastole. In a pig model with pulmonary embolism, subtracted images could identify the perfusion abnormality. Thus, subtraction of diastolic and systolic HASTE images has the potential to detect pulmonary perfusion abnormality. The technique may provide a new simple method for evaluating pulmonary perfusion.
Collapse
Affiliation(s)
- E Tadamura
- Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, USA.
| | | |
Collapse
|
25
|
Hatabu H, Tadamura E, Prasad PV, Chen Q, Buxton R, Edelman RR. Noninvasive pulmonary perfusion imaging by STAR-HASTE sequence. Magn Reson Med 2000; 44:808-12. [PMID: 11064417 DOI: 10.1002/1522-2594(200011)44:5<808::aid-mrm20>3.0.co;2-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The STAR-HASTE sequence has been shown to be useful for perfusion imaging in areas that are plagued by magnetic susceptibility artifacts. Pulmonary perfusion imaging with this technique was attempted in this study. Quantitative analysis was also conducted, using an appropriate kinetic model in one subject. In six healthy subjects, gradual enhancement was observed in pulmonary artery to distal lung parenchyma when inflow time was increased. Our initial results suggest that noninvasive evaluation of pulmonary perfusion by magnetic resonance imaging without administration of an exogenous agent is possible.
Collapse
Affiliation(s)
- H Hatabu
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Karger N, Biederer J, Lüsse S, Grimm J, Steffens J, Heller M, Glüer C. Quantitation of renal perfusion using arterial spin labeling with FAIR-UFLARE. Magn Reson Imaging 2000; 18:641-7. [PMID: 10930773 DOI: 10.1016/s0730-725x(00)00155-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Quantitative perfusion imaging of human kidneys was performed using arterial spin labeling MRI with a fast spin echo readout-sequence. Perfusion maps of centrally located single slices were obtained in axial and coronal orientations. In ten healthy volunteers, the mean value of perfusion was 213+/-55 mL/(100g min) with a range from 140 to 319 mL/(100g min). These results are in accordance with literature data, considering the fact that FAIR only measures the perfusion component normal to the imaging plane. Intra-individual reproducibility errors of +/-11% were smaller than the natural interindividual variability of renal perfusion (SD = +/- 25%). Perfusion in the cortex was approximately 3-4 times higher compared to the medulla. Considering the relatively high resolution of 2x2x10 mm3, the ability to quantify perfusion, and the lack of ionizing radiation and contrast media, this technique should prove useful in diagnosing renal pathologies that are associated with reductions in tissue perfusion.
Collapse
Affiliation(s)
- N Karger
- Klinikum an der CAU zu Kiel, Klinik für Diagnostische Radiologie, Michaelisstr. 9, 24105, Kiel, Germany.
| | | | | | | | | | | | | |
Collapse
|
27
|
Gonzalez-At JB, Alsop DC, Detre JA. Cerebral perfusion and arterial transit time changes during task activation determined with continuous arterial spin labeling. Magn Reson Med 2000; 43:739-46. [PMID: 10800040 DOI: 10.1002/(sici)1522-2594(200005)43:5<739::aid-mrm17>3.0.co;2-2] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Perfusion imaging by arterial spin labeling (ASL) can be highly sensitive to the transit time from the labeling site to the tissue. We report the results of a study designed to separate the transit time and perfusion contributions to activation in ASL images accompanying motor and visual stimulation. Fractional transit time decreases were found to be comparable to fractional perfusion increases and the transit time change was found to be the greatest contributor to ASL signal change in ASL sequences without delayed acquisition. The implications for activation imaging with ASL and the arterial control of flow are discussed.
Collapse
Affiliation(s)
- J B Gonzalez-At
- Departments of Neurology and Radiology, University of Pennsylvania, Philadelphia, PA 19104-4283, USA
| | | | | |
Collapse
|
28
|
|
29
|
Calamante F, Thomas DL, Pell GS, Wiersma J, Turner R. Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Flow Metab 1999; 19:701-35. [PMID: 10413026 DOI: 10.1097/00004647-199907000-00001] [Citation(s) in RCA: 435] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Magnetic resonance imaging techniques measuring CBF have developed rapidly in the last decade, resulting in a wide range of available methods. The most successful approaches are based either on dynamic tracking of a bolus of a paramagnetic contrast agent (dynamic susceptibility contrast) or on arterial spin labeling. This review discusses their principles, possible pitfalls, and potential for absolute quantification and outlines clinical and neuroscientific applications.
Collapse
Affiliation(s)
- F Calamante
- RCS Unit of Biophysics, Institute of Child Health, University College London Medical School, United Kingdom
| | | | | | | | | |
Collapse
|
30
|
Detre JA, Alsop DC. Perfusion magnetic resonance imaging with continuous arterial spin labeling: methods and clinical applications in the central nervous system. Eur J Radiol 1999; 30:115-24. [PMID: 10401592 DOI: 10.1016/s0720-048x(99)00050-9] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Several methods are now available for measuring cerebral perfusion and related hemodynamic parameters using magnetic resonance imaging (MRI). One class of techniques utilizes electromagnetically labeled arterial blood water as a noninvasive diffusible tracer for blood flow measurements. The electromagnetically labeled tracer has a decay rate of T1, which is sufficiently long to allow perfusion of the tissue and microvasculature to be detected. Alternatively, electromagnetic arterial spin labeling (ASL) may be used to obtain qualitative perfusion contrast for detecting changes in blood flow, similar to the use of susceptibility contrast in blood oxygenation level dependent functional MRI (BOLD fMRI) to detect functional activation in the brain. The ability to obtain blood flow maps using a non-invasive and widely available modality such as MRI should greatly enhance the utility of blood flow measurement as a means of gaining further insight into the broad range of hemodynamically related physiology and pathophysiology. This article describes the biophysical considerations pertaining to the generation of quantitative blood flow maps using a particular form of ASL in which arterial blood water is continuously labeled, termed continuous arterial spin labeling (CASL). Technical advances permit multislice perfusion imaging using CASL with reduced sensitivity to motion and transit time effects. Interpretable cerebral perfusion images can now be reliably obtained in a variety of clinical settings including acute stroke, chronic cerebrovascular disease, degenerative diseases and epilepsy. Over the past several years, the technical and theoretical foundations of CASL perfusion MRI techniques have evolved from feasibility studies into practical usage. Currently existing methodologies are sufficient to make reliable and clinically relevant observations which complement structural assessment using MRI. Future technical improvements should further reduce the acquisition times for CASL perfusion MRI, while increasing the slice coverage, resolution and stability of the images. These techniques have a broad range of potential applications in clinical and basic research of brain physiology, as well as in other organs.
Collapse
Affiliation(s)
- J A Detre
- Department of Neurology, University of Pennsylvania, Philadelphia 19104, USA.
| | | |
Collapse
|
31
|
Abstract
MR gradient systems with higher slew rates and gradient amplitude enable certain forms of imaging that are not practical with older gradient systems. These newer pulse sequences include single shot half-Fourier T2-weighted images and echo planar imaging. More important in MR imaging of the pelvis, these gradient systems benefit more conventional imaging methods such as gadolinium-enhanced 3D MR angiography, dynamic gradient echo contrast-enhanced images, and T2-weighted fast spin echo images, by shortening echo times. For most MR imaging of the pelvis, spatial resolution is paramount, and therefore sequences such as half-Fourier acquisition Turbo spin echo (HASTE) and 3D gadolinium-enhanced dynamic imaging play a less important role than in the upper abdomen. The potential of these techniques for diffusion or perfusion studies in the pelvis has not been explored.
Collapse
Affiliation(s)
- E K Outwater
- Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, PA 19107-5244, USA.
| |
Collapse
|
32
|
Golay X, Stuber M, Pruessmann KP, Meier D, Boesiger P. Transfer insensitive labeling technique (TILT): application to multislice functional perfusion imaging. J Magn Reson Imaging 1999; 9:454-61. [PMID: 10194717 DOI: 10.1002/(sici)1522-2586(199903)9:3<454::aid-jmri14>3.0.co;2-b] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cerebral blood flow can be studied in a multislice mode with a recently proposed perfusion sequence using inversion of water spins as an endogenous tracer without magnetization transfer artifacts. The magnetization transfer insensitive labeling technique (TILT) has been used for mapping blood flow changes at a microvascular level under motor activation in a multislice mode. In TILT, perfusion mapping is achieved by subtraction of a perfusion-sensitized image from a control image. Perfusion weighting is accomplished by proximal blood labeling using two 90 degrees radiofrequency excitation pulses. For control preparation the labeling pulses are modified such that they have no net effect on blood water magnetization. The percentage of blood flow change, as well as its spatial extent, has been studied in single and multislice modes with varying delays between labeling and imaging. The average perfusion signal change due to activation was 36.9 +/- 9.1% in the single-slice experiments and 38.1 +/- 7.9% in the multislice experiments. The volume of activated brain areas amounted to 1.51 +/- 0.95 cm3 in the contralateral primary motor (M1) area, 0.90 +/- 0.72 cc in the ipsilateral M1 area, 1.27 +/- 0.39 cm3 in the contralateral and 1.42 +/- 0.75 cm3 in the ipsilateral premotor areas, and 0.71 +/- 0.19 cm3 in the supplementary motor area.
Collapse
Affiliation(s)
- X Golay
- Institute of Biomedical Engineering and Medical Informatics, University of Zurich, Switzerland
| | | | | | | | | |
Collapse
|